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Abstract RNA-binding proteins are functionally diverse
within cells, being involved in RNA-metabolism, translation,
DNA damage repair, and gene regulation at both the transcrip-
tional and post-transcriptional levels. Much has been learnt
about their interactions with RNAs through structure determi-
nation techniques and computational modeling. This review
gives an overview of the structural data currently available for
protein–RNA complexes, and discusses the technical issues
facing structural biologists working to solve their structures.
The review focuses on three techniques used to solve the 3-
dimensional structure of protein–RNA complexes at atomic
resolution, namely X-ray crystallography, solution nuclear
magnetic resonance (NMR) and cryo-electron microscopy
(cryo-EM). The review then focuses on the main computation-
al modeling techniques that use these atomic resolution data:
discussing the prediction of RNA-binding sites on unbound
proteins, docking proteins, and RNAs, and modeling the mo-
lecular dynamics of the systems. In conclusion, the review
looks at the future directions this field of research might take.
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Introduction

RNA-binding proteins are functionally diverse within
cells, and much has been learnt about their interactions
with RNAs though structure determination and compu-
tational modeling. The 3-dimensional structure of the
first protein–RNA complex at atomic resolution was
solved using X-ray crystallography (Chen et al. 1989).
Since then, nuclear magnetic resonance (NMR) and
electronic microscopy (EM) methods have also contrib-
uted to the growing number of protein–RNA complexes
(1,809 as of 22/07/2016) deposited in the RCSB Protein
Data Bank (PDB) (Berman et al. 2000). These structures
have been hugely influential in revealing information
about protein–RNA interactions. However, the path to
protein–RNA complex structure determination has been
(and still is) a difficult one, and only now is this field
gathering apace and providing the basis for the devel-
opment of computational modeling techniques.

This review focuses on the challenges faced by those
solving protein–RNA structures using X-ray crystallog-
raphy, NMR, and cryo-EM, and the computational tech-
niques for prediction and analysis of protein–RNA in-
teractions based on this data. It begins with a brief
introduction to the functional importance of RNA-
binding proteins and summarizes the structural data cur-
rently available. The issues using X-ray crystallography
and NMR to solve protein–RNA complexes at atomic
resolution are then discussed, and the revolution that
cryo-EM has brought to the field of ribosomes is pre-
sented. The review then outlines the main computational
modeling techniques that use this atomic resolution data,
including the prediction of interaction sites, docking
proteins, and RNAs, and modeling the molecular
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dynamics of the systems. In conclusion, the review
looks at the future focus in this field.

Functional importance of RNA-binding proteins

Using the molecular function annotations in the Gene
Ontology (GO) project (Blake et al. 2015), it is possible to
estimate that eukaryotic proteomes comprise 4–13 % RNA-
binding proteins (RBPs). The fact that RBPs represent such a
significant component reflects their diverse function. RBPs
are involved in RNA-metabolism, translation, DNA damage
repair, and gene regulation at both the transcriptional and post-
transcriptional levels. Their diverse functions mean they bind
many different types of RNA, including transfer-RNA
(tRNA), ribosomal-RNA (rRNA), messenger-RNA
(mRNA), and micro-RNA (miRNA). These interactions in-
volve both single-stranded RNA (ssRNA) and double-
stranded RNA (dsRNA) binding, with proteins acting as struc-
tural scaffolds and enzymes. An understanding of the func-
tional mechanisms of RBPs is only possible if the 3D atomic
structures of RBP–RNA complexes are known.

Twenty-seven years of protein–RNA structural data

One of the first structures of a protein–RNA complex
deposited in the PDB in 1989 was the bean-pod mottle
viral capsid protein bound to ssRNA, determined using X-
ray crystallography (Chen et al. 1989). Since then, com-
plexes have been deposited at an increasing rate (Fig. 1),
due to a combination of technological developments in
structure determination and structural genomics consortia
(Grabowski et al. 2016). Currently (22/07/2016), 1,809
protein–RNA complexes are deposited in the PDB
(Berman et al. 2000), 80 % of which are X-ray crystal
structures, 13 % EM, and 6 % NMR. This compares to
117,098 protein structures in total, with 90 % X-ray, 1 %
EM and 9 % NMR.

