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Abstract Recent approaches to brain phase spaces rein-

force the foremost role of symmetries and energy

requirements in the assessment of nervous activity. Chan-

ges in thermodynamic parameters and dimensions occur in

the brain during symmetry breakings and transitions from

one functional state to another. Based on topological results

and string-like trajectories into nervous energy landscapes,

we provide a novel method for the evaluation of energetic

features and constraints in different brain functional

activities. We show how abstract approaches, namely the

Borsuk–Ulam theorem and its variants, may display real,

energetic physical counterparts. When topology meets the

physics of the brain, we arrive at a general model of neu-

ronal activity, in terms of multidimensional manifolds and

computational geometry, that has the potential to be

operationalized.

Keywords Topology � Borsuk–Ulam theorem � Brain �
Nervous system � Energetic landscape � Symmetry break

Introduction

The brain is a complex, non-linear system operating at the

edge of chaos, formed by inter-dependent components

which exhibit spontaneous self-organization and emergent

properties (Tognoli and Kelso 2013; Fraiman and Chialvo

2012; Zare and Grigolini 2013; Xu and Wang 2014). In

such a vein, the brain is equipped with phase spaces where

particle movements take place (Watanabe et al. 2013; Yan

et al. 2013; Kim and Lim 2015; Wang et al. 2017). Such

trajectories may display different paths. It has been sug-

gested that the brain is equipped with funnel-like locations

in phase space where trajectories converge as time pro-

gresses, following the shortest path (Tozzi et al. 2016a;

Sengupta et al. 2016). Others proposed that brain function

does not exhibit erratic brain dynamics nor attractors, but a

stable sequence, the so-called transient heteroclinic chan-

nel (Afraimovich et al. 2013) and that a multidimensional

functional torus might be displayed during spontaneous

brain activity (Tozzi and Peters 2016a). Furthermore, cru-

cial concepts like communication-through-coherence

(Deco and Jirsa 2012) and collective movements (Touboul

2012; Tozzi 2015) must be taken into account. In sum,

different functional regimes occurring in the brain phase

space have been described, both in central nervous systems

and in artificial neural networks, and they have been cor-

related with different brain functions (Tozzi et al. 2016a).

Despite the large number of possible trajectories, the

processes governing brain paths may be unified when we

take just into account energetic requirements and con-

straints. Indeed, the second law of thermodynamics states

that every process occurring in nature proceeds in the

sense in which the sum of the entropies of all bodies taking

part in the process is increased (Planck’s formulation).

This paper aims to evaluate brain energetic constraints in
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the framework of algebraic topology, namely the Borsuk–

Ulam theorem (BUT) (Borsuk 1933). We will take into

account also another important topological ingredient, e.g.,

the symmetries, widespread at every level of nervous

organization. Symmetries may be regarded as the most

general feature of biological systems (including the brain),

perhaps more general also than energetic requirements, so

that giving insights into them might provide a general

approach to nervous activities (Tozzi and Peters 2016b).

Here we show how BUT and its variants may provide

powerful insights into brain functioning, especially if we

assess the noteworthy relationships between symmetry

breaks, changes of neural dimensions, thermodynamic free-

energy and informational entropy.

Abstract topology comes into play

The standard version of the Borsuk–Ulam theorem

(BUT)

BUT states that (Dodson 1997):

Every continuous map f : Sn ! Rn must identify a pair of

antipodal points (on Sn).

In other words, if a sphere Sn is mapped continuously

into a n-dimensional Euclidean space Rn, there is at least

one pair of antipodal points on Sn which map onto the same

point of Rn. For further details, see Tozzi and Peters

(2016b). Examples of antipodal points are the opposite

points along the poles of a sphere (Matoušek 2003). The

notation Sn denotes an n-sphere of convex curvature, which

is embedded in a n ? 1 Euclidean space (Weeks 2002;

Marsaglia 1972). The BUT’s ingredients (antipodal points,

a versatile use of the exponent n and projections from

lower to higher dimensions) can be modified in different

guises, in order to achieve a wide range of BUT variants

(Tozzi and Peters 2016b; Peters and Tozzi 2016a, b). They

provide not just a topological methodology for the evalu-

ation of countless features of brain activity, cast in an

empirical fashion that has the potential to be operational-

ized, but also a quantitative way to give a physical meaning

to the otherwise abstract concept of BUT. The next para-

graphs will go through recently described BUT variants

and their applications to brain activity.

