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Abstract Intracellular calcium (Ca2+) signals are key regulators of multiple cellular functions,
both healthy and physiopathological. It is therefore unsurprising that several cancers present a
strong Ca2+ homeostasis deregulation. Among the various hallmarks of cancer disease, a particular
role is played by metastasis, which has a critical impact on cancer patients’ outcome. Importantly,
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Ca2+ signalling has been reported to control multiple aspects of the adaptive metastatic cancer
cell behaviour, including epithelial–mesenchymal transition, cell migration, local invasion and
induction of angiogenesis (see Abstract Figure). In this context Ca2+ signalling is considered to
be a substantial intracellular tool that regulates the dynamicity and complexity of the metastatic
cascade. In the present study we review the spatial and temporal organization of Ca2+ fluxes, as
well as the molecular mechanisms involved in metastasis, analysing the key steps which regulate
initial tumour spread.
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Abstract figure legend Model of the specific patterns of Ca2+ signals that are associated with different steps of cancer
progression. It is important to note that most of the findings on Ca2+ signalling have been generated in vitro. Therefore,
it is possible that in tissues, Ca2+ signals do not simply follow the same patterns.

Abbreviations AA, arachidonic acid; EC, endothelial cell; ER, endoplasmic reticulum; EGF, epidermal growth factor;
EMT, epithelial–mesenchymal transition; ECM, extracellular matrix; KCa, Ca2+-activated potassium channels; MMP,
matrix metalloproteinase; MT1-MMP, membrane type 1 matrix metalloproteinase; MLCK, Ca2+-dependent myosin
light chain kinase; myo II, myosin II; NCX, Na+/Ca2+ exchanger; NFAT, nuclear factor of activated T-cells; ORAI, Ca2+

release-activated Ca2+ channel protein; PMCA, plasma membrane ATPase; SOCE, store-operated Ca2+ entry; STIM,
stromal interaction molecule; TEC, tumour-derived endothelial cell; TRP, transient receptor potential; TRPA, transient
receptor potential ankyrin channel; TRPC, transient receptor potential canonical channel; TRPM, transient receptor
potential melastatin channel; TRPV, transient receptor potential vanilloid channel; VEGF, vascular endothelial growth
factor; VGCC, voltage-gated Ca2+ channel.

Introduction

Calcium (Ca2+) is a ubiquitous second messenger which
is involved in the tuning of multiple fundamental cellular
functions (Berridge et al. 2000). Due to its multifaceted
roles, it is not surprising that deregulated Ca2+ homeo-
stasis has been observed in various disorders, including
tumourigenesis (Monteith et al. 2007; Prevarskaya et al.
2011). Among the various manifestations of cancer, a
particular role is played by metastasis, which has a
critical impact on cancer patients’ outcome (Hanahan &
Weinberg, 2011). Tumour spread is a highly regulated
process that usually starts with the loss of cell–cell
contact and the epithelial–mesenchymal transition (EMT)
(Kalluri & Weinberg, 2009). During metastasis, cancer
cells also acquire enhanced directional movement and
activate molecular pathways that enable the proteolysis of
an extracellular matrix (ECM) as well as local angiogenesis.
As a result, cancer cells enter the body’s circulation
systems and disseminate to distinct sites around the
organism. Importantly, Ca2+ signalling has been reported
to control multiple aspects of the adaptive metastatic
cancer cell behaviours, including EMT, migration, local
angiogenesis induction and intravasation (Chen et al.
2013). In this context, it is considered to be a sub-
stantial intracellular tool that regulates the dynamicity
and complexity of the metastatic cascade. Intracellular
free Ca2+ concentration is highly controlled by the
fine regulation of ‘ON’ and ‘OFF’ mechanisms that
ultimately generate Ca2+ signals with various amplitudes

and frequencies. As regarding the ON mechanisms,
cytosolic Ca2+ can either be delivered from extracellular
space due to the activity of Ca2+-permeable channels and
transporters in plasma membrane, or occur as a result
of a release from Ca2+-containing organelles (e.g. end-
oplasmic reticulum) (Berridge et al. 2000). In order to
maintain low resting Ca2+ concentration, cells remove
Ca2+ using an energy-dependent mechanism, such as
plasma membrane ATPases (PMCAs), or the Na+/Ca2+
exchanger (NCX). Moreover Ca2+ is sequestered intra-
cellularly into Ca2+-containing organelles, primarily end-
oplasmic reticulum (ER), by means of mechanisms which
require either ATP hydrolysis (e.g. a sarco/endoplasmic
reticulum Ca2+-ATPase pump), or a favourable electro-
chemical gradient. In this review we will overview
the spatial and temporal organization of Ca2+ fluxes
as well as those molecular mechanisms involved in
metastasis, analysing the key steps which regulate tumour
spread.

