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Abstract Transient receptor potential melastatin 7 (TRPM7) channel, a calcium-permeable
non-selective divalent cation channel, is broadly expressed in various cells and tissues, including
the brain. TRPM7 is thought to be coupled to the metabolic state and regulate calcium homeostasis
in the cell. TRPM7 takes part in a wide range of cell biology processes that affect cell growth and
proliferation, as well as in embryonic development and skeleton formation. TRPM7 plays a
significant role in ischaemic and hypoxic brain injury and neuronal cell death. TRPM7, as a key
non-glutamate mechanism of cerebral ischaemia, also triggers an intracellular ionic imbalance
and neuronal cell death in ischaemia and hypoxia. We have reported that TRPM7 is expressed in
neurons of the hippocampus and cortex and activation of TRPM7 induced ischaemic neuronal
cell death; suppression of TRPM7 with virally mediated gene silencing using siRNA reduced
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ischaemic neuronal cell death and improved neurobehavioural outcomes in vivo. Recently, we
also demonstrated that inhibition of TRPM7 using pharmacological means promoted neuronal
outgrowth in vitro and provided neuroprotection against brain injury to hypoxia in vivo. Thus, we
have shown the contributions of TRPM7 in many physiological and pathophysiological processes,
including hypoxia and ischaemia.
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Abstract figure legend TRPM7, a calcium-permeable divalent cation channel, is an important player in the
non-glutamate mechanism in stroke and mediates intracellular ionic imbalance and neuronal cell death. Inhibition
of TRPM7 reduced neuronal cell death and brain damage in ischaemia and hypoxia.

Abbreviations AAV, adeno-associated virus; AET, anti-excitotoxic therapies; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; ASIC, acid-sensing ion channel; HIE, hypoxic–ischaemic encephalopathy; KATP, ATP-sensitive
potassium channel; MCAO, middle cerebral artery occlusion; NCX, sodium–calcium exchanger; NMDA,
N-methyl-D-aspartate; OGD, oxygen-glucose deprivation; STAIR, Stroke Therapy Academic Industry Roundtable;
tPA, tissue plasminogen activator; TRP, transient receptor potential; TRPM7, transient receptor potential melastatin 7;
VRAC, volume-regulated anion channel.

Introduction

Cerebral ischaemia and stroke (Dirnagl et al. 1999; Lipton,
1999) is a leading cause of mortality and a major cause
of long-term immobility in the world based on statistics
from the World Health Organization (WHO) (WHO,
2014; Mozaffarian et al. 2016). Stroke has a high mortality
rate, and stroke prevalence is projected to increase.
There is no effective treatment for stroke, except for the
tissue plasminogen activator (tPA), which has a limited
therapeutic window (Zivin, 2009). Stroke has already
shown significant social and economic impacts worldwide
(American Stroke Association, 2016). In addition, hypoxia
could cause neonatal hypoxic–ischaemic brain injury and
subsequent early-onset brain and behavioural disorders
in children, termed hypoxic–ischaemic encephalopathy
(HIE) (Vannucci, 2000; Nelson & Lynch, 2004). HIE
is characterized by neurodevelopmental delay, motor
and cognitive impairments, and epilepsy. Neonatal
hypoxic–ischaemic brain injury and its related HIE have
also caused noticeable burdens worldwide.

Stroke triggers intracellular calcium overload and
ionic imbalance, eventually leading to neuronal cell
death (Dirnagl et al. 1999; Lipton, 1999). The time
course and sequence of events occurring in cerebral
ischaemia includes (1) anoxic depolarization in seconds
to minutes, (2) peri-infarct depolarization in minutes, (3)
excitotoxicity in minutes, to later cause (4) apoptosis and
(5) inflammation in days. During cerebral ischaemia, the
excitatory neurotransmitter glutamate is released from the
brain, acts on the glutamate receptor channels, and triggers
a calcium overload and neuronal cell death (Dirnagl et al.

