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A B S T R A C T

The distribution of intramyocardially injected rabbit MSCs, labeled with the near-infrared dye 1,10-
dioctadecyl-3,3,30,30-tetramethylindotricarbo-cyanine-iodide (DiR) using hybrid Fluorescence Molecular
Tomography-X-ray Computed Tomography (FMT-XCT) and Multispectral Optoacoustic Tomography
(MSOT) imaging technologies, was investigated.
Viability and induction of apoptosis of DiR labeled MSCs were assessed by XTT- and Caspase-3/-7-

testing in vitro. 2 � 106, 2 � 105 and 2 � 104MSCs labeled with 5 and 10 mg DiR/ml were injected into fresh
frozen rabbit hearts. FMT-XCT, MSOT and fluorescence cryosection imaging were performed.
Concentrations up to 10 mg DiR/ml did not cause apoptosis in vitro (p > 0.05). FMT and MSOT imaging of

labeled MSCs led to a strong signal. The imaging modalities highlighted a difference in cell distribution
and concentration correlated to the number of injected cells. Ex-vivo cryosectioning confirmed the
molecular fluorescence signal.
FMT and MSOT are sensitive imaging techniques offering high-anatomic resolution in terms of

detection and distribution of intramyocardially injected stem cells in a rabbit model.
© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acute myocardial infarction is still the leading cause of
morbidity and mortality worldwide, coronary heart disease alone
accounts for 46% of all cardiovascular deaths in the US [1].
Although post-infarction survival rates have been improved in
recent years, cardiomyocyte loss and subsequently impaired heart
function can cause progressive heart failure [2]. The ultimate goal
of cardiac repair is to regenerate functional myocardium after
injury to prevent or treat heart failure. Unfortunately, the capacity
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of self-regeneration of myocardial tissue is limited in primates [3].
This limited capacity has led to the introduction of gene- and cell-
based therapeutic approaches, which aim at replenishing the
diminished myocytes to achieve a new myocardium that is
electrically and mechanically integrated into the contractile unit
and their assembly [4].

Cell-based cardiac regenerative therapy offers a promising
therapy for myocardial infarction. However, the optimal cell type
to achieve this goal has not been established yet [5–13]. In
particular, bone marrow derived mesenchymal stem cells (MSCs)
have been extensively investigated as a potential therapeutic
approach for cardiac regeneration due to their distinctive
characteristics [14–16]. Originally, it was asumed that MSCs
engrafted in the myocardium differentiate into cardiomyocytes
and could, therefore, lead to direct cellular cardiac regeneration
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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[17]. Current evidence, however, has led to the assumption that
MSCs act in a paracrine manner through the release of cytokines
[18,19].

In recent years, cardiac repair has moved rapidly from studies in
experimental animals to clinical trials involving thousands of
patients [20,21]. Clinical trials using bone marrow cells have
demonstrated the safety and feasibility of myocardial transplanta-
tion of stem cells, but have yielded moderate if any results in terms
of a therapeutic benefit [22–30].

The clinical promise for stem cell therapy in ischemic heart
disease will not be fully attained without an improved under-
standing of stem cell biology and mechanisms of repair and
regeneration. A noninvasive assessment of the survival, distribu-
tion and differentiation of the MSCs will be necessary to monitor
the transplanted cells in the same subject over time. The
development of imaging tools that allow longitudinal assessment
of the fate of injected stem cells with high spatial resolution and
the ability to simultaneously determine cellular viability, repre-
sents one of the current goals for these therapeutic approaches.
Magnetic resonance imaging (MRI) [31,32], positron emission
tomography (PET) [33,34] and single-photon emission computed
tomography (SPECT) [35,36] with clinically approved contrast
agents and reporter genes have already been tested in various
clinical trials of cell tracking in myocardial regeneration. However,
none of these clinically established imaging modalities fulfilled the
above mentioned criteria.