Brain regions instead of points

If we simply evaluate nervous activities instead of points,

BUT leads naturally to the possibility of a region-based

brain geometry. Indeed, the two opposite points could

stand not just for the description of simple topological

points (Marsaglia 1972), but also for the signals detected

by different neuro-techniques, such as spatial or temporal

patterns, vectors, particle trajectories, entropies, free-en-

ergies (Peters 2016). Therefore, we can describe brain

features as antipodal points on n?1 –dimensional struc-

tures. This means that brain signals can be compared,

because the two antipodal points can be assessed at higher-

dimensional scales of observation, which can be pulled

back to single points at lower-dimensional scales (Tozzi

and Peters 2016b).

This approach makes it also possible to assess brain

functions in the very general terms of particle trajectories

taking place on manifolds, if we consider a nervous activity

in a given cortical subarea as a geometric structure that has

the characteristics of a string. By definition, a string on the

surface of an n-sphere is a line that represents the path

traced by a moving particle. In a geometric space, a string

stands for a region of space with either bounded or

unbounded lengths (Goddard and Olive 1985; Olive and

Landsberg 1989). In evaluating brain strings, we need to

take into account antipodal sets instead of antipodal points

(Petty 1971). Indeed, in a point-free geometry (Di Concilio

and Gerla 2006; Di Concilio 2013), regions replace points

as the primitives. Therefore, in the evaluation of brain

activities at every spatio-temporal scale, here we assess

antipodal regions instead of antipodal points (Lenzen 1939;

Disalle 1995; Peters and Naimpally 2012). There is how-

ever a difference between the strings embedded in struc-

tures of diverse dimensions. Strings contain more

information than their projections in a lower dimensions.

Indeed, the higher the dimension, the more the information

encompassed in strings, because of the higher number of

coordinates. This means that this BUT variant allows us to

evaluate systems features in higher dimensions, in order to

increase the amount of detectable information. To make an

example, you might extract the three-dimensional shape of

a cat, just looking at its shadow. Vice versa, dropping down

a dimension means that each point in the lower dimen-

sional space is simpler. It must be kept into account that, as

BUT dictates, a single feature needs to project to TWO

matching features, going one dimension higher. This

means that a projection mapping contains multiple map-

pings in higher levels. Hence, BUT provides a way to

evaluate changes of information among different anatom-

ical and functional brain levels in a topological space.

Antipodality

The two points (or regions, or brain activities) do not need

necessarily to be antipodal, in order to be described toge-

ther (Peters 2016). Indeed, the BUT can be generalized not

just for the evaluation of antipodal, but also of non-an-

tipodal points on an n-sphere. We can consider regions on

an n-sphere that are either adjacent or far apart (Tozzi and

Peters 2016b). And this BUT variant applies to the brain,
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provided there are a pair of regions on the cortex with the

same feature value. (Peters 2016). This makes it possible to

evaluate matching cortical signals, even if they are not

‘‘opposite’’, but ‘‘near’’ each other: the antipodal points

restriction from the ‘‘standard’’ BUT is no longer needed.

Not just convex structures

The original formulation of BUT describes antipodal points

on spatial manifolds in every dimension, provided the

n-sphere is a convex structure with positive curvature (i.e.,

a ball). However, brain functions might occur on manifolds

endowed with other types of geometry: for example, Sen-

gupta et al. (2016) described brain functional activity in

terms of trajectories taking place on hyperbolic Rieman-

nian n-manifolds of constant sectional curvature -1 and

concave shape (i.e., a saddle). BUT can be generalized to

symmetries occurring either on flat, or on concave struc-

tures (Mitroi-Symeonidis 2015; Tozzi 2016), making it

possible for us to look for antipodal points on structures

equipped with shapes other than the convex ones. In other

words, whether the brain function displays a concave,

convex or flat structure, it does not matter: we may always

find the points with matching description predicted by

BUT.

