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Abstract. Fibronectin (FN) is a primary component of 
the mammary mesenchymal compartment and under-
goes dramatic changes during breast cancer development. 
Increased FN expression is associated with an invasive and 
metastatic breast cancer phenotype. The present study demon-
strated that FN causes an epithelial‑mesenchymal transition 
(EMT)‑like morphological change in MCF‑7 breast cancer 
cells. FN stimulation caused the downregulation of epithe-
lial markers E‑cadherin and tight junction protein ZO‑1, 
and the upregulation of mesenchymal markers N‑cadherin 
and vimentin. Additionally, FN promoted cell migration 
and invasion in MCF‑7 cells, with increased expression of 
calpain‑2 and proteolysis of focal adhesion kinase 1 (FAK), 
indicating calpain activation. Notably, the FN induced changes 
in morphology and EMT markers were reversed with the 
treatment of calpain‑specific inhibitors, calpain inhibitor I 
(N‑acetyl‑L‑leucyl‑L‑leucyl‑L‑norleucinal), calpeptin and 
calpain inhibitor IV. Meanwhile, the effects of FN on cell 
migration and invasion, as well as FAK proteolysis were 
markedly suppressed by calpain inhibitors. Taken together, 
the results of the present study indicate that calpain plays an 
essential role in FN‑induced EMT response, and that targeting 
calpain signaling may be a potential strategy to reduce breast 
cancer metastasis.

Introduction

The extracellular matrix (ECM) is composed of highly vari-
able and dynamic components, which regulate cell behavior 
and fate (1). In breast cancer, a number of ECM proteins are 
significantly deregulated and specific matrix components 
promote tumor progression and metastasis (2). Fibronectin 
(FN) is a component of the mammary mesenchymal compart-
ment. FN is not expressed in normal adult breast tissue, whereas 
increased mRNA and protein levels have been reported in the 
stroma of breast tumors (3). A high level of FN expression is 
associated with an increased risk of mortality of breast cancer, 
and it may be a useful marker for predicting poor prognosis in 
breast cancer patients (4). In addition, increased FN expression 
is associated with an invasive and metastatic breast cancer 
phenotype (5). Changes in the production and organization of 
FN contribute to the ʻpre‑metastatic niche ,̓ which facilitates 
the adhesion of bone marrow‑derived cells to promote tumor 
progression and metastasis (6,7).

An important event in the initiation of cancer metastasis is 
epithelial‑mesenchymal transition (EMT), which is a process 
during which epithelial cells lose apical‑basal polarity and gain 
a mesenchymal phenotype (8). During this transition, epithe-
lial carcinoma cells acquire phenotypic changes and become 
highly motile and invasive, which facilitates the migration of 
cells from the originating site of the tumor to distal sites (9). 
Recent research demonstrates that FN induces an EMT 
response in MCF‑10A human mammary epithelial cells, via 
cooperation with Src kinase and extracellular signal‑regulated 
kinase (ERK)/mitogen‑activated protein kinase signaling, 
which is initiated by the type‑I transforming growth factor‑β 
(TGF‑β) receptor (10). However, the detailed mechanisms that 
enable an EMT response in breast cancer cells with aberrant 
FN stimulation remain to be elucidated.

The calpain family is a group of calcium‑dependent cysteine 
proteases and is involved in a variety of biological activities 
by limited proteolysis of numerous substrates. Two members 
of the calpain family µ‑calpain (calpain‑1) and m‑calpain 
(calpain‑2) are ubiquitously expressed (11). Altered activity 
and expression of calpains has been implicated in a number 
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of disease states, including cancer (12). Investigations have 
demonstrated that calpain has a role in breast cancer progres-
sion, prognosis and treatment response, thus it is considered 
as a potential anticancer target  (13). Furthermore, calpain 
activity is aberrantly higher in breast cancer tissues compared 
with normal breast tissues, and its expression correlates with 
metastatic phenotypic characteristics and increased invasive 
properties of tumors (14‑16). Calpain also plays an essential role 
in regulating cell migration and invasion by promoting focal 
adhesion and invadopodia/podosome disassembly through 
cleavage of its substrates, including talin (17), focal adhesion 
kinase (FAK) (18), cortactin (19) and ezrin (20). In addition, 
calpain is one of the key downstream molecules required for 
growth factor‑induced motility in breast cancer (21). Notably, 
calpain is also implicated in the EMT process in cancer cells. 
It has been previously reported that calpain 2 is upregulated 
during TGF‑β‑induced EMT in A549 lung adenocarcinoma 
cells  (22). In addition, FN may induce cell migration and 
invasion in A549 cells via ERK1/2‑calpain‑2 signaling (23), 
indicating a potential role for calpain in FN induced cellular 
response.