The number of complexes solved is small compared with
the number of unbound RBPs deposited. Molecular function
GO term annotations (Blake et al. 2015) reveal 5,610 proteins
annotated with RNA-binding function in the PDB, with an
estimated 69 % having no RNA-ligand bound. The relatively
small numbers of annotated RBPs, and the even smaller num-
ber with RNAs bound, reflects the unique problems faced by

Fig. 1 Deposition statistics of protein–RNA complexes in the RCSB
PDB (Berman et al. 2000) since the first complex was solved in 1989.
The stacked column graph (LH x-axis) shows the number of protein–

RNA complexes deposited each year divided by structured determination
method. The line graphs (RH x-axis) show the cumulative total of pro-
tein–RNA complexes solved by X-ray, NMR, and EM over time
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those solving structures using biophysical techniques. It also
highlights the need for computational methods to predict the
interactions in RBPs, and model the docking and dynamics of
bound structures.

X-ray crystallography for protein–RNA complexes

Crystals are solid structures formed by regular arrays of mol-
ecules that diffract X-rays in regular and predictable patterns
(Shi 2014). To obtain an image of a molecule, the resolution
needs to be ∼0.1 nm, and the light wavelengths required for
such measurements are in the X-ray range (0.01–10 nm).
Hence, X-ray diffraction from crystals is one approach to the
structure determination of protein–RNA complexes. X-ray
crystallography involves a number of different steps, outlined
as: (a) expression or synthesis, and purification of target mol-
ecules, (b) screening for optimal crystallization conditions, (c)
optimization of crystal quality, (d) diffraction data collection,
(e) structure determination, and (f) refinement of 3D model
(Krauss et al. 2013). The main bottleneck in this process is
obtaining diffraction quality crystals, as there are many pa-
rameters that affect crystallization, including temperature,
pH, sample concentration, and sample homogeneity (Krauss
et al. 2013).

Protein–RNA complexes have proved particularly difficult
to crystalize due to conformational flexibility of the protein
and the flexibility and negative charge of the RNA. RNAs
form diverse structures, from flexible single strands to com-
plex tertiary folds, which contain non-canonical base pairs.
Such structures pack loosely in crystals and have a high sol-
vent content, which adversely affects X-ray diffraction. In
addition, relatively weak intra-molecular interactions in
RNA lead to more flexibility and a higher tendency for the
RNA to miss-fold. This can lead to non-homogeneous sam-
ples that are also hard to crystallize (Ke and Doudna 2004).

The best approach to the crystallization of protein–
RNA complexes has been to engineer the RNA–protein
construct, rather than sampling many different crystalliza-
tion conditions (Obayashi et al. 2007). The length and
composition of the RNA included in the construct is crit-
ical, and is determined by the size of the minimal binding
site necessary for tight complex formation and also for the
ability of the RNA to be in its native folded state (Ke and
Doudna 2004). Short-chain RNAs (<30 nucleotides) can
be synthesized chemically (Oubridge et al. 1995), whilst
longer RNAs (>30 nucleotides) can be produced by in-
vitro transcription using bacteriophage RNA polymerases
(Obayashi et al. 2007). When RNAs are short, it is im-
portant for them to be homogenous, as heterogeneous 5′-
and 3′-ends can make crystal contacts, and structural het-
erogeneity can lead to poorly ordered crystals, or can stop
crystals forming altogether (Ke and Doudna 2004). RNA-

binding proteins comprise multiple domains, and another
important step is to identify the minimally folded protein
fragment, to include in the construct. This can be done
using limited proteolysis on the free or liganded protein,
and subsequent analysis of fragments by mass spectrosco-
py (Krauss et al. 2013). It is also important to avoid the
use of phosphate buffers and high salt concentrations to
achieve crystallization, as these can bind at or shield rec-
ognition sites on the protein and prevent complex
formation.

Despite all these technical hurdles, over 1,441 protein–
RNA complexes have been successfully solved by X-ray
crystallography since 1989. One key advantage of the
method for protein–RNA complex determination is that
at higher resolutions (<2.5 Å) water molecules are visible,
and these play a key role in complex formation. The ma-
jor disadvantage is that the structures obtained are essen-
tially static images of macromolecules known to have dy-
namic flexibility.