Epithelial–mesenchymal transition and loss
of cell–cell contact

EMT is a cellular process during which epithelial cells
acquire a fibroblast-like morphology. This process involves
changes in cellular shape, a loss of epithelial polarized
organization and cell–cell contacts like tight and adherens
junctions. Accordingly, one of the most recognized
features of cells undergoing EMT, is a suppression of
multiple epithelial markers (e.g. E-cadherin, claudins,

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society

http://phycell.univ-lille.fr/


J Physiol 595.10 Calcium in metastasis 3065

occludins) and an overexpression of mesenchymal
markers (e.g. N-cadherin, vimentin, integrins) (Fig. 1).

Of note, EMT and the disruption of cell–cell contact
is one of the key events in tumour progression. This
can be induced by various effectors like growth factors,
hypoxia and inflammation (Diepenbruck & Christofori,
2016). Interestingly, the remodelling of Ca2+ signals
during EMT processes has been reported for a variety
of cancer cells. For example, in breast cancer cells,
the potency of ATP-mediated cytosolic Ca2+ transients
exhibits significant changes after epidermal growth factor
(EGF) and hypoxia-induced EMT (Davis et al. 2011;
Azimi et al. 2016). Specifically, an attenuation of the cyto-
solic Ca2+ peak and a sustained phase of Ca2+ influx
in the response to ATP have been attributed to the
activity of G-protein-coupled purinergic receptors (P2Y
family) and ligand-gated Ca2+ channels (P2X family)
(Davis et al. 2011; Azimi et al. 2016). Another study
reveals that an inhibition of P2X5 reduces the expression
of the EMT marker vimentin, whereas its increased
expression correlates with breast cancer cells that are
associated with a more mesenchymal phenotype (Davis
et al. 2011). Moreover, the chelation of free cytosolic
Ca2+ suppresses the production of mesenchymal markers
like vimentin, N-cadherin and CD44, after the exposure
of breast cancer cells to EGF and hypoxia (Davis et al.
2013; Stewart et al. 2015). Similar findings have been
reported for hepatic cancer cells, where chelation of
intracellular Ca2+ reversed doxorubicin-induced EMT
(Wen et al. 2016). Furthermore, the EMT of colon
cancer cells may be regulated by the small conductance
calcium-activated channel, subfamily N, such as KCNN4,
through Ca2+-dependent mechanisms (Lai et al. 2013).
Regarding the store-operated Ca2+ entry (SOCE), the

data are ambiguous. On one hand, SOCE and basal Ca2+
influx are reduced after the EGF-induction of EMT in
the MDA-MD-468 breast cancer cell line (Davis et al.
2012). On the other hand, transforming growth factor
β1 (TGF-β1)-induced EMT is associated with enhanced
SOCE in the MCF-7 breast cancer cell line (Hu et al.
2011).