In view of the previously reported notable effects of calpain 
on cell migration and invasion in breast cancer, the present 
study sought to identify whether the upregulation and activa-
tion of calpain play a role in FN induced migration and invasion 
in breast cancer cells. This will enable a further understanding 
of the role of calpain in the process of FN‑induced EMT.

Materials and methods

Reagents and antibodies. FN (Sigma‑Aldrich; Merck Millipore, 
Darmstadt, Germany) was dissolved in sterile distilled H2O 
as a stock solution at 1 mg/ml and stored at ‑20˚C. Calpeptin 
(N‑benzyloxycarbonyl‑L‑leucylnorleucinal) and calpain 
inhibitor IV (Calbiochem; Merck Millipore) were dissolved 
in dimethylsulfoxide (DMSO; 0.1 M) and stored at ‑20˚C 
as stock solutions. Calpain inhibitor I (ALLN; Calbiochem; 
Merck Millipore) was dissolved in DMSO (0.1 M) and stored 
at 4˚C. Matrigel was purchased from BD Biosciences (San 
Jose, CA, USA). Antibodies to calpain‑1 (catalog no. sc‑13990; 
1:500; polyclonal rabbit anti‑human), calpain‑2 (catalog 
no. sc‑373966; 1:500; polyclonal rabbit anti‑human) and FAK 
(catalog no. sc‑557; 1:500; polyclonal rabbit anti‑human) were 
purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA). Antibodies to E‑cadherin (catalog no. 3195; 1:1,000; 
polyclonal rabbit anti‑human), ZO‑1 (catalog no. 8193; 1:1,000; 
polyclonal rabbit anti‑human), N‑cadherin (catalog no. 13116; 
1:1,000; polyclonal rabbit anti‑human) and vimentin (catalog 
no. 5741; 1:1,000; polyclonal rabbit anti‑human, ) were obtained 
from Cell Signaling Technology, Inc. (Danvers, MA, USA). 
Antibody to β‑actin (catalog no. AP0060; 1:3,000; polyclonal 
rabbit anti‑human) was purchased from Bioworld Technology, 
Inc. (St. Louis Park, MN, USA).

Cell lines and cell culture. The MCF‑7 human breast cancer 
cell line was purchased from the Cell Bank at the Shanghai 
Institute of Cell Biology (Shanghai, China). The cells were 
cultured in Dulbecco's modified Eagle's medium (DMEM; 
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
at 37˚C in a humidified incubator (5% CO2) and supplemented 

with 10% fetal bovine serum (FBS; Gibco; Thermo Fisher 
Scientific, Inc.), 100 U/ml penicillin (Beyotime Institute of 
Biotechnology, Haimen, China) and 100 µg/ml streptomycin 
(Beyotime Institute of Biotechnology).

Cell treatment. Cells were replated on FN (20 µg/ml) for 48 h 
prior to analysis. When inhibitors were used, cells were incu-
bated in medium at 37˚C containing the inhibitors for 1 h prior 
to being replated on FN. The inhibitors were used as follows: 
ALLN (10 µM), calpeptin (50 µM) and calpain inhibitor IV 
(25 µM).

Wound healing assay. The wound healing assay is a conven-
tional method used to study directional cell migration in vitro. 
Cells were seeded into 6‑well plates and grown to 90% conflu-
ence. The monolayers were scraped with a micropipette tip and 
rinsed with phosphate‑buffered saline three times to remove 
any floating cells. Representative images were captured at  
0 and 48 h after scraping (IX53; Olympus Corporation, Tokyo, 
Japan) and analyzed (cellSens; version 1.14.14116.2; Olympus 
Corporation). The level of cell migration was quantified as a 
percentage compared with the cells at 0 h of each group. The 
data shown were obtained from three independent experiments.