Not just spatial dimensions

Although BUT was originally described just in case of the

term n of Sn being a natural number which expresses a

structure embedded in a spatial dimension, nevertheless n

can stand for other types of numbers too. Indeed, n can be

also cast as an integer, a rational or an irrational number

(Tozzi and Peters 2016b). This makes it possible to use the

n parameter as a versatile tool for the description of brain

features. In particular, this BUT version is useful in

describing brain nonlinear dynamics, as we will see in the

next chapters.

General BUT

In conclusion, we are allowed to provide a general version

of BUT (Gen-BUT), that takes into account all the men-

tioned BUT variants that can be used in the topological

study of the brain in the context of physics. Gen-BUT

states that:

Multiple sets of objects with matching descriptions in

a d-dimensional manifold Md are mapped to a single

set of objects in Md-1 and vice versa.

The sets of objects, which can be mathematical, physical or

biological features, do not need to be antipodal and their

mappings need not to be continuous. The term matching

description means the sets of objects display common

feature values or symmetries. M stands for a manifold with

any kind of curvature, either concave, convex or flat. The

notation d stands for a natural, or rational, or irrational

number. Note that a force, or a group, an operator, an

energetic source, is needed, in order to project from one

dimension to another. The process is reversible, depending

on energetic constraints.

Systems’ symmetry breaking: changes in brain

dimensions

Symmetries are invariances underlining physical and bio-

logical systems (Weyl 1982). A symmetry break occurs when

the symmetry is present at one level of observation, but

‘‘hidden’’ at another level (Roldán et al. 2014). BUT tells us

that we can find, on an n-dimensional sphere, a pair of

opposite points that have the same encoding on an n-1

sphere. This means that symmetries can be found when

evaluating the system in a proper dimension, while they dis-

appear (are hidden or broken) when we assess the same sys-

tem in just one dimension lower (Tozzi and Peters 2016b).

There are two different ways to define and assess brain

dimensions. Indeed, the term dimension may reflect either

functional relationships of brain activities, or anatomical

connections between cortical areas. The first approach takes

into account the dimensionality of the neural space. Con-

nectivity and complex network analyses of neural signals

allow the assessment of the complex dynamics of brain

activity, providing a novel insight into the multidimen-

sionality of various neural functions’ representations (Kida

et al. 2016). From a dynamical system perspective, one

would expect that brain activities are represented as, for

example, some scalar quantity measured at different brain

locations (say N locations) at different points in time. Then

one could describe nervous dynamics as trajectories and/or

manifolds in a N-dimensional phase space (Lech et al.

2016). Mazzucato et al. (2016) demonstrated that stimuli

reduce the dimensionality of cortical activity. Clustered

networks, such as default mode network, have instead a

larger dimensionality, because the latter grows with

ensemble size: the more neurons are recruited, the more the

dimensions (Mazzucato et al. 2016). Apart from giving

insights in neural dynamics in the canonical three dimen-

sions (space, time, and frequency), complex network anal-

yses are also able to evaluate other functional dimensions,

e.g. categories of neuronal indices such activity magnitude,

connectivity, network properties and so on (Kida et al.

2016). It must be taken into account that dimension

reduction and symmetry breaking display close relation-

ships, so that symmetries are correlated with changes in

functional dimensions in the brain. Indeed, a key feature of
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dynamical approaches is that the dynamics they predict are

characterized by nonequilibrium phase transitions, and

therefore breaks of symmetries (Scholz et al. 1987). Many

studies emphasized how different levels of behavioral

dynamics’ organization take place in neural ensembles. To

make some examples, Jirsa et al. (1998), focusing on the

cortical left–right symmetry, derived a bimodal description

of the brain activity that is connected to behavioral

dynamics, while Jirsa et al. (1994) demonstrated that, when

an acoustic stimulus frequency is changed systematically, a

spontaneous transition in coordination occurs at a critical

frequency, in both motor behavior and brain signals.