1999; Lipton, 1999). Excitotoxicity, mediated through
NMDA and AMPA receptor channels (Besancon et al.
2008; Tymianski, 2011), has been the central focus of
stroke research for decades. Preventing the calcium over-
load is theoretically considered to be neuroprotective.
Blocking calcium-mediated glutamate receptor channels
in vitro and in vivo inhibits intracellular calcium overload
and prevents ischaemic brain damage. Even experimental
studies have shown hopeful data; however, the subsequent
clinical trials of anti-excitotoxic therapies (AET) could not
support AET as a further therapeutic development (Davis
et al. 2000). As a result, stroke researchers began searching
for unconventional mechanism(s) outside the traditional
glutamate mechanism. In addition to the traditional
glutamate excitotoxicity mediated through NMDA and
AMPA receptor channels (Besancon et al. 2008;
Tymianski, 2011), new data indicates that a non-glutamate
mechanism in cerebral ischaemia also causes intracellular
ionic imbalance and neuronal cell death (Besancon et al.
2008; Tymianski, 2011). Ischaemic neuronal death is
now accepted as a result of both glutamate-mediated
excitotoxicity and the newly discovered non-glutamate
mechanisms (Besancon et al. 2008; Tymianski, 2011). The
newly accepted non-glutamate mechanism undeniably
contributes to the disappointing results of the AET
clinical trials. Thus, we may need to consider both
glutamate and non-glutamate mechanisms in new drug
development for stroke, as well as using multiple in
vivo animal models of human disease based on the
Stroke Therapy Academic Industry Roundtable (STAIR)
Protocol (Stroke Therapy Academic Industry Roundtable
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(STAIR), 1999), which emphasizes the necessity for testing
potential stroke drugs using multiple animal stroke models
in multiple species. The non-glutamate mechanism
includes transient receptor potential (TRP) channels
(Sun et al. 2009; Alim et al. 2013; Chen et al. 2015a),
ATP-sensitive potassium (KATP) channels (Sun et al. 2006,
2007, 2015; Liu et al. 2016), acid-sensing ion channels
(ASICs) (Xiong et al. 2004), hemichannels (Thompson
et al. 2006), volume-regulated anion channels (VRACs)
(Alibrahim et al. 2013), sodium–calcium exchangers
(NCXs) (Pignataro et al. 2004), and other non-selective
cation channels (Simard et al. 2006). Activation of these
ion channels could be at the initial stages of cerebral
ischaemia and/or later in the ischaemic events. For
example, KATP channels are activated at the initiation of the
ischaemic event during the anoxic depolarization; TRPM7
may be activated at the same time or shortly after the
excitotoxicity; and TRPM2 may be activated in the later
stages as it is involved in inflammation. Ion channels are
the third largest target in drug development (Dabrowski
et al. 2008). Thus, the non-glutamate mechanism is a target
for neuroprotection.

Transient receptor potential channels

Ion channels play many fundamental roles in physio-
logical and pathophysiological functions in the brain. We
have been working on the non-glutamate mechanism in
cerebral ischaemia and hypoxia, including TRP channels,
KATP channels and VRAC channels. Here, the focus is
on the role of TRP channels in cerebral ischaemia and
hypoxia.

Transient receptor potential channels, also termed TRP
channels, are a group of non-selective cation channels
located on the cell membrane of various cell types
(Clapham, 2003; Pedersen et al. 2005; Wu et al. 2010).
TRP channels were originally discovered in fruit fly
(Drosophila) (Minke et al. 1975) photoreceptors where
they participated in phototransduction (Monteilh-Zoller
et al. 2003). The channel received its name, transient
receptor potential, because the Drosophila photoreceptors
in the fly carrying the mutant trp gene initiated a transient
response to light (Minke et al. 1975). The TRP channel
superfamily now has approximately 30 mammalian TRP
channels (Wu et al. 2010). The TRP channels, classified
based on their homologous sequences, are divided into six
sub-families: (1) TRPC (canonical), (2) TRPV (vanilloid),
(3) TRPM (melastatin), (4) TRPA (ankyrin), (5) TRPML
(mucolipin), and (6) TRPP (polycystin). TRP channels
can be activated by different physical and chemical stimuli
and play many physiological and pathological functions
in various cells (Clapham, 2003; Pedersen et al. 2005; Wu
et al. 2010).