In the last years, optical imaging in the near-infrared (NIR)
spectrum has played an increasing role in cardiovascular research
[37–39]. Noninvasive optical imaging of macrophage infiltration
using fluorescent nanoparticles [40] and investigations of mono-
cyte recruitment for infarct healing [41,42] have been performed
using fluorescence molecular tomography (FMT). However, the
accuracy of stand-alone FMT, which has demonstrated highly
sensitive imaging of molecular probes, suffers due to the strong
scattering of emitted photons and/or light in turbid media of
biological tissue [43,44]. FMT in combination with CT – a hybrid
modality called FMT-XCT – further improves high morphological,
three-dimensional detail [45,46].

Alternatively, optoacoustic imaging, and in particular, multi-
spectral optoacoustic tomography (MSOT) has been proposed to
noninvasively achieve high-resolution maps of various fluorescent
contrast agents several centimeters deep in tissue [47,48]. It is
capable of greatly improving the resolution over pure optical
methods because typically it is not hindered by optical scattering.
MSOT images purely rely on the conversion of light energy into
ultrasound through the photoacoustic effect provided by chro-
mophores [47]. In preclinical studies, this technology has already
successfully been used to image heart and blood vessels in a mouse
model [49,50]. Both MSOT and FMT present characteristics that
other modalities classically used for cardiac cell tracking do not: in
particular they are both highly sensitive imaging modalities devoid
of ionizing radiations, and both allow for longitudinal assessment
due to the inherent stability of the dye chosen [51,52]. These
imaging modalities are promising to rapidly translate major
findings in cell and molecular biology to more complex models and
to further investigate biological processes during myocardial
healing in vivo and to evaluate novel therapeutic strategies.

The aim of this work was a proof of concept study to establish
highly sensitive and easy to use preclinical imaging techniques of
FMT and MSOT without the use of ionizing radiation. Therefore,
this study investigated the distribution of intramyocardially
implanted rabbit MSCs, labeled with the near-infrared dye 1,10-
dioctadecyl-3,3,30,30-tetramethylindotricarbo-cyanine iodide
(DiR), at different concentrations and cell numbers using both
FMT-XCT and MSOT technologies. The implementation of these
imaging modalities for cardiac cell tracking might advance the field
of cell-based cardiac regenerative therapy and form the basis for
further studies including potential prospective clinical applica-
tions, e.g. examination of inflammation in atherosclerotic plaques
in relatively superficial arteries, or via an intravascular imaging
approach [49].

2. Material and methods

All animal experiments were reviewed and approved by the
Animal Research Authority of the government of Upper Bavaria (AZ
105-11) and were performed in accordance with the U.S. National
Institutes of Health guidelines for the care and use of laboratory
animals [53].

2.1. Cell-labeling with DiR

For cell labeling, bone marrow-derived mesenchymal stem cells
(MSCs) were collected from a 4 month-old male New Zealand
White rabbit, as described previously [54]. All MSCs were used at
passage 2–4 in order to prevent senescence. MSCs were labeled
using Xenolight DiR (Perkin Elmer, Rodgau, Germany), a NIR
lipophilic carbocyanine dye excited at 750 nm, with an emission
peak at 782 nm [55]. Parallel triplicate samples of 1 �106 cells/ml
were incubated with different concentrations of DiR (1.25, 2.5, 5.0
and 10 mg DiR/ml) in a volume of 1 ml 1xPBS for 30 min at 37 �C.
3 ml serum-free culture medium were added to each sample and
cells were washed twice with PBS by centrifugation (1200 rpm,
3 min, 25 �C) to remove non-incorporated dye. Similarly treated
unlabeled cells served as controls.

Fluorescence intensity of MSC labeled with 10 mg DiR/1 �106

MSC was analyzed by flow cytometry (Cyan ADP, Beckman Coulter,
Krefeld, Germany) on channel APC-Cy7 within the whole cell
population (single-parameter histogram) using FlowJo software
(Tree Star, Ashland, OR, USA). To analyze the localization of the dye
within the MSC, fluorescence microscopy of labeled cells was
performed. Cells were labeled with 5 and 10 mg DiR/ml,
respectively, and cultured for 24 h on slides. Then, cells were
fixed with 4% PFA (Carl Roth GmbH, Karlsruhe, Germany) and
labeled with DAPI (40,6-Diamidin-2-phenylindol; Life Technolo-
gies, Darmstadt, Germany). Finally, fixed cells were analyzed using
a fluorescence microscope (Axio Imager Z1, Zeiss GmbH, Jena,
Germany).