Concerning the second approach to brain dimensional-

ity, it has been recently suggested that brain trajectories, at

least during spontaneous activity, might display four spatial

dimensions, instead of three (Tozzi and Peters 2016a).

Brain symmetric states display dimensions higher than

asymmetric ones, so that, in this case, the space of interest

does not refer to dynamical neural spaces, but to

detectable physical cortical locations. In such a vein,

Stemmler et al. (2015) proposed that animals can navigate

by reading out a simple population vector of grid cell

activity across multiple spatial scales. Combining popula-

tion vectors at different microscopic dimensions predicts

indeed neural and behavioral correlates of multiscale grid

cell readout, that transcend the known link between

entorhinal grid cells and hippocampal place cells. While

the spatial activity of a single grid cell does not constitute a

metric, an ensemble of hierarchically organized grid cells

does provide instead a distance measure (Stemmler et al.

2015). In our paper, the mapping of trajectories from high

dimensional manifold to lower dimensions refers to both

the above described definitions of dimensionality.

In sum, the study of changes in brain dimensions is a

promising novel methodology. We need to take into

account that, despite neural networks modelling complex

systems are known to exhibit rich, lower-order connectivity

patterns at the level of individual nodes and edges, how-

ever higher-order organization remains largely unknown.

Benson et al. (2016) recently developed an algorithmic

framework for studying how complex networks are orga-

nized by higher-order connectivity patterns, revealing

unexpected hubs and geographical elements. In such a

vein, Kleinberg et al. (2016) demonstrated that real net-

works are not just random combinations of single net-

works, but are instead organized in specific ways dictated

by hidden geometric correlation between layers. Such

correlations allowed the detection of multidimensional

communities, e.g., sets of nodes that are simultaneously

similar in multiple layers. Crucial for our topological

arguments, such multidimensionality also enables accurate

trans-layer link prediction, meaning that connections in one

layer can be predicted by observing the hidden geometric

space of another layer. For example, when the geometric

correlations are sufficiently strong, a multidimensional

framework outperforms navigation in the single layers,

allowing efficient targeted navigation simply by using local

multilayer knowledge (Kleineberg et al. 2016).

Abstract topology meets real physics: brain
energetic requirements

A BUT variant, termed energy-BUT, is particularly useful

in our context. There exists a physical link between the

abstract concept of BUT and the energetic features of the

system formed by two manifolds Md and Md-1. We start

from a manifold Md equipped with a pair of antipodal

points, standing for a symmetry according to one of the

above mentioned BUT variants. When these opposite

points map to a n-Euclidean manifold (where Md-1lies), a

symmetry break/dimensionality reduction occurs, and a

single point is achieved (Tozzi and Peters 2016b). How-

ever, it is widely recognized that a decrease in symmetry

goes together with a decrease in entropy and free-energy, at

least in a closed system. This means that the single map-

ping function on Md-1displays energy parameters lower

than the two corresponding antipodal functions on Md.

Therefore, decreases of dimensions give rise to decreases

of energy and energy requirements (Fig. 1). In such a way,

BUT and its variants yield physical quantities, because we

achieve a system in which energetic changes do not depend

anymore on thermodynamic parameters, rather on affine

connections and homotopies.

It must be taken into account that energy-BUT concerns

not just energy, but also information. Indeed, two antipodal

points contain more information than their single projec-

tion in a lower dimension. Dropping down a dimension

means that each point in the lower dimensional space is

simpler, because each point has one less coordinate. In

sum, energy-BUT provides a way to evaluate decreases in

energy and information in topological, other than thermo-

dynamic, terms.

