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Mitigating Herding in Hierarchical 
Crowdsourcing Networks
Han Yu1, Chunyan Miao1,2, Cyril Leung1,3, Yiqiang Chen1,4, Simon Fauvel1, Victor R. Lesser5 & 
Qiang Yang6

Hierarchical crowdsourcing networks (HCNs) provide a useful mechanism for social mobilization. 
However, spontaneous evolution of the complex resource allocation dynamics can lead to undesirable 
herding behaviours in which a small group of reputable workers are overloaded while leaving other 
workers idle. Existing herding control mechanisms designed for typical crowdsourcing systems are 
not effective in HCNs. In order to bridge this gap, we investigate the herding dynamics in HCNs and 
propose a Lyapunov optimization based decision support approach - the Reputation-aware Task Sub-
delegation approach with dynamic worker effort Pricing (RTS-P) - with objective functions aiming 
to achieve superlinear time-averaged collective productivity in an HCN. By considering the workers’ 
current reputation, workload, eagerness to work, and trust relationships, RTS-P provides a systematic 
approach to mitigate herding by helping workers make joint decisions on task sub-delegation, task 
acceptance, and effort pricing in a distributed manner. It is an individual-level decision support 
approach which results in the emergence of productive and robust collective patterns in HCNs. High 
resolution simulations demonstrate that RTS-P mitigates herding more effectively than state-of-the-art 
approaches.

The organization of social and economic activities to efficiently coordinate participants’ effort is an important 
topic of economic theory. Thanks to the Internet, social media and online social networks, social mobilization 
through crowdsourcing has achieved unprecedented success. Crowdsourcing refers to the process whereby cli-
ents (a.k.a. crowdsourcers) obtain needed services by soliciting contributions from a large group of people (a.k.a. 
workers)1. Crowdsourcing communities based around social networks tend to have hierarchical structures2,3. 
These hierarchical crowdsourcing networks (HCNs) have been used to mobilize the masses in many significant 
real-world applications including political rallies4, scientific research5, mapping out natural environment fea-
tures6,7, and large-scale search-and-rescue missions8.

In essence, crowdsourcing systems can be treated as resource allocation ecosystems containing a large number 
of interacting workers (i.e., resources) and crowdsourcers. Crowdsourcers are typically self-interested; their pri-
mary intention is to maximize their own utilities. This will usually lead them to only select workers with high per-
ceived reputation, leading to the emergence of herding9. Herding refers to the situation in which a large number 
of task requests concentrate on a small group of reputable workers, causing them to be overloaded while leaving 
other workers idle. It can lead to cascading failures and eventually result in catastrophic system breakdown10. The 
risk of herding is especially pronounced in HCNs in which crowdsourcers lack global knowledge and workers 
have limited resources to be tapped into11.

Mitigating herding in HCNs is important to ensure sustainable operation of these problem solving ecosys-
tems12. In general, workers in an HCN make three important decisions in a distributed manner: 1) how much 
new workload to accept, 2) how much existing workload to sub-delegate to others in the HCN (and to whom), and 3) 
how to price their services. The collective effect of these joint decisions made by all HCN participants determines 
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whether herding will emerge. Therefore, herding mitigation mechanisms need to influence these three decisions 
by each worker in order to improve the overall efficiency of an HCN. The human nature of the HCN participants 
imposes additional complexities on this already challenging problem:

1.	 Worker heterogeneity: Workers have different skill levels and productivity. They may produce results of 
different quality when assigned the same task, and may not be able to maintain the same level of productiv-
ity everyday.

2.	 Timing and targets for sub-delegation: It is difficult for a worker to quantify when sub-delegation is 
needed and who the suitable candidates for sub-delegation are. This is further complicated by the fact that 
different workers may incur different costs to complete the same task. Sub-delegation to a worker resulting 
in a loss for the sub-delegator is not a rational choice.

3.	 Workers’ commitment: Workers may not be fully committed to an HCN. Their eagerness to work (which 
may change over time) will affect their availability.