It is now clear that the remodelling of Ca2+ signalling
is a prominent feature of EMT in various cancer types.
Therefore, a deregulation of Ca2+-permeable channels
could subserve as an important EMT regulator during
carcinogenesis. Indeed, silencing and pharmacological
inhibition of transient receptor potential melastatin
channels (TRPM) such as TRPM7 and TRPM8 reduce the
expression of a variety of mesenchymal markers in breast
cancer cells (Davis et al. 2013; Liu et al. 2014). In the MCF-7
breast cancer cell line that exhibits a more epithelial-like
phenotype, the overexpression of TRPM8 leads to EMT
induction as indicated by the profile of markers expressed
(Liu et al. 2014). Consistent with this data, TRPM8 has
been found to be upregulated in breast cancer tumour
tissues, when compared to adjacent non-tumour tissues,
thereby suggesting the role of TRPM8 as a determinant
of EMT transition (Liu et al. 2014). Moreover, in breast
cancer cells, EGF-induced EMT significantly increases
the mRNA level of Ca2+ release-activated Ca2+ channel
protein 1 (ORAI1) and leads to altered Ca2+ signalling,
possibly due to the involvement of transient receptor
potential canonical channel type 1 (TRPC1) (Davis et al.
2012). In hepatic cancer cells, another member of the
transient receptor potential canonical channel family,
TRPC6, has been shown to affect the expression of
EMT markers after doxorubicin induction (Wen et al.
2016).
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Figure 1. Epithelial-to-mesenchymal transition (EMT), loss of cell–cell contacts and downregulation of
proteins such as E-cadherin, claudin or occludin
EMT transition is accompanied by the changes in Ca2+ signals due to several factors such as growth factors,
cytokines and hypoxia. The most studied Ca2+-permeable channels, which are associated with EMT, are indicated.
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Overall, the studies of Ca2+ signalling and
Ca2+-permeable channels using various cancer models
and EMT effectors have defined a critical role for the Ca2+
signal in the EMT process during tumourigenesis.

Cell migration

The principal component of cancer cell motility is
directional migration, which is due to front–rear end
polarity (Mayor & Etienne-Manneville, 2016). Typically,
the leading edge is represented by flat cell membrane
extensions with directed actin polymerization and nascent
attachment sites, whereas at the rear of the cell, adhesions
are disassembled and the trailing edge is contracted
(Mayor & Etienne-Manneville, 2016). Interestingly,
global cytosolic Ca2+ is generally higher at the rear end,
whereas Ca2+ flickers are enriched near the front edge
(Evans et al. 2007; Wei et al. 2009; Tsai & Meyer, 2012).
It is suggested that such Ca2+ distribution is involved in
controlling directed cellular locomotion (Brundage et al.
1991).

Of note, migration is a complex and multistep
process that involves coordination between cytoskeleton
remodelling, cell-substrate adhesion/detachment and
cellular protrusion/contraction (Gardel et al. 2010;
Parsons et al. 2010). Importantly, several key molecular
components and signalling events of the cellular migration
machinery are Ca2+ sensitive (Fig. 2). For example,
the myosin II (myo II)-based actomyosin contraction is
mainly mediated through the activity of Ca2+-dependent
myosin light chain kinase (MLCK) (Clark et al. 2007).
The focal adhesion turnover is also highly dependent on
Ca2+ signalling. On the one hand, the disassembly of
cell adhesions is achieved due to the cleavage of focal
adhesion proteins, such as integrins, talin, vinculin and
focal adhesion kinases, by the Ca2+-sensitive protease,
calpain (Franco & Huttenlocher, 2005). On the other hand,
Ca2+ is important for the modulation of nascent focal
adhesion sites by activating proline-rich tyrosine kinase 2
(Pyk2), and small GTPases like Ras and Rac (Lysechko
et al. 2010; Selitrennik & Lev, 2015). S100 proteins, a
subgroup of the EF-hand Ca2+-binding protein family,
regulate a variety of cellular processes via an interaction
with different target proteins (Bresnick et al. 2015). In
particular, their influence on F-actin polymerization and
myo II–actin assembly has been suggested as governing
cell migration due to cytoskeletal structural remodelling
(Gross et al. 2014) (Fig. 2). Overall, it is now clear that cell
migration can be considered as a Ca2+-dependent process.
Importantly, Ca2+-permeable channels are responsible for
the cytosolic Ca2+ delivery from external and internal
cellular stores. Therefore, their activity would define the
occurrence of those sustained and transient Ca2+ changes
which are important for the orchestration of cellular
migration.