The TRPM family has eight members, TRPM 1 to 8.
TRPM7 (Clapham, 2003), the seventh member of the

TRPM channel sub-family, is widely expressed in many
tissues and cells including the brain and neurons. TRPM7
is a calcium-permeable non-selective divalent cation
channel and is also permeable to other trace metal ions, i.e.
Zn2+ � Ni2+ >> Ba2+ > Co2+ > Mg2+ � Mn2+ � Sr2+ �
Cd2+ � Ca2+ ions (Monteilh-Zoller et al. 2003).

TRPM7 plays an important role in a wide range of
physiological and pathophysiological functions, and its
channel activities can be modulated by diverse intra-
cellular and extracellular factors (Penner & Fleig, 2007),
such as Mg2+ and Mg2+-complexed nucleotides (such as
MgATP and MgGTP) (Takezawa et al. 2004; Demeuse
et al. 2006), extracellular pH (Jiang et al. 2005; Li et al.
2007), shear stress (Oancea et al. 2006), etc. TRPM7
participates in a wide scope of cell biology processes
ranging from cell proliferation, cell growth and cell
adhesion (Nadler et al. 2001; Inoue & Xiong, 2009);
TRPM7 overexpression reduces cell viability (Nadler
et al. 2001; Su et al. 2006; Chen et al. 2010). TRPM7
also regulates embryonic development (Jin et al. 2008)
and skeleton formation (Elizondo et al. 2005). Globally
knocking out TRPM7 has been shown to be embryonically
lethal in mice (Jin et al. 2008). Thus, TRPM7 is essential
for development. TRPM7 channels are thought to be
activated during ischaemia based on the metabolic state of
the cell. Therefore, the favourable condition for TRPM7
activation during ischaemia would be low concentrations
of Mg2+-nucleotides (Demeuse et al. 2006) and acidic
conditions (Rehncrona, 1985; Li et al. 2007).

In the brain, TRPM7 plays key roles both under
physiological conditions, e.g. cell growth (Nadler et al.
2001; Inoue & Xiong, 2009; Turlova et al. 2016), and
under pathophysiological conditions, e.g. hypoxia- and
ischaemia-induced neuronal cell death (Aarts et al. 2003;
Sun et al. 2009; Chen et al. 2015a) and survival of
brain tumour cells (Chen et al. 2015b,c). In addition to
showing the role of TRPM7 in ischaemia (Sun et al. 2009),
we have recently also demonstrated the following: (1)
inhibition of TRPM7 in vitro enhances neurite outgrowth
and maturation in mouse culture hippocampal cells
(Turlova et al. 2016); (2) TRPM7 plays a role in neonatal
hypoxic–ischaemic brain injury in mice in vivo (Chen
et al. 2015a); and (3) TRPM7 also plays an important
role in cell survival in glioma cell lines in vitro (Chen et al.
2015b,c). Here, the role of TRPM7 in neuronal cell death
and brain damage during ischaemia and hypoxia in vivo
(Sun et al. 2009; Chen et al. 2015a), its pharmacology and
its potential in drug development for stroke will be further
discussed.

Molecular and pharmacological reagents are available
for TRPM7; these include channel activators and blockers
(Zierler et al. 2011; Chubanov et al. 2014; Chen et al.
2015a; Turlova et al. 2016), antibodies (Sun et al. 2009;
Chen et al. 2015a,b; Turlova et al. 2016), and siRNA (Sun
et al. 2009; Turlova et al. 2016). These will be beneficial
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for studying TRPM7, and many studies have used various
TRPM7 reagents.