2.2. Cell viability and toxicity screening

Cellular proliferation rate and viability of labeled cells were
tested using the Cell Proliferation Kit II (XTT) (Roche Diagnostics,
Mannheim, Germany) [56]. After cell labeling and the described
washing steps, the cells were incubated with the XTT reagent
mixture for 18 h in a humidified atmosphere. Afterwards, cell
viability was spectrophotometrically quantified by measuring the
absorbance using a multi-label plate reader (PerkinElmer Inc.,
Rodgau, Germany).

For assaying apoptosis (caspase-3/-7 activities), the SensoLyte1

Homogeneous AMC Caspase-3/7 Assay Kit (Anaspec, MoBiTec,
Göttingen, Germany) was used [57]. After incubation for 18 h,
fluorescence was measured at excitation/emission wavelengths of
355/430 nm. Camptothecin treated cells (5 mM) were used as
positive controls.

2.3. Intramyocardial injection of DiR labeled MSCs

Two fresh frozen rabbit hearts were prepared for injection of
MSCs labeled with 5 and 10 mg DiR/ml, respectively (Fig. 1). The
hearts were perfused thoroughly with PBS to remove adherent
blood. The left ventricle was localized and divided into four



Fig. 1. Heart of a New Zealand White rabbit, right after explantation with left
ventricle seen at the front. Subsequently, the heart was washed thoroughly with PBS
to remove all soluble blood.
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quadrants, which were initially marked by sutures. DiR-labeled
cells were centrifuged at 1200 rpm for 3 min, re-suspended in
50 ml PBS and slowly injected into four different quadrants. 2 � 106,
2 � 105 and 2 � 104 DiR-labeled MSCs were implanted, respectively.
2 � 106 unlabeled cells served as control. FMT-XCT and MSOT
imaging were performed directly afterwards.

2.4. FMT-XCT

A fluorescence molecular tomography-X-ray computed tomog-
raphy (FMT-XCT) hybrid imaging system was used to image the
samples. The FMT-XCT system has been described in details in [58].
Briefly, the system operates in 360 � trans-illumination geometry,
where the sample was illuminated by a 750 nm laser at 18 equally
spaced gantry locations, where images were acquired at both
excitation and fluorescence wavelengths of DiR (�750 and
�830 nm, respectively) using a CCD cooled at �80 �C. The optical
part of the FMT-XCT imaging lasted around 50 min per sample. CT
imaging was performed afterwards using the X-ray sub-system of
the FMT-XCT, consisting of an eXplore Locus micro-CT scanner (GE
Healthcare, U.K.) covering a scan field of �40 mm in the axial
direction. The CT acquisition lasted �20 min per sample. The FMT-
XCT system was modeled using a finite-element approach,
accounting for light propagation. Anatomical information was
used in conjunction with optical data for improved accuracy using
a regularized linear least squares approach [46,58].

2.5. Fluorescence cryosection imaging

For validation of the ex vivo imaging results, fluorescence
cryosection imaging was performed of the excised heart after
embedding in Tissue-Tek1 O.C.T. (TM) (Sakura Finitek Europe B. V.,
Zoeterwonde, Netherlands) to map the fluorescence signal origi-
nating from DiR. The frozen heart was sliced in the short axis at a
500 mm micronpitch. Color and fluorescence images were recorded
for each slice. The cryosection imaging system is based on a
cryotome (CM 1950, Leica Microsystems, Wetzlar, Germany), fitted
with a motorized spectral illumination and multi-spectral CCD-
based detection in epi-illumination mode [59]. Fluorescence images
were captured at the peak emission wavelength of DIR at 782 nm.