Solution nuclear magnetic resonance (NMR)
spectroscopy for protein–RNA complexes

Solution NMR spectroscopy has the advantage of
allowing the collection of dynamic information of flexible
macromolecules. NMR is based on the fact that nuclei of
isotopes such as 1H, 13C, and 15N carry magnetic dipoles,
which take up different orientations with different ener-
gies in the magnetic field of an NMR spectrometer (Kwan
et al. 2011). Energy state transitions occur according to
the rules of quantum mechanics when electromagnetic ra-
diation is applied, resulting in NMR signals. Nuclei in
different environments resonate (vibrate) at different fre-
quencies, and plotting intensity against frequency gives a
1-dimensional NMR spectrum (Kwan et al. 2011). By
correlating the frequencies of two or more nuclei as they
magnetize, multidimensional spectra can be collected
(Kwan et al. 2011). Such spectra are combined with con-
straint information using computer algorithms to calculate
a 3D structure, which is an ensemble of different models.

As with X-ray crystallography, NMR of protein–RNA
complexes relies on finding optimal RNA and protein con-
structs at the start of the process. However, an additional prob-
lem faced with NMR is the fact that as the size of the macro-
molecular increases, the NMR signal broadens and decays.
Hence, the NMR technique implemented varies dependent
upon the size of the complex. RNA–protein complexes <
50 kDa can be solved using standard NMR techniques, using
13C/15N labeling of either the protein and/or the RNA
(Carlomagno 2014). The first structure of a human protein–
RNA complex solved by NMR was the N-terminal RNA rec-
ognition motif (RRM) of the U1A 100 amino acid protein in
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complex with a 30-nt stem-loop RNA (Allain et al. 1997). As
many protein–RNA complexes comprise multiple domain
proteins bound to large RNA’s, this molecular weight limita-
tion initially restricted the number of protein–RNA complexes
solved by NMR.

However, in recent years an increasing number of high
molecular weight protein–RNA complexes (>50 kDa)
have been solved by coupling NMR with complementary
techniques (Carlomagno 2014). These include small angle
X-ray scattering (SAXS) (Hennig and Sattler 2014), and
electron paramagnetic resonance (EPR) (Duss et al. 2014).
The complementary techniques are used to yield addition-
al restraints for structure calculation and/or validation
from sparse NMR data. The 70 kDa complex of RsmZ/
RsmE with a noncoding RNA was solved by using NMR
for the structures of the individual protein domains, and
then using long-range EPR restraints to construct the
complete complex (Duss et al. 2014). One of the largest
NMR protein–RNA complexes is the 390 kDa archaeal
box C/D ribonucleoprotein enzyme bound to RNA
(Lapinaite et al. 2013). This structure was solved by cou-
pling NMR with SAXS and small-angle neutron scatter-
ing (SANS) (Lapinaite et al. 2013).

The use of complementary techniques alongside solu-
tion NMR has led to a total of 109 protein–RNA com-
plexes currently (22/07/2016) being solved. The advan-
tage of NMR for protein–RNA complexes is that the ex-
periments produce ensembles of structures that give a dy-
namic picture of these flexible complexes (Daubner et al.
2013), but one disadvantage is that the positions of water
molecules are not resolved.

Cryo-electron microscopy (cryo-EM) revolutionises
knowledge of the ribosome

Whilst crystallography and NMR has given key insights
into the structure of protein–RNA complexes, the size of
the complex is still a limiting factor. This is a key prob-
lem, as many protein–RNA interactions occur within very
large macromolecular assemblies such as the ribosome
and the spliceosome. The structures of such assemblies
were first solved using cryo-EM. The basis of cryo-EM
is the imaging of radiation-sensitive molecules in a trans-
mission electron microscope using very low temperature
(cryogenic) conditions (Milne et al. 2013), but initially the
technique gave structures in excess of 10 Å (Callaway
2015). However, the development of detectors that cap-
ture thousands of images (with many frames stored per
second), and the advancement of software to build 2D
images into a single 3D structure, have recently revolu-
tionized the method (Callaway 2015), leading to the near
atomic resolution structure of the human ribosome

(Khatter et al. 2015). The 80S human ribosome structure
comprises 69 protein chains and five nucleic acid chains,
and gave new insights into the tRNA-binding sites
(Khatter et al. 2015).

However, one problem with cryo-EM is that the reso-
lution can be highly variable within a single structure
(Kucukelbir et al. 2014). The structure of human 80S
ribosome varies from 3.6 Å to 2.8 Å resolution, reflecting
different local stabilities within the complex (Khatter et al.
2015). In a recent development, the structure of the E.coli
ribosome complexed with an elongation factor Tu, an
aminoacyl tRNA, and an antibiotic have been solved to
a near-uniform 2.9 Å resolution using spherical aberration
(Cs)-corrected cryo-EM (Fischer et al. 2015). Spherical
aberration is the distortion of an image that occurs when
a spherical lens brings rays to a premature focus, leading
to a blurred image and reduced resolution (Hawkes 2009).
Spherical aberration compensation plates are now being
used in cryo-EM systems, and the E.coli ribosome was
solved using an aberration corrector (Fischer et al. 2015).