Interestingly, in migrating erythrocytes and human
umbilical vein endothelial cells, the low basal Ca2+ levels
at the leading edge are maintained due to the activity of
PMCA and the inhibition of PMCA leads to an abrogated
front-to-rear Ca2+ gradient and decreased migration
(Pérez-Gordones et al. 2009; Tsai et al. 2014). Similar
mechanisms could be utilized by the metastatic cells,
since the expression of PMCA has been found to directly
correlate with the tumourigenicity of breast cancer cells
(Lee et al. 2005) (Fig. 2). At the same time, in the
front end of ER, low local Ca2+ concentration provokes
high sensitivity to SOCE (Tsai et al. 2014). Indeed, the
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Figure 2. Global cytosolic Ca2+ is generally higher at the rear
(marked in red), whereas Ca2+ flickers are enriched near the
front edge of migrating cell
The key molecular components and signalling events of the cellular
migration machinery are Ca2+ dependent. The most studied
Ca2+-permeable channels, which are associated with directional
migration, are indicated. ERK, extracellular signal-regulated kinase;
MAPK, mitogen-activated protein kinase; MLCK, myosin light chain
kinase; Pyk2, proline-rich tyrosine kinase 2; ROCK, Rho-associated
protein kinase; STIM, stromal interaction molecule.

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society



J Physiol 595.10 Calcium in metastasis 3067

ER residual Ca2+ sensor of SOCE, stromal interaction
molecule (STIM), has been found to be distributed along
the polar axis in the leading edge of the migrating cell (Tsai
et al. 2014). The STIM molecule responds to the ER Ca2+
depletion and provokes ion influx through the plasma
membrane ORAI channel (Liou et al. 2005; Roos et al.
2005). Of note, STIM–ORAI proteins have been found to
be significantly upregulated in various cancer types and
SOCE-activated Ca2+ signalling is implemented in the
mediation of actomyosin assembly and the focal adhesions
required for efficient migration (Chen et al. 2011; Fiorio
Pla et al. 2016; Jardin & Rosado, 2016) (Fig. 2).

Plasma membrane extensions and protrusions play the
role of a mechanical stress and thus provide Ca2+ influx
through stretch-activated channels at the front end of a
migrating cell. Indeed, TRPM7 can be activated intra-
cellularly through phospholipase C, or by a membrane
stretch (Su et al. 2006; Wei et al. 2009; Gao et al. 2011;
Middelbeek et al. 2012). Interestingly, TRPM7 is located
in close proximity to calpain and myo II (Clark et al.
2007). Therefore, Ca2+ entry provided through TRPM7
modulates actomyosin cytoskeleton contraction, as well
as the dynamics of the focal adhesion turnover required
for directional cell migration (Clark et al. 2007). Indeed,
the pro-migratory role of TRPM7 has been demonstrated
for breast, lung, pancreatic and nasopharyngeal
cancers (Visser et al. 2014). Moreover recently, the
mechano-sensitive TRPC1 activation, located at the rear
of the cells, has been shown to play a role in the formation
of cell polarity of U2OS bone osteosarcoma cells and
their directional migration (Huang et al. 2015). Similarly,
several members of the TRP channel family have been
implicated in cell migration in various cancer types (Fiorio
Pla & Gkika, 2013). In particular most TRP channels have
been associated with an increase in migration potential.
This is the case for TRPC members such as TRPC1 and
TRPC6 in glioma cells (Chigurupati et al. 2010; Bomben
et al. 2011). In addition, the vanilloid subfamily TRPV2
has also been associated with increased cellular migration
in prostate, bladder and breast cancer (Oulidi et al. 2013;
Gambade et al. 2016). In contrast, full length TRPM8, has
been reported to inhibit cell migration, thus suggesting a
protective role for TRPM8 in prostate metastatic cancer
progression (Gkika et al. 2010, 2015), whereas the short
TRPM8 isoform could have a pro-metastatic potential
(Peng et al. 2015; Bidaux et al. 2016).

Voltage-gated Ca2+ channels (VGCCs) present another
pathway for Ca2+ influx that activates a downstream
mitogen-activated protein kinase (MAPK)–extracellular
signal-regulated kinase (ERK) signalling pathway and
increases migration (Mertens-Walker et al. 2010). In
particular, Cav1.3 has been found to be overexpressed
in endometrial carcinoma and its knockdown has been
shown to reduce migration (Hao et al. 2015). Indeed,
at filopodia tips increased Ca2+ concentration provided

through L-type VGCCs directs cancer cell migration due
to calpain activation (Jacquemet et al. 2016).