TRPM7 plays a key role in anoxic cell death in cultured
neurons (Aarts et al. 2003). We have demonstrated that
TRPM7 plays a significant role in ischaemic brain damage
and neuronal cell death in vivo (Sun et al. 2009). The
study showed that virally mediated gene silencing of
TRPM7 in vivo with siRNA increased neuronal cell survival
and improved neurobehavioural outcomes after cerebral
ischaemia (Sun et al. 2009). Later, we also showed that
TRPM7 plays many important roles both in vitro and
in vivo: inhibiting TRPM7 in vitro enhances hippocampal
neuronal cell outgrowth (Turlova et al. 2016); blocking
TRPM7 in vivo reduces brain damage in hypoxia (Chen
et al. 2015a); and suppressing TRPM7 in vitro decreases
glioma cell survival in vitro (Chen et al. 2015b,c).

TRPM7 in cerebral ischaemia and hypoxia

In the event of cerebral ischaemia and/or hypo-
xia, calcium overload and ionic imbalance inside the
neuronal cells have been the accepted cellular and
molecular mechanisms for ischaemic and/or hypoxic
neuronal cell death and brain damage (Besancon et al.
2008; Tymianski, 2011). In addition to the traditional
glutamate mechanism, which is mainly focused on
glutamate receptor channel-mediated excitotoxicity, the
non-glutamate mechanism also triggers intracellular ionic
imbalance and initiates ischaemic and/or hypoxic neuro-
nal cell death and brain damage in stroke (Besancon et al.
2008; Tymianski, 2011). The non-glutamate mechanism
contains many other ion channels and newly described
calcium-mediated non-selective cation channels, e.g.
ATP-sensitive potassium channels (KATP) (Sun et al. 2006,
2007, 2015; Liu et al. 2016), transient receptor potential
(TRP) channels (Sun et al. 2009; Alim et al. 2013; Chen
et al. 2015a), volume-regulated anion channels (VRACs)
(Alibrahim et al. 2013), hemichannels (Thompson et al.
2006), acid-sensing ion channels (ASICs) (Xiong et al.
2004), ion exchangers (Pignataro et al. 2004) and other
non-selective cation channels (Simard et al. 2006). In this
report, the focus is on the neuronal cell death and brain
damage mediated by TRPM7 in stroke and hypoxia in vivo.

An early in vitro study reported that TRPM7 plays a
key role in anoxic-induced neuronal cell death in culture
(Aarts et al. 2003). This study originally described the
so-called IOGD currents in response to prolonged in vitro
oxygen–glucose deprivation (OGD) challenge in primary
culture cortical neurons, which eventually triggered a
secondary neuronal cell death through a secondary
increase in Ca2+ influx through the later identified TRPM7
(Aarts et al. 2003). The effects of the prolonged anoxic
cell death were eventually unmasked with treatment of
a cocktail of blockers aimed at blocking the glutamate
NMDA and AMPA receptors and L-type calcium channels

using MK-801, CNQX and nimodipine in the in vitro OGD
experiment (Aarts et al. 2003). The study was facilitated
by calcium imaging and electrophysiological approaches,
as well as additional molecular biology verification. The
in vitro study further used the TRPM7 siRNA
directly against the TRPM7 in the mouse primary
culture cortical neurons and showed that both the
expression level of TRPM7 mRNA and the sub-
sequent prolonged anoxia-mediated neuronal cell death
were reduced. Thus, this was the first study that
revealed the key role of TRPM7 in mediating Ca2+
influx and subsequent anoxic neuronal cell death
in vitro during prolonged OGD. As OGD is a simplified
in vitro anoxia model for studying neuronal cell death, it
is not a good representation of ‘ischaemia’ because it lacks
other factors in vivo, such as blood, neuronal circuitry,
network connectivity and the involvement of other brain
cells. An unrelated in vivo study using the middle cerebral
artery occlusion (MCAO) model reported that TRPM7
expression levels in mRNA and protein were increased
after MCAO (Jiang et al. 2008), indicating that TRPM7
may be implicated in cerebral ischaemia. As a result, we
still need to confirm the study in vivo and use animal
models to further investigate the pathophysiological role
of TRPM7 in ischaemia and/or hypoxia.