There are currently 249 EM protein–RNA complexes
in the PDB (22/07/2016), and of these 210 have been
solved using cryo-EM. However, the telling statistic is
that only 17 of these complexes have a resolution
≤3.5 Å. A combination of further technological develop-
ments in hardware and software for cryo-EM offer the
prospects of higher (2.0 Å) resolution macromolecular
structures (Glaeser 2016). When this technique becomes
mainstream the numbers of atomic resolution protein–
RNA complexes solved by cryo-EM will rapidly
increase.

Computational methods for protein–RNA
interactions

The atomic coordinates of protein–RNA complexes
solved by X-ray crystallography, NMR and cryo-EM pro-
vide the basis for computational techniques for their anal-
ysis and prediction. Computational methods have focused
on three key areas: (a) predicting RNA-binding sites on
the structures of RNA-BPs solved in the unbound state,
(b) docking RNAs with RNA-BPs solved in the unbound
state, and (c) modeling of the molecular dynamics of pro-
tein–RNA complexes.

Predicting RNA binding sites using structures

There are many methods available to predict the location
of RNA-binding sites on the structures of RNA-binding
proteins, solved in the unbound state (termed here
Btarget^ proteins). In general, methods calculate physical
and/or chemical parameters of known RNA-binding
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residues, and then use this information to search for sim-
ilar sites on target proteins. The common sequence fea-
tures used are position-specific scoring matrices (PSSMs)
and amino acid propensities, which quantify the propen-
sity for an amino acid to be in a binding site (Murakami
et al. 2010). Frequently used structural features include
the solvent accessibility of amino acids, surface electro-
static potentials, and geometrical properties such as shape
(Sun et al. 2016). The prediction techniques that use these
features include machine learning (ML), template
methods, and scoring methods.

The most common techniques use supervised ML, in
which algorithms learn from the features of known RNA-
binding residues (training data) for make predictions for
target proteins (Tiwari and Srivastava 2014). Random for-
ests (e.g., Barik et al. 2015), support vector machines
(e.g., Maetschke and Yuan 2009) and Naïve Bayes classi-
fiers (e.g., Terribilini et al. 2007) have all been used to
predict of RNA-binding sites. One of the most recent
methods (RNAProSite) constructs a random forest classi-
fier using electrostatic surface potential and a triplet inter-
face propensity (Sun et al. 2016). Other methods have
used ensemble learning, in which multiple ML classifiers
are independently trained, and then combined to make
predictions for target proteins (e.g., Ren and Shen 2015).

A second prediction technique uses 3D templates to
characterize binding sites. This technique extracts and
assembles a library of 3D templates of known RNA-
binding sites and then structurally aligns them to target
proteins. If structural similarity is detected, additional
criteria are used to assess the probability RNA binding.
One example of this technique is SPOT-Seq-RNA, which
uses an energy function to assess the likelihood of bind-
ing after template similarity has been established (Zhao
et al. 2014).

The ML techniques rely on parameterization of specific
training datasets, and template techniques rely on template
libraries derived from existing complexes. This means
that on novel datasets the accuracy of the predictions
can degrade. Scoring methods are designed to overcome
this problem to some extent, and they involve the combi-
nation of calculated physiochemical and evolutionary fea-
tures into a scoring function, upon which the probability
of RNA-binding is derived (Chen et al. 2014). One tech-
nique, RBscore, has a scoring function that integrates
electrostatic potential, solvent accessibility, and sequence
conservation (Miao and Westhof 2015a).

With so many techniques for RNA-binding prediction
available, attempts have been made at benchmarking
(Walia et al. 2012; Miao and Westhof 2015b). However,
such comparisons are dependent upon the specific
datasets used, the definitions of RNA-binding residues,
and the statistics used to assess the predictions. Another

problem is that some of the false positives result from the
misidentification of DNA-binding sites as RNA-binding
sites, as they share many characteristics (Shazman et al.
2011). In addition, many binding sites can be identified
that fit specific physicochemical criteria, but are not bio-
logically relevant in any system, or only in some specific
systems. A further problem with many techniques is their
reliance on the existence of close homologs of target pro-
teins to calculate features, such as PSSMs and sequence
conservation. When working with model organisms this is
not a problem, but when working with non-model species
such as agricultural crops or plant pathogens, many tech-
niques have limited prediction potential.