Intracellular Ca2+ is an important regulator of
Ca2+-activated potassium channels (KCa). Furthermore,
ORAI and TRPC1 channels may form complexes with
small conductance KCa channel SK3 (Chantome et al.
2013; Guéguinou et al. 2016). Such an SK3–ORAI
complex is crucial for the migratory function of breast
and prostate cancer cells and has been found in bone
metastasis (Chantome et al. 2013). Similarly, colon
cancer cell migration is dependent on SOCE through the
SK3–TRPC1–ORAI1 channel complex (Guéguinou et al.
2016).

Invasiveness and invadopodia formation

The invasiveness of cancer cells is due to their ability to
degrade ECM and migrate into neighbouring connective
tissues as well as the lymph- and bloodstreams. There,
cancer cells spread throughout the organism and give rise
to secondary tumour outbursts, metastases. Consequently,
the understanding and hence prevention of the process
of cancer cell invasion would remarkably improve the
survival rate of cancer patients. Cancer cell invasion is
achieved due to special structures – invadopodia, which are
dynamic actin-enriched cell protrusions with proteolytic
activity. Typically, the invadopodia formation process
can be differentiated into the following steps: initiation,
assembly and maturation (Fig. 3) (Jacob et al. 2015).
The assembly of invadopodia is initiated in response to
the focal generation of phosphatidylinositol-3,4-
bisphosphate and the activation of the non-receptor
tyrosine kinase Src (Mader et al. 2011; Pan et al. 2011;
Yamaguchi et al. 2011). The matured invadopodia
recruit proteolytic enzymes, such as membrane type 1
(MT1)-matrix metalloproteinase (MMP), MMP2
and MMP9, to facilitate the focal degradation of the
extracellular matrix and allow cell invasion (Beaty et al.
2013).

Intriguingly, a particular pattern of Ca2+ signalling,
Ca2+ oscillations, has been revealed as a predisposing
factor for invadopodia formation and activity (Fig. 3)
(Sun et al. 2014). For example, Ca2+ oscillations mediated
through STIM1 and ORAI1 channels have been reported
to activate Src kinase and hence facilitate the assembly
of invadopodial precursors in melanoma cells (Sun et al.
2014). The proteolytic activity of invadopodia is pre-
determined by the incorporation of MMP-containing
endocytic vesicles into the plasma membrane at the
ECM degradation sites and can also be linked to
Ca2+ signalling machinery (Bravo-Cordero et al. 2007).
Indeed, the inhibition of SOCE-abrogated fusion of
MMP-containing vesicles with the plasma membrane
results in a constrained ECM degradation (Sun et al.
2014). Moreover, constitutively active TRPV2 engenders
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an intracellular Ca2+ increase and has been associated with
an upregulation of MMP9 and the invasive potential of
prostate cancer cells (Monet et al. 2010). In oral squamous
carcinoma, TRPM8 activity directly correlates with MMP9
activity and the metastatic potential of cells (Okamoto
et al. 2012). The downregulation of MMP9 might also be
achieved after the inhibition of VGCCs (Kato et al. 2007).
Furthermore, in the highly metastatic MDA-MB-435
human breast cancer cell line, the activity of the ATP-gated
Ca2+-permeable P2X7 receptor increases invasion by the
release of gelatinolytic cysteine cathepsins (Jelassi et al.
2011). Therefore, in invadopodia, Ca2+ influx is required
for the focal degradation of ECM, in particular through
the upregulation of proteolytic enzymes like MMPs and
cathepsins, whereas Ca2+ oscillations are required for the
initiation of the invadopodia formation process (Fig. 3).

Induction of local angiogenesis

The first mechanical and functional interface between
blood and tissues is blood vessels. Thus, in order to
sustain metastatic dissemination, as well as providing
sufficient metabolic support, tumour neovascularization
is required. Indeed, tumour cells enable the ‘activation’
of the nearby endothelial cells (ECs) due to the
secretion of specific molecules, such as vascular end-
othelial growth factor (VEGF). Hence, the complex and
multistep process of angiogenesis is achieved due to the
proliferation, migration, differentiation and stabilization
of such tumour-derived ECs (TECs) in a new circulatory
network (Carmeliet, 2005; Folkman, 2006).