Recently, computational approaches for mitigating herding in crowdsourcing systems have emerged. In the 
Pinning control method10, the pinning method is used to control the collective dynamics in complex networks. 
The study focuses on situations where multiple agents try to decide individually which one of two available 
resources to use. Thus, this method cannot be directly applied to crowdsourcing systems in which many crowd-
sourcers need to engage a large number of workers to accomplish their objectives. The Global Considerations 
(GC) approach uses a worker’s current pending workload as a guide to adjust his reputation13. GC adjusts the 
probability for a task to be assigned to a worker based on the worker’s reputation standing among all other 
workers using the softmax approach. In Yu et al.14, a centralized task allocation approach was proposed to make 
dynamic trade-offs between the need for engaging trustworthy workers and obtaining task results on time. A fully 
distributed variant of this method that helps workers determine which incoming tasks to accept was studied in 
Yu et al.15. All of these approaches allow workers to be automatically assigned to tasks, saving them time spent 
on exploring open task calls and improving their collective productivity. Nevertheless, these existing approaches 
are not designed for HCNs. They do not support task sub-delegation, an essential mechanism to avoid herding 
in HCNs. The aforementioned complexities due to human nature have also not been accounted for by existing 
approaches.

This paper investigates the herding dynamics in HCNs and proposes the Reputation-aware Task Sub- 
delegation approach with dynamic worker effort Pricing (RTS-P) to mitigate herding through enhancing the effi-
ciency of manpower utilization in HCNs. It is an individual-level decision-making approach based on Lyapunov 
optimization16 with objective functions aiming to achieve superlinear time-averaged collective productivity in an 
HCN17. By considering a worker’s current reputation, workload, willingness to work, and his trust relationships 
with others, RTS-P provides a systematic approach for a worker to make joint decisions on task acceptance, 
sub-delegation, and effort pricing, so as to maximize his income while avoiding significant fluctuations in work-
load. The approach is distributed and can be implemented as a personal decision support agent for a worker in 
an HCN (Fig. 1). RTS-P is an extension of our previous model - RTS18. The addition of the dynamic worker effort 
pricing function allows operation in systems which permit workers to set the price of their service. In doing so, 
substantial modifications to the original system model18 and the joint task acceptance and sub-delegation deci-
sions are required.

RTS-P is compared with 4 existing methods through extensive experiments based on a large-scale real-world 
dataset - the Epinions trust network dataset. The results show that RTS-P effectively mitigates herding through 
efficiently harnessing the available human resources. We also show that RTS-P workers achieve significantly 
higher total income compared with other state-of-the-art approaches, especially under high workload conditions. 
RTS-P not only automates key decisions in the situation-task-others triad19 surrounding a worker, but also sheds 
light on the long-standing quest for an individual-level decision support approach which results in productive 
and robust collective patterns in human crowds20. Our work provides a general framework to optimally harness 
the collective productivity of a complex network of human resources in order to mitigate herding, with potential 
applications in many social and economic systems.

Methods
Our key results include (1) a formulation of the problem of mitigating herding through efficiently harnessing the 
productivity of workers in an HCN as a constrained optimization problem which minimizes drastic fluctuations 
in workers’ workloads while maximizing their expected earnings; (2) a distributed algorithm which solves the 

Figure 1.  An RTS-P agent in an HCN.
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problem by jointly controlling the task acceptance, task sub-delegation, and effort pricing decisions for each 
worker; and (3) experimental evaluations of the performance of the proposed algorithm against state-of-the-art 
approaches in a large-scale HCN.

Proposed Framework.  Our focus in this paper is to address the problem of delegating/sub-delegating a 
task, τj, proposed by a crowdsourcer j, to workers in an HCN. In general, the effort required to complete a task (i.e. 
the workload of the task) can be expressed in effort units which can be defined by crowdsourcing system opera-
tors. For example, the effort required to complete a software programming task can be measured by the expected 
number of lines of code. A task must be completed before its stipulated deadline and with quality acceptable to the 
crowdsourcer. A worker i has a limited effort output rate which can be up to μi

max effort units per time slot. Tasks 
waiting to be completed by i are stored in his pending tasks queue. Let qi(t) be worker i’s pending workload at the 
beginning of time slot t; the queuing dynamics of qi(t) can be formulated as:

λ μ+ = + − −q t q t t t s t( 1) max [ ( ) ( ) ( ) ( ), 0] (1)i i i i i

where λi(t) is the new workload accepted into qi(t) during time slot t, μi(t) represents the actual workload com-
pleted by i during time slot t, and si(t) is the sub-delegated workload by worker i during time slot t.