Docking RNAs and proteins

Methods for docking two molecules generally consist of
four parts: (a) docking of the structures, usually using fast
rigid body docking, (b) scoring of the resulting complexes
using a potential based on chemical and/or structural
properties derived from known complexes, (c) selection
of the ‘best’ models based on the core, and (d) model
refinement. There are many methods available for
docking proteins with RNAs: GRAMM (Katchalski-
Katzir et al. 1992), Haddock (Van Zundert et al. 2016),
Hex (Ritchie and Kemp 2000), PatchDock (Schneidman-
Duhovny et al. 2005), and FTDock (3D-Dock) (Gabb
et al. 1997)). But most were developed for docking pro-
tein–protein complexes, and hence many originally lacked
specific protein–RNA scoring potentials (Puton et al.
2012).

However, potentials based on reverse Boltzmann statis-
tics [DARS-RNP and QUASI-RNP (Tuszynska and
Bujnicki 2011)], propensities [e.g., OPRA (Perez-Cano
and Fernandez-Recio 2010)] and statistical mechanics
[e.g., ITScore (Huang and Zou 2014)] have since been
developed and are available for use with different
methods. One recent method, NPDock, exemplifies recent
contributions to this field (Tuszynska et al. 2015).
Designed for the non-expert user, it combines GRAMM
and the protein–RNA specific potentials (DARS-RNP and
QUASI-RNP) (Tuszynska and Bujnicki 2011) with tools
for clustering, selection, and model optimization. NPDock
(Tuszynska et al. 2015), and other similar methods, pro-
duce protein–RNA models worthy of further analysis
when the RNA is double stranded. But docking ssRNAs
to proteins is more difficult due to the huge flexibility of
the RNA. However, this has been addressed in a new
fragment-based approach that uses the structure of the
protein and the sequence of the ssRNA (Chauvot de
Beauchene et al. 2016). The method deals with the flexi-
bility of the ssRNA by building potential structures from
small fragments.
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Simulating the molecular dynamics of protein–RNA
interactions

One key issue in both docking and modeling the molecu-
lar dynamics (MD) of protein–RNA complexes is the
flexibility within the system. RNA molecules undergo
conformational changes triggered by a range of signals,
and nucleotides contacting amino acids are enriched in
unusual and unique conformations (Kligun and Mandel-
Gutfreund 2015). Conformational changes, both small and
large, have also been observed in RNA-BPs (Ellis and
Jones 2008). RNA-complex formation can involve
coupled association and folding process, and in some
RNA-BPs, regions that are unstructured in the unbound
protein become structured upon binding (Qin et al. 2010).

This flexibility and the representation of water mole-
cules presents problems when molecular dynamics is used
to assess the energy landscape accessible to protein–RNA
complexes (Barik and Bahadur 2014). Modelling the MD
of proteins (Dror et al. 2012) and RNA (Šponer et al.
2012) as separate entities is complex, with the selection
of an appropriate force field for simulations a key aspect.
The frequently used force fields such as AMBER and
CHARMM do have variants for simulating dsRNA dy-
namics, but achieving accurate simulations over a mean-
ingful timeframe for protein–RNA complexes with non-
canonical dsRNA structures or ssRNAs is still challenging
(Fulle and Gohlke 2010). However, interesting examples
have been achieved. An MD simulation of the binding of
P22 N-peptide with RNA revealed that the electrostatic
field of the RNA influenced transitions in secondary
structure (coil to α-helix) outside of the RNA-binding site
(Bahadur et al. 2009). In more recent work, explicit sol-
vent MD simulations of Csy4 endoribonuclease com-
plexed with a CRISPR (clustered regularly interspaced
short palindromic repeat)-derived RNA gave insight into
the potential catalytic mechanisms of the endonuclease,
but also highlighted limitations in the use of the
AMBER derived force field (Estarellas et al. 2015).