It should be noted that in tumours of various origins,
Ca2+ signalling has been shown to regulate the release
of VEGF and hence modulate angiogenesis (Fig. 4).
For example, plasma membrane Cav3.2 and ER-residing
STIM1 proteins have been shown to promote angiogenesis
in vivo due to the stimulation of VEGF secretion in both
prostate and cervical cancers (Chen et al. 2011; Warnier
et al. 2015). Moreover, the importance of TRPC6 as a
modulator of angiogenic potential has been revealed in
glioma cells (Chigurupati et al. 2010). According to this
study, the number of EC branch points decreases after
growing in a conditioned medium harvested from glioma
cells, where hypoxia-induced TRPC6 overexpression and
nuclear factor of activated T-cells (NFAT) activation are
inhibited (Chigurupati et al. 2010). Of note, methyl
syringate, which is suggested to be a highly specific and
selective agonist of transient receptor potential ankyrin
channel 1 (TRPA1) suppresses the hypoxia-induced
migration, invasion and secretion of VEGF in human lung
epithelial cells (Park et al. 2016).

Importantly, during tumour neovascularization, the
remodelling of Ca2+ machinery has been associated
not only with the angiogenic potential of cancer cells,
but also with the distinct functions of the ‘activated’

endothelium cells (Fig. 4). Indeed, proangiogenic Ca2+
signals and their related pathways are significantly altered
in TECs, compared with normal ECs (Fiorio Pla &
Munaron, 2014). As an example, Ca2+ signals mediated
by specific factors like VEGF and ATP and intracellular
messengers such as arachidonic acid (AA), nitric oxide,
or hydrogen sulfide and cyclic AMP are involved in
pro-migratory effects in TEC, but not in normal ECs
(Fiorio Pla et al. 2008, 2010, 2012b; Pupo et al. 2011;
Avanzato et al. 2016).

Moreover, the role of intracellular Ca2+ increase has
been investigated at length in endothelium (Fiorio Pla &
Munaron, 2014). Both pro- and antiangiogenic molecules
can induce an intracellular Ca2+ increase, often leading
to different biological effects. For instance, Ca2+ entry
triggered by VEGF, as well as by other proangiogenic
factors, is often associated with an increase in vessel
permeability, EC survival/proliferation, migration and in
vitro tubulogenesis (Dragoni et al. 2011, 2015; Li et al.
2011). These outcomes can be achieved by the activation of
a distinct intracellular mechanism, such as SOCE via ORAI
and TRPC1 channels (Mehta et al. 2003; Paria et al. 2004;
Jho et al. 2005; Abdullaev et al. 2008; Dragoni et al. 2011;
Li et al. 2011; Fiorio Pla & Munaron, 2014), non-SOCE
mechanisms via TRPC6 channels (Cheng et al. 2006;
Hamdollah Zadeh et al. 2008), the specific engagement of
the two-pore channel TPC2 subtype on acidic intracellular
Ca2+ stores, resulting in Ca2+ release and angiogenic
responses (Favia et al. 2014), or by reverse mode activation
of NCX (Fig. 4) (Andrikopoulos et al. 2011). Of note, in a
recent study VEGF-mediated Ca2+ signalling in individual
endothelial cells has been investigated and shown to
correlate with both stochastic and deterministic response
characteristics to the selection of phenotype-associated
angiogenesis. In particular, altering the amount of VEGF
signalling in endothelial cells by stimulating them with
different VEGF concentrations triggered distinct and
mutually exclusive dynamic Ca2+ signalling responses,
which correlated with different cellular behaviours such
as cell proliferation (monitored by NFAT nuclear trans-
location) or cell migration (involving MLCK) (Noren et al.
2016). The in vivo role of Ca2+ signals has been recently
studied in zebrafish, during angiogenic input by means
of high-speed, three-dimensional time-lapse imaging to
describe intracellular Ca2+ dynamics in ECs at single-cell
resolution (Yokota et al. 2015; Noren et al. 2016). It
may be noted that TRP Ca2+-permeable channels have
profound effects on the control of different steps of tumour
angiogenesis. Besides their role in the VEGF-mediated
Ca2+ signals previously described, several data clearly
show their involvement Ca2+-mediated signal trans-
duction with a prominent roles in tumour angiogenesis. In
this context, TRPV4 is an emerging player in angiogenesis
as on ECs it acts as a mechano-sensor during changes
in cell morphology, cell swelling and shear stress. TRPV4
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plays a significant role in endothelial migration, (Fiorio
Pla et al. 2012b) displaying a marked increase in ECs
derived from human breast carcinomas, as compared with
‘normal’ ECs, leading to a greater Ca2+ entry that in turn
activates migration in TECs (Fig. 4) (Fiorio Pla et al.
2012b). Moreover, TRPV4 has recently been described as
an important player in tumour vasculature normalization,
thereby potentially improving cancer therapies (Adapala
et al. 2015; Thoppil et al. 2015, 2016). In addition,
TRPM2 has been recently identified as mediating an
H2O2-dependent increase in macrovascular pulmonary