2.6. Multispectral optoacoustic tomography (MSOT)

All MSOT measurements were performed using a MSOT
inVision 256-TF system (iThera Medical, Munich, Germany).
Optical excitation was provided by a laser, with a pulse-duration
of around 10 ns and a repetition rate of 10 Hz, within a tunable
range of 680–980 nm and an average energy of 80 mJ per pulse. A
fiber bundle split into 10 output arms was used to achieve the
homogeneous delivery of light to the sample in a ring formation.
The detection and record of emitted ultrasound waves was
obtained by means of a 256 element transducer array cylindrically
focused and having a central frequency of 5 MHz, allowing
acquisition of transverse plane images. A moving stage enabled
the imaging of different planes by the static illumination and
detection devices. Measurements were executed in a temperature
controlled water bath (34 �C) for acoustic coupling and to keep the
sample dry, a clear polyethylene membrane attached to the sample
holder was employed [60]. Processing of the data acquired during
the imaging experiments was performed using the viewMSOT
software (iThera Medical, Munich, Germany). Volume estimation
of the cell distribution was performed by selecting pixels with a
DiR optoacoustic signal value above background and approximat-
ing the shape to an ellipsoid, using the surface of the signal
distribution in the most intense image times the distance between
the two images containing signal from the same injection location.
Maximum value in combination with volume was used to give
insight into how far the cells went (volume) and how many
remained at the injection spot (maximum).

2.7. Statistical analysis

Statistical calculations were performed using the statistical
software R 3.1.1 (Release date 2014, Vienna, Austria) and GraphPad
Prism 5.04 (Release date 2010, San Diego, CA, USA). Measurements
of cell viability and toxicity were acquired in triplicates. Mean
values and standard deviations were calculated. Labeled samples
were compared with untreated controls using a linear regression
model treating concentration as factor. A two-sided 5%-level of
significance was used for all tests. MSOT error bars are derived
from different data spectral unmixing methods (principal compo-
nent analysis, linear regression methods using different reference
spectra).

3. Results

3.1. Cell labeling and in vitro analysis of viability and apoptosis

Fig. 2 shows uniform labeling of MSCs with 10 mg/ml DiR as
analyzed by flow cytometry (Fig. 2A) and fluorescence microscopy
(Fig. 2B and C). Concentrations up to 10 mg/ml DiR/ml did not
change cell viability or cause apoptosis in vitro (Fig. 3). In
comparison to unlabeled controls (1.63 � 0.16), cells labeled with
DiR concentrations of 1.25 and 2.5 mg DiR/ml showed a non-
significant increase in cell metabolism (1.79 � 0.17, p = 0.264 and
1.82 � 0.17, p = 0.184). In contrast, 5.0 and 10 mg DiR/ml led to a
decrease in metabolism (1.45 � 0.17, p = 0.201; 1.27 � 0.15,
p = 0.022) (Fig. 3A). Fig. 3B reveals that none of the concentrations
led to an increase in caspase-3/-7-activity (p > 0.05, each).
However, all samples were significantly different to the apoptotic
positive control Camptothecin (p < 0.001, each).

3.2. Fluorescence molecular tomography (FMT)

FMT of labeled, intramyocardially injected MSCs showed a
strong signal at the four injection points (Figs. 4 and 5). Each signal
intensity (in a.u.) was matched to the one measured at the injection
site of MSCs labeled with 2 � 106. While FMT imaging of the rabbit
heart with injected cells labeled with 5 mg DiR/ml (Fig. 4) revealed
a dose-dependent signal within the varying cell numbers, imaging
of the rabbit heart with injected cells labeled with 10 mg DiR/ml



Fig. 3. (A) XTT-test and (B) caspase-3/-7 test of different DiR concentrations. Concentrations up to 10 mg/ml DiR/ml did not significantly change cell viability or cause
apoptosis in vitro. All samples were significantly different to the apoptotic positive control Camptothecin (p < 0.001, each). Absorbance was expressed as A490nm–A630nm and
fluorescence as relative fluorescence units (�104), respectively.