In order to assess the energetic requirements of the brain

in a topological fashion, we will provide two examples, the

first assuming that the brain is a closed system, and the

second that the brain is an open, nonequilibrium biological

system.

The brain as a closed system

Here we provide an example in order to calculate the

energy requirements of different functional states in the

central nervous system. Changing the state of system

necessarily entails a modification in thermodynamic free-

energy, which is equivalent to the work done on the
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system, and which can be regarded as the average uncer-

tainty, or the information we have about the system’s

microscopic states (Sengupta et al. 2013a). We start from a

nervous closed system, shaped in guise of a Md-1equipped

with a single physical function termed A and characterized,

say, by a free-energy = 1 and an entropy = 2. For the gen-

BUT, when we project the function to Md, we achieve two

antipodal functions B and C with matching description,

forming a symmetric system. The question here is: which

are the values of free-energy and entropy of each one of the

two antipodal (symmetric) functions on Md? And what

happens to enthalpy? This question is crucial, because it

calls attention to energy conservation and symmetries. In

effect, this question leads to the Noether theorem (Noether

1918), which gives us a physical, testable counterpart to the

otherwise algebraic topological BUT. Indeed, if we do not

take into account the changes in free energy from A to B

and C, there is no possibility to translate the abstract BUT

to the physics of brain activity, and we have to use the

BUT, as we already did, simply as a useful methodological

tool (Peters et al. 2016).

The following scenario can be depicted. The projection

(mapping) of the description of a pair of physical points (or

regions, or functions) on Md into a point in Md-1 occurs

because we have found a continuous function between the

two manifolds. This is a flexible situation, because we can

vary the description of the pair physical points (regions, or

functions) and achieve a mapping to various Euclidean

spaces, depending on the number of features of the anti-

podes. From the gen-BUT perspective, the entropy of

antipodal regions would be part of the description of the

antipodes and would be the same for each antipode. This

works for regions, since informational entropy is defined in

terms of a set of events. Each regional antipode would be

the culmination of a set of random events, leading to each

antipode. Similarly, the free energy of each antipode would

be the same. In sum, if the region A is characterized by

free-energy = 1 and an entropy = 2, the regions B and

C are both characterized by a free-energy = 1 and an

entropy = 2. This means that the total free energy of the

system B ? C is doubled, compared with A.

The brain as an open, nonequilibrium system

Several authors state that, being the brain an open,

nonequilibrium biological system, nonlinear dynamics are

of substantial importance in enabling our understanding of

neuronal function and in the control of pathological neu-

rological states (Tognoli and Kelso 2013; Fraiman and

Chialvo 2012). As thermodynamic entropy measures the

dispersion over microstates of a thermodynamic canonical

ensemble, informational entropy plays the same role, but

Fig. 1 The manifold Md

displays two antipodal points

with matching description. It

this case, according to BUT

variants’ dictates, the antipodal

points stand for two symmetric

functions equipped with the

same energetic conformation

(black ovals containing curved

arrows). When a symmetry

break occurs, the manifold Md-1

displays just a single function,

equipped with an energetic level

lower than the sum of the

antipodal functions’ ones.

Therefore, dimension loss

occurs together with a decrease

of energy. The lateral dark

boxes illustrate some

hypothetical but plausible

conditions which might cause

increase or decrease of energy

in the brain. In sum, the system

displays a configuration with

higher energy in Md, and with

lower energy when a symmetry

break occurs. The background

stands for a schematized

structure of the brain phase

space

Cogn Neurodyn (2017) 11:283–292 287

123



over some phase functions or macroscopic variables that

change with time (Sengupta et al. 2013a). This means that

symmetry breaking in the brain may occur through the

widely described phenomena of critical fluctuations and

critical slowing (Scholz et al. 1987). Nonlinear dynamics

and critical fluctuation can be studied through logistic maps

equipped with Hopf bifurcations, where intervals are dic-

tated by the Feigenbaum constants. The BUT variants

introduce an approach that offers an explanation of nervous

nonlinearity and Hopf bifurcations in terms of algebraic

topology (Tozzi and Peters 2016b). Indeed, as reported by

Tozzi and Peters (2016b), Hopf bifurcations can be

described in terms of antipodal points encompassed in

n-spheres. However, in this case, the term n does not stand

for a spatial dimension, rather for the Feigenbaum con-

stant’s irrational number (Kim 1997; Schleicher 2007).