We have later confirmed that TRPM7 also plays
an important role in cerebral ischaemia in vivo (Sun
et al. 2009). In the report, we showed that virally
mediated gene silencing of TRPM7 in hippocampal CA1
neurons in vivo suppressed mRNA and protein TRPM7
expression levels, reduced CA1 neuronal death and pre-
served behavioural outcomes after cerebral ischaemia.
TRPM7 pharmacology was not clear, and selective TRPM7
blockers were not available at that time; the study utilized
a virally mediated gene silencing shRNA approach to
suppress TRPM7 in adult rat hippocampal CA1 neurons.
The adeno-associated viral vector (AAV) was used to
package the TRPM7 shRNA, and a stereotaxic micro-
injection was used to deliver the AAV to the hippocampal
CA1 area in vivo. We confirmed that the AAV infected the
adult hippocampal CA1 neurons in vivo. We also showed
suppression of TRPM7 in the infected hippocampal CA1
neurons at the mRNA level with RT-PCR, at the protein
level with Western Blot and immunohistochemistry,
and at the functional level with electrophysiology. We
verified that transient suppression of TRPM7 in the
adult hippocampal CA1 neurons showed no noticeable
effects on neuronal cell survival, fine structures and
electrophysiological properties. We then revealed that
TRPM7 suppression significantly reduced hippocampal
CA1 cell death in vivo and preserved behavioural outcomes
using a global ischaemia model. We demonstrated that
the surviving hippocampal CA1 neuronal cells were
also healthy with intact morphology and fine cell
structures. We also proved that the surviving hippocampal
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CA1 neurons had well maintained electrophysiological
properties. Lastly, we confirmed that suppressed TRPM7
in vivo not only reduced hippocampal cell death but also
preserved the hippocampal-associated behavioural tasks,
e.g. fear-associated and spatial-navigation memory (fear
conditioning (Cheng et al. 2006; Sun et al. 2009) and
Morris water maze (Morris et al. 1982; Sun et al. 2009)).
This study was the first detailed in vivo study showing the
important role of TRPM7 in cerebral ischaemia.

We also recently showed that TRPM7 plays a significant
role in brain damage in hypoxic–ischaemic brain injury in
vivo (Chen et al. 2015a). We reported that the non-selective
TRPM7 inhibitor carvacrol significantly reduced the brain
damage in a mouse hypoxic–ischaemic brain injury model
(Chen et al. 2015a). The inhibition of TRPM7 also
preserved behavioural outcomes after hypoxic–ischaemic
brain injury (Chen et al. 2015a), and these included the
geotaxic reflex (Ten et al. 2003; Sun et al. 2015; Chen
et al. 2015a), which tests the vestibular and/or proprio-
ceptive functions; the cliff avoidance reaction (Ten et al.
2003; Sun et al. 2015; Chen et al. 2015a), which assesses
maladaptive impulsive behaviour; and the grip test (Liu
et al. 2013; Sun et al. 2015; Chen et al. 2015a), which
evaluates force and fatigability. Neuroprotective effects
in reducing brain damage by TRPM7 inhibition in the
hypoxic–ischaemic brain injury were arbitrated partly by
promoting pro-survival signalling (e.g. Akt signalling)
and inhibiting pro-apoptotic signalling (e.g. caspase-3 and
Bcl/Bax signalling) (Chen et al. 2015a).

Conclusions and future direction

TRPM7, a calcium-mediated non-selective divalent cation
channel, is one of the newly described non-glutamate
mechanisms of neuronal cell death and brain damage
in cerebral ischaemia and hypoxia. Both in vitro and
in vivo studies have shown that TRPM7 plays a critical role
in ischaemic and hypoxic neuronal cell death and brain
damage. Thus, TRPM7 is a potential therapeutic target for
drug development for stroke and hypoxic–ischaemic brain
injury. With the new development of selective TRPM7
inhibitors (Zierler et al. 2011; Turlova et al. 2016), we
could further study TRPM7 drug development in stroke
and hypoxia following the Stroke STAIR protocol (Stroke
Therapy Academic Industry Roundtable (STAIR), 1999).
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