Fig. 2. (A) Flow cytometric analysis of labeling efficiency of rabbit MSCs, exemplarily for dye concentration of 10 mg/ml DiR. Light grey = unlabeled control cells, black = DiR
labeled MSCs. Histogram overlay shows fluorescence intensity of the DiR signal measured on the APC-Cy7 channel (log scale) on the X-axis. The fluorescence intensity is an
arbitrary unit (a.u.). The Y-axis shows the number of cells normalized to mode (percent of max; scaling each curve to 100%). (B, C) Fluorescence microscopy of rabbit MSC
labeled with 10 mg DiR/ml (B: 10� magnification; C: 40� magnification). Nuclear counterstaining was performed with DAPI (blue staining).
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(Fig. 5) indicated a stronger signal intensity at the location of
injection of 2 � 104 cells compared to the location of 2 � 105 cells.
The injection of 2 � 106 resulted in the strongest signal while
reduced cell numbers led to minor signal intensity. Unlabeled cells
had a signal intensity of 0.11 a.u. (Fig. 4) and 0 a.u. (Fig. 5).

Interestingly, an injection of MSCs labeled with a higher
fluorescent dye concentration (10 mg DiR/ml) resulted in an
attenuated signal compared to 5 mg DiR/ml.

3.3. Fluorescence cryosection imaging

The results of the fluorescence cyrosection imaging were in line
with FMT findings; especially concerning signal intensity and
dose-dependence within the varying cell numbers. As seen in Fig. 4
and 5, both FMT-XCT and cryosection images reveal signals in
similar and comparable anatomical locations.

3.4. Multispectral optoacoustic tomography (MSOT)

Multispectral optoacoustic images of the DiR-MSCs injected
rabbit hearts are presented in Fig. 6 and 7. DiR signal, identified
after signal unmixing, can be detected at 3 different locations in a
diffuse pattern (highlighted in the figure), with an additional bright
spot at what appears to be the injection site at a different depth in
the muscle tissue. A fly-through video (see Supplementary
material) illustrating the top to the apex in half-millimeter steps,
allows for accurate rendering of these patterns. Quantification of
the optoacoustic signal obtained from the injection sites is shown
in the bar graphs for the two different samples. The maximum
signal intensity appears to correlate with the number of labeled
cells injected, as it represents the signal intensity in the few pixels
at precisely the injection location. In both samples labeled with
different DiR concentrations, the background DiR signal was
around 10 a.u., while the labeled cells provided from 20 to 40 a.u. of
maximum DiR signal depending on the number of cells injected.
The maximum values obtained in both samples with different DiR
labeling methods did not provide any significant difference.

The volume holding signal is superior to the background DiR
signal, approximated assuming an ellipsoid distribution does not
appear to increase with the number of cells injected but rather
decrease. As with the maximum DiR optoacoustic, the values
obtained did not differ between labeling methods and stayed
between 100 and 200 mm3 (compare Figs. 6 and 7).

4. Discussion

In our study, we could successfully image the distribution of
intramyocardially injected rabbit MSCs labeled with the near-
infrared dye 1,10-dioctadecyl-3,3,30,30-tetramethylindotricarbo-cy-
anine iodide (DiR), using both FMT-XCT and MSOT technologies.

FMT of the myocardium was first performed in mice after
uptake of magnetofluorescent nanoparticles (CLIO-Cy5.5) by



Fig. 4. FMT (top) and fluorescence cryosection images (bottom) of a rabbit heart after left-ventricular injection of 2 � 104, 2 �105 and 2 �106 MSCs labeled with 5 mg DiR/ml.
Injection of unlabeled cells served as control. The four spotted, oval circles in each slide highlight the injection areas of the cells. On the FMT images, the largest signal (max) is
mapped to the red color with zero transparency and the lowest signal (min) is mapped to the blue color with full transparency. On the cryosection images the largest signal is
mapped to the green color with no transparency and the lowest signal to the green color with full transparency.

Fig. 5. FMT (top) and fluorescence cryosection images (bottom) of a rabbit heart after left-ventricular injection of 2 � 104, 2 � 105 and 2 � 106MSCs labeled with 10 mg DiR/ml.
Injection of unlabeled cells served as control. The four spotted, oval circles in each slide highlight the injection areas of the cells. For explanation of the color bar see Fig. 4.