Therefore, we achieve an abstract sphere made of irrational

numbers, where nonlinear dynamics take place in guise of

paths and trajectories with matching description. When

going one dimension lower, the two antipodal points

become just one, that can be described in linear terms. This

means that BUT makes it possible for us to evaluate

complex nonlinear brain dynamics through much simpler

linear techniques.

Brain thermodynamic parameters:
when but encompasses a physical quantity

This paragraph correlates thermodynamic and informa-

tional parameters with brain dynamical features, in order to

analyze and quantify them. The paths described by BUT

variants elucidate how the tight energetic coupling among

different neural activities gives rise to brains that are in

charge of receiving and interpreting signals from other

cortical zones, in closely intertwined relationships at every

spatio-temporal level. Therefore, topology plus energy

becomes one of the central information processing strate-

gies of the nervous system.

Free-energy

The brain represents 2% of the human body mass yet it

accounts for about 20% of total energy consumed, a sub-

stantial proportion (Attwell and Laughlin 2001). The

metabolic brain activity, influenced by a balance between

the energy cost incurred by its operation and the benefits

realized by energy expenditure, is therefore high and

constant over time (Sengupta et al. 2013a). Why does the

brain consume such remarkable amounts of energy, despite

the fact that evolution is geared toward minimizing very

high metabolic costs? Almost 20–60% of the energy allo-

cated for the brain is used to support the metabolic rate of

the cortical grey matter and for synapses and action

potentials (Sengupta et al. 2013b). For our purposes, we

limit our analysis to spike frequency. The free energy

roughly corresponds to the electric spike frequency. See

Tozzi et al. (2016b) for a technical explanation. It means

that the increase in thermodynamic free-energy during

brain activity is mostly due to spikes, and that we are

allowed to evaluate variations in thermodynamic free-en-

ergy during brain activity just in terms of electric spiking.

In the context of ongoing fluctuations with complex

properties caused by variations in thermodynamic param-

eters, a foremost issue is the free-energy principle (Friston

2010). A self-organizing system like the brain, at

nonequilibrium steady-state with its environment, needs to

minimize its free-energy (and associated entropy), in order

to resist a tendency towards disorder/entropy. The key

thrust is that energy expenditure is balanced by homeo-

static mechanisms, in an effort to minimize free-energy,

and in an interplay between neuronal structure and activity

at many different spatiotemporal scales. A subtle equilib-

rium takes place among actual sampled sensations, brain’s

predictions (e.g., the expected energy), expectation (e.g.,

the best possible guess), surprise (e.g. an improbable out-

come caused by unknown quantities), accuracy (e.g., the

surprise about the sensations that are expected) and com-

plexity (e.g., the beliefs before and after observing data

through sensory inputs). Such different mechanisms tend

towards a main goal: minimising entropy production,

which corresponds to minimising the so called variational

free-energy. There is a strict correspondence between

concepts in Friston’s formalism and that of the thermody-

namics. For example, the Gibb’s thermodynamic free-en-

ergy stands, in Friston’s framework, for the entropy of

recognition density, or in other words, for the above

mentioned actual sensation sampled by the brain. Further,

because variational and thermodynamic free-energy share a

common minimum, we are also allowed to link information

processing (e.g., Bayesian belief updating) to metabolic

efficiency (Sengupta et al. 2013b), so that the average time

of variational free-energy becomes a proxy for entropy.

Temperature

The cortical temperature is not a stable parameter as cur-

rently believed. The brain displays instead thermal gradi-

ents observed at many spatiotemporal scales (Wang et al.