Invasion assay. Invasive ability of the cells was measured 
by using a Transwell chamber (EMD Millipore, Billerica, 
MA, USA) containing membranes with pores (8 µm), which 
were initially coated with Matrigel (40 µg/100 µl/chamber) 
as previously described (24). Following treatment with FN 
for 48 h or ALLN (10 µM), calpeptin (50 µM) and calpain 
inhibitor IV (25 µM) for 1 h prior to treatment with FN, the 
cells were suspended in serum‑free medium (5x105 cells/ml) 
and seeded into the upper compartment, while the DMEM 
containing 10% FBS was added in the lower compartment as 
a chemo‑attractant. Following incubation at 37˚C for 24 h, the 
non‑invasive cells on the upper side of the membrane were 
removed with a cotton swab. The invasive cells on the lower 
surface were fixed with 100% methanol and stained with 
0.5% crystal violet at room temperature for 20 min (Beyotime 
Institute of Biotechnology). The invasive cells were quantified 
by manual counting under an inverted microscope (CX51; 
Olympus Corporation) at x100 magnification. For each experi-
mental group, 5 randomly selected fields were analyzed.

Western blot analysis. Cells were collected and lyzed in 
lysis buffer (Thermo Scientific Inc.). The lysates were clari-
fied by centrifugation at 4˚C for 15 min at 13,000 x g. The 
protein concentration in the supernatants was measured using 
bicinchoninic acid assay kit (Thermo Scientific Inc.) with a 
microplate reader (ELX808IU; BioTek Instruments, Inc., 
Winooski, VT, USA). Total protein (30 µg/lane) was sepa-
rated by 10% SDS‑PAGE and transferred to a polyvinylidene 
difluoride membrane (EMD Millipore, Billerica, MA, USA). 
The membrane was blocked with 1% bovine serum albumin 
and subsequently incubated with the appropriate primary 
antibodies as described in the reagents and antibodies section 
overnight at 4˚C. The membranes were washed three times 
with TBS containing Tween‑20 buffer and incubated with 
the IRDyeTM800‑conjugated secondary antibody (catalog 
no. P/N 925‑32211; 1:20,000; Rockland Immunochemicals, 
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Inc., Pottstown, PA, USA) at 37˚C for 1 h, followed by washing 
four times with phosphate‑buffered saline. Images of the 
membrane were captured with the Odyssey Infrared Imaging 
System (LI‑COR Inc., Lincoln, NE, USA). β‑actin was used as 
an endogenous control, and the relative expression of proteins 
was normalized to the control group. Densities of signals on 
blots were evaluated using ImageJ software (U.S. National 
Institutes of Health, Bethesda, MD, USA).

Statistical analysis. All data obtained from at least three inde-
pendent experiments are expressed as the mean ± standard 
error. Statistically significant differences were calculated by 
the Student's t‑test for comparing between two groups and 
one‑way analysis of variance for multiple‑group comparisons, 
followed by the Bonferroni post‑hoc test. P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

FN stimulates cell migration and invasion with changes 
in EMT marker expression in MCF‑7 breast cancer cells. 
Although FN has been previously demonstrated to induce EMT 
in breast epithelial cells (10), whether it induces EMT in breast 
cancer cells requires investigation. As shown in Fig. 1A, FN 
was capable of inducing an EMT‑like morphological change in 
MCF‑7 cells, from a cobblestone‑like epithelial morphology to 
a spindle‑like fibroblast appearance. Corresponding with the 
changes in morphology, FN treatment for 48 h led to alterations 
in the expression of epithelial markers, including a significant 
decrease in E‑cadherin and ZO‑1, as well as a significant 
increase in mesenchymal markers N‑cadherin and vimentin 
in MCF‑7 cells (Fig. 1B). It has been well demonstrated that 
EMT is associated with increased cellular motility (25). Thus, 
the motile phenotype of FN‑induced cells was evaluated by 

the wound healing and Transwell invasion assays. FN treat-
ment promoted wound closure from 25.6±2 to 44.6±4% and 
invasive ability of the MCF‑7 cells from 100 to 164.9±15%. 
(Fig. 1C and D). These results indicated that FN altered the 
expression of EMT markers and facilitated cellular motility.