M.T. Berninger et al. / Photoacoustics 6 (2017) 37–47 41
macrophages in infarcted myocardium [40]. In this study the FMT
signal increased linearly with the dose of CLIO-Cy5.5 injected
similarly to the signal seen in T2*-weighted MRI. Furthermore,
extensive monocyte recruitment around infarcted areas [41,42]
and impaired recruitment of phagocytes and protease activity have
been observed using FMT [61]. Ale et al. showed that FMT-XCT is
able to detect apoptosis noninvasively and in-vivo in the healing
myocardium by quantification of Annexin-Vivo750, a florescent
imaging agent [62]. These studies showed the potential of FMT to
be of significant value in research and thereby, in clinical settings
one day, too, and may play an important role in the study of post-
infarction healing. Beside the high spatial resolution and potential
longitudinal assessment achieved by FMT, we assume that our
intermediate sized rabbit model offers pronounced imaging
quality through higher image detail compared to smaller animals.
However, even in the near-infrared portion of the spectrum,
significant absorption and scattering of light limit penetration to a
few centimeters. This limits fluorescence imaging in humans to
superficial structures or invasive techniques. Thus, fluorescence
imaging of the human heart will likely require surgical or catheter-
based approaches in the foreseeable future [63].

Optoacoustic imaging has been proposed as an alternative for
imaging the optical characteristics of tissue [64–66]. As opto-
acoustic imaging only suffers marginally from optical scattering, it
is capable of greatly improving the resolution over pure optical
methods and combines the high contrast obtained from optical



Fig. 6. Optoacoustic imaging of three injection sites located in the heart (25; 35,5 and 40 mm) and a reference injection site (31 mm). MSCs were labeled with 5 mg DiR/ml. Top
row: Multispectral optoacoustic images of the DiR signal (green) overlayed on the 800 nm image (grey scale). Bar graph: Maximum MSOT signal (a.u.) detected at the injection
sites (red); volume in which the DiR signal was superior to background signal (black).
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absorption with the high resolution of ultrasonic detection.
Molecular imaging has been further enabled using optoacoustic
techniques via spectral unmixing methods. In particular, MSOT has
been proposed to noninvasively achieve high-resolution maps of
molecular agents, such as fluorochromes [67] and fluorescent
proteins [68], and other chromophores [47,69] several centimeters
deep in tissue [47,48], well suited for cardiac imaging.

The intrinsic contrast of stem cells relative to native heart tissue
is very low. Thus, prior to transplantation the MSCs were directly
labeled with the fluorophore DiR to enable their detection relative
to the surrounding tissue either based on its fluorescence for FMT
and planar fluorescence, or on its absorbance for MSOT. Literature
shows that as few as 10.000 monocytes labeled with DiR could be
detected by fluorescent imaging [70] while the lowest detectable
cell number in this study was much lower than normally applied
cell numbers in clinical trials [71,72]. Currently, direct labeling
techniques in vitro prior to transplantation serve as the primary
means of labeling stem cells for in vivo cardiovascular applications
compared to receptor-based or reporter gene labeling techniques
[73]. DiR has previously been described to show a high emission
wavelength compared to other lipophilic membrane dyes [74]. DiR
presents a detection sensitivity being strong enough even for the
deep part of an organ, e.g. the myocardium or even endocardium,
and therefore, it is very suitable for such an intramyocardial
experimental model. In our study, concentrations up to 10 mg/ml
DiR/ml did not significantly change cell viability or cause apoptosis
in vitro. In literature, recently published studies revealed the
suitability of DiR for in vivo long-term cell tracking. Youniss et al.
demonstrated persistence of fluorescent signal associated with DiR
labeled T-cells for 3 weeks post labeling in vivo in a mouse model
using multi-spectral fluorescent imaging [51]. Du et al. observed
concentrated fluorescence signals for a minimum of two weeks at
the tumor site infused with DiR labeled human cytokine-induced
killer cells and cytotoxic T lymphocytes in a mouse model of gastric
carcinoma [52].