One difficulty in the simulation of the CSY4/RNA
complex was the fact that the endonuclease was multi-
domain. In such proteins, domains are commonly con-
nected by flexible linkers, and this means that the do-
mains can interact with the RNA in different ways
(Mackereth and Sattler 2012). One interesting mechanism
proposed for RNA-complex formation is conformational
selection. In this mechanism, the protein in the absence of
the RNA exists in a dynamic equilibrium of two states,
bound and unbound. The bound state preexists before
binding, and the binding of the RNA captures the bound
conformation, leading to a population shift in the equilib-
rium. This mechanism has actually been observed from
the solution structures of the RBP U2AF65, which is

involved in pre-mRNA splicing (Mackereth et al. 2011).
Such observations highlights the importance of enhancing
techniques for solving RBPs in solution, the necessity for
protein–RNA specific software for MD simulations, and
the development of more sophisticated RNA-specific
force fields.

Lessons learnt from structural data and modeling

The availability of over 5,000 RBP structures and 1,809
protein–RNA complex structures means that much has
been learnt about protein–RNA interactions. Initial ob-
servations showed that there were a number of common
folded domains, including the RNA recognition motif
(RRM), K- homology (KH) domain, double-stranded
RNA-binding domain (dsRBD), Paz domain, and Piwi
domain (Lunde et al. 2007). These have defined second-
ary structure elements forming the RNA-binding sites
(Fig. 2a–e), but others such as the zinc finger motif
ZNF-CCCH are predominantly unstructured binding
sites (Fig. 2f). Like other classes of proteins, many
RBPs have multiple domains; with each domain making
contact with 2–10 RNA nucleotides. The domains are
commonly connected by flexible linkers which allow
the recognition of diverse RNA sequences using differ-
ent interaction mechanisms (Mackereth and Sattler
2012). Individual domains often bind with low affinity,
but cooperative binding of multiple domains (either the
same or different ones) leads to increased affinity and in
many cases specificity (Cook et al. 2015). The structures
of ribosomes from a number of different organisms re-
vealed that these large dynamic assemblies comprise
RBPs with many different RNA-binding folds, as well
as many disordered regions.

Messenger RNA interactome data has also revealed
that one third of RBPs, conserved from yeast to humans,
do not feature the classical domains and did not have a
previously known RNA-binding function (Beckmann
et al. 2015). A significant number of these these poten-
tially new RBPs were glycolytic enzymes (Beckmann
et al. 2015). This has led to connections being proposed
between RNA-biology and other cellular functions such
as metabolism (Beckmann et al. 2016).

Future directions

Structural biology has provided data that has made fun-
damental contributions to the field of protein–RNA in-
teractions. Computational biology has used this data to
increase our understanding of these macromolecules
even further. We now have a clearer understanding of
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the importance of protein and RNA flexibility, and un-
structured regions of the protein. Future work needs to
focus on how non-classical RBP domains and unstruc-
tured regions contribute to binding. In addition, more
work is needed to derive the structures of RBPs with
ssRNAs bound, and new software for more accurate
docking of RNA–protein complexes, and for simulating
the dynamics at the molecular level needs to be devel-
oped. The insights into the ribosome that have been
provided by cryo-EM mean that further technological
developments in this field will be key to solving large
RNA and protein assemblies at even higher resolutions.
The comprehensive array of RNA-binding proteins

recently derived from interactome capture methods
(Castello et al. 2012; Beckmann et al. 2015) will also
provide new targets for structural genomics consortia in
the future.

The recent report of an engineered RBP protein
PumHD (Pumlio Homology Domain) being used to mea-
sure RNA translation within living cells demonstrates the
advancing importance of RBPs (Adamala et al. 2016).
Such work serves to highlight the need for further under-
standing of RNA recognition by proteins through struc-
ture determination and computational biology. The last
27 years of protein–RNA structural data has clearly paved
the way for many more.

(a) RRM 

(d) 

(b) KH  

(e) dsRBDD

(

(

(c) PAZ  

(f) Znf-CCCHPiwi  

Fig. 2 Examples of RNA-binding domains revealed using X-ray crystal-
lography andNMR structure determination techniques. aRNA-recognition
motif (RRM): example PDB:1CVJ. bK-homology domain (KH): example
PDB:1EC6. c PAZ domain: example PDB:2XFM. d PIWI domain: exam-
ple PDB:2BGG. e Double-stranded RNA-binding domain (dsRBD):

example PDB:2L3C. f Zinc finger CCCH domain: example PDB:1RGO.
In each figure, the protein is shown in ribbon format depicting the second-
ary structure (blue) and the RNA is shown in ball-and-stick format with
nucleic acid base blocks (green). The figures have been rendered using the
CCP4MG package (McNicholas et al. 2011)
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