FN promotes FAK cleavage with an increased expression of 
calpain‑2. As a central component of focal adhesions, FAK 
can interact with and phosphorylate several members of the 
focal adhesion complex through multiple protein‑binding 
domains (26). The cleavage of FAK leads to adhesion complex 
turnover and increased cellular motility (27). As shown in 
Fig. 2A, following FN treatment for 48 h, FAK was cleaved to 
the 90 kDa form. FAK is a sensitive substrate of calpain and 
can be hydrolyzed to form the low molecular weight isoforms 
via calpain activation. Furthermore, the generated ~90 kDa 
cleavage fragment of FAK was identical in size to a previously 
identified calpain‑mediated cleavage product of FAK (28). 
Therefore, whether the expression of calpain is changed 
following FN stimulation was assessed. It was observed that 
the expression of calpain‑1 increased following FN stimula-
tion, although this increase was not significant. The expression 
of calpain‑2 was significantly upregulated (Fig. 2B).

Inhibition of calpain reverses FN‑induced alteration of EMT 
markers. As shown in Figs. 1 and 2, upregulation of calpain‑2 
was observed in the process of FN‑induced EMT in MCF‑7 
cells. To investigate whether activated calpain is a requisite 
or concomitant in FN‑induced EMT, three specific calpain 
inhibitors, ALLN, calpeptin and calpain inhibitor IV were 
used. Compared with non‑treated cells, FN treatment led to 
downregulation of E‑cadherin and ZO‑1, but upregulation 
of N‑cadherin and vimentin. The changes of E‑cadherin, 
ZO‑1 and vimentin expression induced by FN were markedly 

Figure 1. FN stimulates changes in cell morphology and expression of EMT markers, as well as promoting cell migration and invasion in MCF‑7 cells. 
(A) Micrographs of MCF‑7 cells untreated and treated with FN for 48 h (magnification, x400). (B) FN stimulated changes in the expression of EMT markers. 
(C) FN promoted migration of MCF‑7 cells. Monolayer cells were scratched in the presence and absence of FN (20 µg/ml) for 48 h. The images were captured 
at 0 and 48 h following scratching (magnification, x100). (D) FN promoted invasion of MCF‑7 cells. Cells were plated with and without FN (20 µg/ml) 
for 48 h. The invasive cells that passed through the membrane were examined with crystal violet staining. The images are representative of 3 separate 
experiments (magnification, x100). Values are expressed as the mean ± standard error. *P<0.05 vs. the control. E‑cad, E‑cadherin; FN, fibronectin; EMT, 
epithelial‑mesenchymal transition; N‑cad, N‑cadherin; ZO‑1, tight junction protein ZO‑1.
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suppressed by ALLN. Calpeptin or calpain inhibitor IV also 
attenuated FN‑induced upregulation of E‑cadherin and ZO‑1, 
and downregulation of vimentin and N‑cadherin (Fig. 3A). In 
addition, calpain inhibitors calpeptin and calpain inhibitor IV 
also reversed the FN‑induced EMT‑like morphological change 
in MCF‑7 cells (Fig. 3B).

Calpain is required for FN‑induced cell migration, invasion 
and proteolytic cleavage of FAK. The results of the present 
study demonstrated that calpain inhibitors reversed FN‑induced 
EMT, which prompted an investigation into whether calpain 
inhibition affects FN‑induced cell motility. MCF‑7 cells were 
pre‑incubated with or without calpain inhibitors for 1 h prior 

Figure 3. Calpain mediates FN‑induced EMT of MCF‑7 cells. Cells were pretreated with and without ALLN (10 µM), calpeptin (50 µM) and calpain inhibitor 
IV (25 µM) for 1 h prior to treatment with FN for 48 h. (A) Inhibition of calpain activation blocked FN‑induced change in EMT marker expression. The 
expression of EMT markers was detected by western blotting, with β‑actin as loading control. Values are expressed the mean ± standard error. *P<0.05, FN 
vs. FN+ALLN, FN+calpeptin and FN+calpain inhibitor IV. (B) Repression of calpain activation inhibited FN‑induced morphological changes. Morphological 
observation of MCF‑7 cells was performed following FN treatment with or without calpain inhibitors (magnification, x400). ALLN, calpain inhibitor I; con, 
control; EMT, epithelial‑mesenchymal transition; FN, fibronectin; cal IV, calpain IV; E‑cad, E‑cadherin; N‑cad, N‑cadherin; ZO‑1, tight junction protein ZO‑1.