In our study, we presented the application of MSOT techniques
to image labeled MSCs implanted in a rabbit heart. The anatomical
resolutions, which were achieved by this imaging modality, are not
possible with current deep-tissue optical imaging methods.
However, the resolution of anatomical structures (e.g. coronary
vessels, septum etc.) plays an important role in the research and
diagnosis of cardiovascular diseases. The ability of optoacoustic
imaging to highly resolve these anatomical structures allows for
promising cardiac applications, in real-time and in vivo. Preclini-
cally, this technology has successfully demonstrated anatomical
visualization of heart and blood vessels of mice [49,50].

The results of our proof of principle study showed that FMT of
labeled, intramyocardially injected MSCs led to a strong signal at



Fig. 7. Optoacoustic imaging of three injection sites located in the heart (35,5; 44 and 52 mm) and a reference injection site (29 mm). MSCs labeled with 10 mg DiR/ml. Top
row: Multispectral optoacoustic images of the DiR signal (green) overlayed on the 800 nm image (grey scale). Injection locations circled for clarity. As the two injection sites
presented in the second and third panel were close (approximately 5 mm Z distance in the position the heart was in), the DiR signal present outside of the circled area in the
third panel comes from remaining cells of the injection site shown in the second panel. Bar graph: Maximum MSOT signal (a.u.) detected at the injection sites (red); volume in
which the DiR signal was superior to background signal (black).
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the four injection points and thereby, allows for visualization of
DiR-labeled MSCs after their injection in rabbit hearts. Additional
ex-vivo cryosectioning confirmed the molecular fluorescence
signal in the myocardium. Signal localization in the ex-vivo
cryoslices did not always match exactly the FMT-XCT images, as
it is not possible to keep the rabbit heart geometry identical
between imaging and the freezing of the heart [50]. Both FMT-XCT
and cryosection images revealed signals in similar and comparable
anatomical location. The attenuated signal in FMT-XCT imaging at a
higher fluorescent dye concentration was most likely due to
quenching. The effect of fluorescent quenching of DiR has
previously been described by Cho et al. [75]. The authors showed
that fluorescence intensities of DiR in PEG-b-PCL micelles were
concentration-dependent. Depending on the extent of DiR
incorporation, DiR existed in either a quenched or non-quenched
state in the cores of the micelles resulting in different fluorescent
intensities. Therefore, quenching is conceivable for this effect here,
too. Fluorescence quenching should have close to no impact of
optoacoustic signal strength because only the absorbed photons
will generate optoacoustic signal. In the case of DiR, as with all red
shifted cyanine derivatives, the fluorescent yield is already low
(<5%), leaving most of the absorbed light energy available for
optoacoustic signal generation. In the case of re-emitted and re-re-
absorbed light (quenching), we can assume those photons will
generate extra optoacoustic signal. Furthermore, a discrepancy of
signal intensity between the varying cell numbers was observed in
FMT imaging of the heart after injection of MSCs labeled with
10 mg DiR/ml. This discrepancy might be due to unaccounted signal
of local optical heterogeneity around this particular location of
2 � 105 cells inside the sample. Specifically, our implementation of
FMT-XCT for this work assumes homogeneous optical absorption
and scattering in the entire volume of the tissue sample. Any strong
optical heterogeneity, such as due to remaining high blood/
hemoglobin concentration in a particular location, can perturb the
validity of the FMT model and result in artifacts or erroneous
reconstructions.

Using MSOT, we could identify DiR signal intensity variation
between the injection locations that could be divided in two
metrics: maximum signal intensity, extracted from the voxel
bundle pertaining to the injection point, and volume containing
positive DiR signal. Maximum MSOT signal provided a clear
correlation with the number of cells injected as well as with the
values extracted from strictly fluorescent imaging techniques, with
signal intensities growing with the number of cells injected. DiR
signals from the injected cells could clearly be identified above
background signal, which was equal to the signal obtained from
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the injection location of the reference cells. The non-negligible
standard deviation stems from the difficult setting: with a
relatively thick muscle, non-homogeneous distribution of the
cells and presence of remaining hemoglobin, variation in light
fluence becomes predominant in signal accuracy and is heavily
dependent on orientation and positioning of the sample in the
imaging cavity.