2014a). Local temperature fluctuations may act as a

dynamic variable, modulating presynaptic and postsynaptic

events, sensory stimuli, behavioral changes, memory

encoding and fine-tune activity-dependent processes

(Kalmbach and Waters 2012; Long and Fee 2008). In terms

of symmetry breakings achieved during nervous second

order phase-transitions, temperature might stand for one of
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the critical control parameters which dictates how the brain

evolves from one coordinated state to another. Therefore,

brain temperature can be used as an order parameter to

monitor the dynamics of the nervous collective state and

deviations from the symmetrical state. Indeed, in terms of

informational entropy, cortical temperatures contain

information about how large-scale physiological and

pathological outcomes arise from the interactions of many

small-scale processes, in order that thermal brain variations

may lead to different probability outcomes. In sum, non-

stationary thermal cortical fluctuations, an underrated

general mechanism of nervous function able to modify the

energy of the brain and to influence psychophysical char-

acteristics, can be assessed in topological terms.

Entropies

Entropies are evaluated in fMRI functional studies through

different techniques, e.g., pairwise entropy (Schneidman

et al. 2006; Watanabe et al. 2014; Wang et al. 2014b),

Granger causality index, phase slope index, and so on

(Kida et al. 2016). Such approaches also make it possible to

analyze how the complexity of an adaptive system like the

brain is best understood as a dynamic network that aims to

decrease its free-energy, for example via entropy transfer.

Here we propose a novel topological way to assess, in brain

fMRI functional studies, changes in informational entro-

pies. The method, referred here to changes in cortical

spatial dimensions, is described in Fig. 2. The Fig-

ure shows how, by knowing just the entropy values for

each BOLD-activated brain area, we are allowed to cor-

relate two different brain states, e.g., a state with symmetry

breaking and a state with preserved symmetries. During a

symmetry break or vice versa, the brain may use different

mechanisms in order to modify thermodynamic parame-

ters. The possible mechanisms are displayed in Fig. 1. For

example, when the system goes from symmetry to sym-

metry break, the enthalpy must be reduced of the half, via,

e.g., a decrease of local blood flow (enthalpy), or a

decrease of spike frequency (free-energy). When the sys-

tem goes from a symmetry break towards a restored sym-

metry, the brain requires a surplus of external energy to

inject into Md, and vice versa. Brain spikes, in this

framework, could stand for one of the thermodynamic

parameters able to give rise to different attractors, and to

supply the required enthalpy, in order to proceed from a

symmetry to a symmetry breaking and vice versa. There

are many good sources of data to test the claim that brain

areas are energetically correlated during symmetry breaks.

Indeed, unrestricted fMRI data sets are available in web

repositories, such as The International Neuroimaging Data-

sharing Initiative (INDI), that launched the 1000 Func-

tional Connectomes Project (Biswal et al. 2010), or the

Human Connectome Project (Glasser et al. 2016). We will

provide an example, in order to demonstrate the feasibility

of a combined energetic/topological approach and its

aptitude of providing very accurate testable previsions. We

have two mental states, one standing for a symmetry, and

another for a broken symmetry. Imagine that the brain at

rest displays a preserved symmetry, while the brain during

a visual task displays a broken symmetry. Our proposed

model may predict in fMRI series the energetic values for

both the cases. Indeed, according to BUT, a single

microarea with symmetry breaking necessarily projects to

Fig. 2 The two brain hemispheres are flattened and displayed in 2D,

according to Van Essen (2005). The black circles, depicting

hypothetical micro-areas of BOLD signal during fMRI functional

studies, contain a number which stands for the corresponding entropy

value. a displays a functional state with preserved symmetry (e.g.,

mind wandering), while b one with symmetry breaking (e.g., a task-

related activity). Note that two micro-areas with the same entropy

values in a stand for two points with matching description. The latter

necessarily project to a single point, in case the brain symmetry is

broken, according to the dictates of gen-BUT. This means that in

b there must be a micro-area with the same entropy value of the two

matching points in a. It allows us to assess which zones of the brain

could be correlated during functional symmetry breaks
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TWO areas with preserved symmetry. The single area in