EC permeability (Fig. 4) (Hecquet et al. 2008; Mittal et al.
2015). TRPM7 inhibits human umbilical vein endothelial
cell proliferation and migration, whereas its functions in
human mammary epithelial cells seem to be the opposite
(Fig. 4) (Inoue & Xiong, 2009; Baldoli & Maier, 2012;
Baldoli et al. 2013; Zeng et al. 2015). Recently, TRPA1
has been found to have a role in the vasodilatation of
cerebral arteries, via an increase in Ca2+ influx generated
by the detection of reactive oxygen species, a process that
requires the peroxidation of membrane lipids (Sullivan
et al. 2015). Similarly, TRPV2 has been shown to be
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Figure 4. Induction of local angiogenesis by Ca2+ signalling remodelling
In tumour cells Ca2+ signals regulate the secretion of proangiogenic stimuli, like vascular endothelial growth factor
(VEGF). A newly formed vessel can be differentiated into the following structures: tip – represented by the migrating
edge of the vessel; stalk – mostly proliferating part of the vessel; phalanx – tightly apposed, regularly ordered ECs
that provide perfusion and oxygenation; mural – functional preformed ECs. Interestingly, VEGF- and ATP-mediated
Ca2+ signals provide proangiogenic effects specifically on tumour-derived tissue and not on healthy ECs. The most
studied Ca2+-permeable channels, which are associated with local angiogenesis, are indicated. NAADP, nicotinic
acid adenine dinucleotide phosphate. LP, long persistent; RS, repeated spikes; NSOCE, non-store-operated Ca2+
entry.
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expressed in aorta endothelium, but no clear functional
data have been reported (Earley, 2011).

Finally, the emerging family of mechanosensitive Piezo
channels has recently been described in vascular end-
othelial cells: Piezo2 knockdown is involved in glioma
angiogenesis, both in vitro and in vivo by promoting
abnormal intracellular Ca2+, Wnt11/β-catenin signalling
reduction, leading to altered angiogenic activity of end-
othelial cells (Fig. 4) (Yang et al. 2016).

In conclusion, due to its multifaceted role in the
control of endothelium homeostasis, Ca2+ machinery is
a potential molecular target for strategies against tumour
neovascularization.

Conclusions

A remodelling of Ca2+ signalling plays an important
role during tumourigenesis. Interestingly, there are some
specific channel patterns through which such Ca2+ signals
occur, at the different stages of cancer progression. This
could be partially explained by the specificity of Ca2+
flux, its compartment localization and the proximity
of downstream Ca2+-dependent targets. Furthermore,
some ion channels represent multimodal activity and are
characterized not only as Ca2+-permeable pore proteins,
but also as possessing other functional domains. For
example, the C-terminal end of TRPM7 is constituted
by a serine/threonine protein kinase domain and hence,
due to the phosphorylation of cytoskeletal components,
regulates cellular migration (Clark et al. 2008).

Importantly, plasma membrane Ca2+ channels are
easily and directly accessible via the bloodstream.
Therefore, they are potential targets for a variety of
therapeutic strategies, such as their regulation on a trans-
criptional and translational level, their trafficking to the
plasma membrane or their stabilization at the plasma
membrane (Gkika & Prevarskaya, 2009; Fiorio Pla et al.
2012a; Bernardini et al. 2015; Earley & Brayden, 2015).
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