In an attempt to circumvent the resulting quantification issues,
we evaluated the volume occupied by the DiR labeled cells in the
heart tissue by estimating the volume of an ellipsoid containing
DiR signal around each injection site. Interestingly, the diffusion of
the cells in the muscle tissue appears to be favored when a more
diluted suspension is injected. Overall, the MSOT results correlated
nicely with the FMT and cryosection fluorescence imaging results
coincidentally also providing real time imaging not possible with
fluorescence methods.

In the context of in vivo cell tracking studies it is important to
recognize the problem of dye transfer. Implanted labeled cells may
die, release the contrast agent, which might then be taken up by
macrophages and thus cause persisting imaging signal in the
target organ. This imaging signal mimics successful cell engrafting
but actually represents cell death. The problem is well recognized,
also with other imaging techniques as magnetic cell labeling for
MR imaging [76–79]. Some studies have thus focused on
generating a functional imaging signal to detect death of the
implanted cells be compartmentalization effects [80]. Ricles et al.
have developed a technique to discriminate macrophages from
implanted mesenchymal stem cells in vivo by a dual gold
nanoparticle system for cell tracking based on labeling with
different nanoparticles and photoacoustic imaging [81]. However,
the ultimate goal would be to reduce the rate of cell death by
improving cell transplantation techniques. This includes, for
instance, tissue-engineering strategies with scaffolds of natural
or synthetic polymers [82] or fibrin gels [83] as well as
preconditioning and genetic modification of MSCs which can
enhance the resistance of MSCs against hypoxia, oxidation, and
inflammation [84,85]. In fact, while some studies describe up to a
99% rate of cell death after transplantation after a few days [17]
newer studies report rates below 85% within 7 days [86]. Another
solution might be systemic application of labeled cells [87,88] as
unspecific uptake of released contrast would then be systemic and
imaging signal in the target organ would thus predominantly
represent successful cell engrafting.

Several limitations pertain to our study. Being a proof of
principle study, the sample number (n = 2) was limited. However,
the ultimate goal of this study was to evaluate if visualization of
implanted cells by FMT-XCT and particularly by MSOT in a heart of
an intermediate animal model is possible at all. Our results
demonstrated that this goal is achievable. This study lacks an
additional analysis of a tissue-mimicking phantom to clarify
quantitative analysis of optoacoustic signal generation from the
labeled cells with minimized effects of other factors such as
background signals and errors in volume measurement and cell
number estimation. However, our previous and preliminary
experiments with dye in phantoms showed that we could detect
and estimate rather easily and linearly the concentration and
shape distribution of built-in dye. Ultimately though, the transition
to our animal model, its peculiar shape and non-homogeneity
could not be reproduced as accurately as in a phantom. Therefore,
future studies should address these aspects more profoundly.
Moreover, imaging was performed with freshly explanted hearts
and not in a living animal. Therefore, follow-up analyses of the
implanted cells were not possible and our study serves, for this
part too, as proof of principle only. Future work will have to
visualize fluorescent cells at later time points.
5. Conclusions

In summary, our work shows that both FMT-XCT and MSOT are
practical applications in preclinical research of cell-based cardiac
regenerative therapy in terms of detection and distribution of
injected stem cells in hearts of an intermediate sized rabbit animal
model with additional high-resolution anatomical information.
These imaging modalities, however, can be used to rapidly
translate major findings in cell and molecular biology to more
complex in vivo models. Intermediate animal studies could apply
MSOT together with targeted fluorescent agents, e.g. DiR, to further
investigate biological processes during myocardial healing in vivo
and to evaluate novel therapeutic strategies. MSOT imaging could
eventually find diverse use in clinical settings, owing in particular
to its video-rate imaging capacity. Potential applications include
the examination of inflammation in atherosclerotic plaques in
relatively superficial arteries, or via an intravascular imaging
approach [49]. We believe that at the current state of the
technologies used, MSOT has an advantage in terms of acquisition
convenience and volumetric accuracy, while FMT remains more
sensitive. Therefore, we believe complete preclinical studies would
thus be better served by combining the two imaging modalities.
Molecular imaging modalities like FMT or MSOT may help to first
understand, and then control and monitor the healing process of
myocardial infarction evoked by injection of mesenchymal stem
cell into myocardial tissue.
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