Figure 2. Impact of FN on the processing of FAK and calpain expression in MCF‑7 cells. (A) FN enhanced FAK proteolysis in MCF‑7 cells. Arrow indicates 
the wild‑type (120 kDa) and *indicates the processed form(s) (90 kDa) of FAK. (B) FN induced the upregulation of calpain‑2 in MCF‑7 cells. Values are 
expressed as the mean ± standard error. *P<0.05 vs. the control. FAK, focal adhesion kinase 1; FN, fibronectin.
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to being placed on FN. As shown in Fig. 4A, ALLN, calpeptin 
and calpain inhibitor IV caused a significant reduction in 
FN‑induced migration. Furthermore, treatment with ALLN, 
calpeptin and calpain inhibitor IV inhibited FN‑induced cell 
invasion (Fig. 4B). Whether FN‑induced FAK cleavage was 
mediated via calpain activation was investigated. The results 
demonstrated that all three calpain inhibitors markedly 
blocked FN‑induced FAK proteolytic cleavage, with signifi-
cant downregulation of the 90 kDa form (Fig. 4C). These data 
indicated that calpain has an important role in FN‑induced cell 
motility.

Discussion

According to Cancer Statistics 2014  (29), breast cancer is 
the most common type of cancer diagnosed and the second 
leading cause of cancer mortality among women. Metastasis 
is considered as one of the most important stages of tumor 
progression and remains responsible for ~90% of patient 
mortalities, despite advances in the diagnosis and treatment of 
breast cancer (30). The process of tumor invasion and metas-
tasis requires complex changes in cell‑cell and cell‑matrix 
interactions, thus apart from the accumulation of genetic and 
epigenetic changes in tumor cells, ECM components in the 
tumor microenvironment also have roles in tumor spreading, 

progression and therapeutic response (31). In recent years, a 
number of matrix components have been identified as impor-
tant constituents of metastatic niches in breast cancer. Thus, 
performing an analysis of these ECM proteins and the associ-
ated signaling pathways is of enormous interest in the effort to 
identify therapeutic targets against advanced stages of breast 
cancer (1).

High levels of FN in the primary tumor have been linked 
to poor overall survival in breast cancer patients. In addition, 
increased expression of FN was also observed in lymph node 
metastases and was associated with an increased probability 
of metastasis (3,32). Balanis et al (33) demonstrated that breast 
cancer cells at an early stage utilize Src‑dependent epidermal 
growth factor (EGF) receptor signaling to promote the acti-
vation of signal transducer and activator of transcription 3 
(STAT3). However, in metastatic breast cancer cells there 
is a switch to utilize FN‑induced FAK/FAK2:JAK2:STAT3 
signaling after cancer cells have acquired EMT, which 
indicates that a loss of responsiveness to growth factor is 
associated with an increase in the ability of FN to stimulate an 
alternative oncogenic pathway during metastatic progression. 
In addition, FN is able to increase the migratory ability and 
secretion of active matrix metalloproteinase‑2 (MMP‑2) in 
non‑invasive MCF‑7 breast cancer cells, and induce MMP‑2 
expression by decreasing its promoter methylation (34). In 

Figure 4. Calpain is involved in cell migration, invasion and FAK cleavage during FN‑induced EMT in MCF‑7 cells. Cells were pretreated with and without 
ALLN (10 µM), calpeptin (50 µM) and calpain inhibitor IV (cal IV, 25 µM) for 1 h prior to treatment with FN for 48 h. Cell migration and invasion, as well 
as processing of FAK, were subsequently analyzed. (A) The FN‑induced cell migration was markedly suppressed by calpain inhibitors. (magnification, 
x100) (B) FN‑induced cell invasion was significantly inhibited by ALLN, calpeptin and calpain inhibitor IV. (magnification, x100) (C) Pretreatment with 
calpain inhibitors suppressed FN‑induced FAK processing. Values are expressed as the mean ± standard error. *P<0.05, FN vs. FN+ALLN, FN+calpeptin 
and FN+calpain inhibitor IV. ALLN, calpain inhibitor I; cal IV, calpain IV; EMT, epithelial‑mesenchymal transition; FAK, focal adhesion kinase 1; FN, 
fibronectin; con, control.
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the present study, the ability of FN to promote cell migra-
tion and invasion as well as to induce the EMT progress in 
MCF‑7 cells was also demonstrated. These findings indicate 
the important functional role of FN in breast cancer devel-
opment, and its signaling pathway may be a potential target 
for novel therapeutic agents. This is consistent with a recent 
study that observed immunization against the alternatively 
spliced extra domain‑A (ED‑A) of FN by anti‑ED‑A anti-
body vaccination attenuates the progression of metastatic 
breast cancer (35).