lower dimensions and the two areas in higher dimensions

must to display the same values of entropy. This allows us

to recognize which zones of the brain are correlated during

symmetry breaks, e.g., during the projective steps from

higher to lower levels, and vice versa. Therefore, our

framework may predict the following hypothetical results:

if we find, during a visual task, say, three microareas with

an entropy 1.08, we expect to find, during rest, six or more

microareas with entropy = 1.08. In sum, by knowing just

the entropy values for each BOLD-activated cortical sub-

area, we are allowed to correlate two different brain states,

e.g., a lower-dimensional state with symmetry breaking

and a higher-dimensional state with preserved symmetries.

Conclusions

In this work, we proposed a framework that might be able

to achieve, from an abstract topological assessment of

brain activity, real thermodynamic parameters, in order to

evaluate and correlate different cortical functions. BUT

and its novel variants display very useful general features

which help us to explain a wide-range of brain phenom-

ena. By satisfying the requirements for BUT, it is possible

for us to quantify increases and decreases of free-energy/

entropy/enthalpy when going from one functional brain

conformation to another, e.g., from the functional 4D

sphere of the default mode network during spontaneous

brain activity (Tozzi and Peters 2016a), to the lower

dimensional 3D manifold during evoked brain activity

(Papo 2014). Therefore, the existence of one pair of

mappings implies an overall change in thermodynamic

and informational parameters. Despite BUT theorem

states that it exists at least a pair of antipodal point that

maps a dimension lower, nevertheless it does not say that

every antipodal pair will be mapped to a single set, nor

that all the two sets of objects in higher dimensions dis-

play matching descriptions with all the single sets of

objects in lower dimensions. It means that we would

neither specifically assess if a recorded brain state or a set

of trajectories is the image of any antipodes, nor the

accurate matching of the mapping from higher-dimension

manifolds to lower-dimension ones. However, BUT is

still very informative about brain dynamics in practice.

Indeed, there exist some trajectories, even if we don’t

know which, that are mapped to a lower-dimensional

space and imply a predictable energetic change. Because

the brain functional micro-zones are countless, the use of

BUT is helpful in achieving a drastic reduction and sim-

plification of the areas to investigate. Instead of looking

for a needle in a haystack, BUT makes it possible for

neuro-researchers to remove the most of the straw and to

increase the number of needles. The BUT approach also

complements the claim of Simas et al. (2015), who sug-

gested that the algebraic topological approach of embed-

ding a brain network on metric spaces (of different

dimensions) may reveal regions that are members of large

areas or subsystems, rather than regions with a specific

role in information processing. Indeed, Simas’ framework

is not restricted to the static aggregation, rather the mul-

tilayers assemblies can be seen as temporal brain win-

dows, and their dynamics as a minimization of inter-level

energy in an average time window. In sum, contrary to the

classical averaging of connectivity matrices, the BUT

approach reveals brain areas with a specific role in

information processing.

A shift in conceptualizations is evident in a method-

ological approach based on BUT. That is, the opportunity

to treat brain dynamics as topological structures gives us

the invaluable chance to describe them through the tools of

functional analysis (Dol’nikov 1992). The BUT perspec-

tive enunciates a symmetry property located in the physical

space (the environment and the brain) to be translated to an

abstract space and vice versa, enabling us to achieve maps

from one system to another. This approach is in touch with

recent proposals, which provide a rigorous way of mea-

suring distance on brain manifolds (Sengupta et al. 2016).

We might imagine the brain as a manifold, equipped with a

high number of symmetries and with an internal, mathe-

matically structured, holistic generative model of the

external world. Depending on external stimuli (Tozzi et al.

2016a) and on individual background, symmetry breaks

occur, giving rise to phase spaces equipped with a lower

number of dimensions. This takes us into the realm of

metric algebraic topology (Willard 1970), where multidi-

mensional manifold describe the structural order of the

relationships between nervous anatomical components and

their functional paths.
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