Previously, studies have demonstrated that proteolytic 
activity of the calpain family regulates numerous intracellular 
proteins and is implicated in a variety of cellular processes, 
including cytoskeletal remodeling, cell adhesion, migration, 
proliferation and apoptosis  (36). Additionally, calpain has 
been associated with metastatic potential of breast cancer 
both in vitro and in vivo (15,16). The expression and activity 
of calpain is subject to complex regulation. Epidermal growth 
factor, v‑Src, the Ras signaling pathway, ERK 1/2 and estrogen 
can all stimulate the activity and expression of calpain (37). 
The present study demonstrated that calpain‑2, which is 
involved in breast cancer cell migration and invasion (19,38), 
was significantly upregulated following treatment with FN. 
It was further demonstrated that calpain inhibitors inhibited 
FN‑induced migration and invasion of MCF‑7 cells. Notably, 
treatment with FN caused no apparent changes in calpain‑1 
expression, indicating that FN may promote cell motility 
via calpain‑2 activation. However, the underlying molecular 
mechanisms remain to be elucidated. FAK, a central compo-
nent of focal adhesions, regulates cell‑substrate attachment 
and cell motility. More notably, it is a specific substrate of 
calpain, which can be truncated into low molecular weight 
forms via calpain (39). The 30 kDa C‑terminal fragment of 
FAK contains the focal adhesion targeting sequence, which 
is required for association with other focal adhesion proteins, 
including breast cancer anti‑estrogen resistance protein 1, 
paxillin and talin  (40). The 90 kDa amino‑terminal frag-
ment is essential for kinase function and integrin‑binding. 
The cleavage of FAK reduces its activity at cell adhesions, 
which leads to disassembling of focal adhesion complexes, 
loss of cell adhesion and increased cell motility (41). Previous 
studies have demonstrated that FAK is able to transduce 
FN‑induced survival signals (42). Additionally, attachment of 
serum‑starved MCF‑10A cells to FN stimulates the activation 
of FAK‑Src signaling (43). In the present study, in response to 
FN stimulation, the cleavage of FAK from 120 kDa to 90 kDa 
was increased. However the generation of a 90 kDa FAK was 
significantly repressed by calpain inhibitors, which implied 
that modulation of FAK function through calpain‑dependent 
cleavage is likely to play a significant role in the process of 
FN‑induced motility.

EMT is a physiological phenomenon during embryonic 
development and tissue remodeling. Notably, EMT is essential 
for the development of cancer metastasis (44). The impaired 
expression of epithelial markers (E‑cadherin and ZO‑1), 
leads to the dissolution of cell adherence and tight junctions 
and an increase in the expression of mesenchymal markers 
(N‑cadherin and vimentin), which are usually correlated with 
increased tumor migration and invasion (45). A wide range 
of factors from the micro‑environment regulate this process, 

including TGF‑β, tumor necrosis factor α, and EGF. The results 
of the present study indicated that FN also induces an EMT 
response in MCF‑7 breast cancer cells with a change in cell 
phenotype, including an increased expression of N‑cadherin 
and vimentin as well as a decreased expression of E‑cadherin 
and ZO‑1 (Fig. 1). Notably, inhibition of calpain by calpain 
inhibitors suppressed FN‑induced EMT in MCF‑7 cells 
(Fig. 3), which suggests calpain is a requisite for FN‑induced 
EMT response. However, the detailed mechanisms of how FN 
induces calpain remain to be elucidated.

In conclusion, the results of the present study demon-
strated that FN enhances cell migration, invasion and the 
EMT process, which may facilitate metastatic progression of 
breast cancer. In addition, it has also been demonstrated that 
calpain has an essential role in the FN‑induced EMT response. 
Targeting calpain may be a potential strategy to reduce breast 
cancer metastasis, and it would also be of great value to 
evaluate the effects of pharmacological calpain inhibitors on 
the treatment of breast cancer.
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