With crowdsourcing analytics tools such as Turkalytics21, workers’ performance can be tracked in detail. A 
worker i’s past performance as measured by the quality and timeliness of his productive output can be used to 
estimate i’s reputation, ri(t) ∈ (0, 1), using a reputation evaluation model22. Reputation acts as a sanctioning mech-
anism affecting future demand for a worker’s services. Using this information, a worker can establish trust rela-
tionships with a set of other known workers, ni

sub. ni
sub is the set of trusted workers to whom worker i’s tasks can 

potentially be delegated or sub-delegated. As a task can be iteratively sub-delegated through a delegation chain, it 
is reasonble for all workers in the delegation chain to be accountable (to various degrees) for the outcome of the 
task. A possible model for sharing responsibility in a delegation chain is the Decreasing Weighting (DW) reputa-
tion update mechanism23 which assigns the last worker in the delegation chain (i.e. the one who actually com-
pleted the task) the highest share of responsibility and decreasing weight values to other workers higher up along 
the delegation chain. The future expected demand for a worker i’s service,  λ t{ ( )}i , is affected by his ri(t) value 
and the current price he charges for his service, pi(t) (e.g., measured in dollars per effort unit), i.e.,

 λ = .t f p t r t{ ( )} ( ( ), ( )) (2)i i i

Automating Task Sub-delegation Decisions.  An RTS-P agent takes only local knowledge as input, and auto-
matically offers recommendations to a worker i concerning three key decisions in an HCN at any given point in 
time: 1) the timing, amount of workload, and the target workers for sub-delegation, 2) how much new workload 
shall be accepted by i, and 3) how to price his services. If an RTS-P agent determines that its owner i’s risk of not 
completing all pending tasks before the respective deadlines is high, it will attempt to sub-delegate some of the 
pending tasks to other workers. The selection of candidate workers for sub-delegation takes into account how 
trusted the workers are and how much they charge for their services (i.e., so that the act of sub-delegating does 
not incur financial loss for its owner). These heuristics can be converted into a computational task sub-delegation 
mechanism as follows.

A conceptual queue, Qi(t), is used to quantify the urgency for a worker i to sub-delegate pending tasks. Qi(t) is 
updated by an RTS-P agent in conjunction with qi(t) as follows:

μ λ+ = − − + .>
̄Q t Q t t s t( 1) max[ ( ) ( ) ( ) 1 , 0] (3)i i i i i q t[ ( ) 0]i

In this formulation, the symbol λ̄ i represents the average amount of new workload accepted by worker i per 
time slot. 1[condition] is an indicator function. Its value is 1 if and only if [condition] is satisfied; otherwise, it evalu-
ates to 0. The dynamics of Qi(t) are as follows:

•	 The workload in Qi(t) is increased in such way that if qi(t) is non-empty at the time when the value of Qi(t) is 
updated, then Qi(t) grows by λ̄ i. This ensures that Qi(t) keeps increasing if there are tasks in qi(t) which have 
not been completed for some time.

•	 The value of Qi(t) is reduced by the task servicing process [−μi(t) − si(t)].

In order to efficiently utilize the productivity of a crowdsourcing network, RTS-P must ensure that the upper 
bounds of both qi(t) and Qi(t) are finite for all workers involved.

Let Xi(t) = (qi(t), Qi(t)) be a concatenated vector of worker i’s physical and conceptual pending tasks queues. 
We adopt the Lyapunov function16 to measure the level of congestion in both qi(t) and Qi(t) for all workers in a 
given HCN. It can be expressed as = +L X t q t Q t( ( )) [ ( ) ( )]i i i

1
2

2 2 . Then, the amount of change in worker i’s pend-
ing workload can be measured using the conditional Lyapunov drift as:
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Based on equation (3), we have:
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where λ i
max and si

max are the respective upper bounds of λi(t) and si(t) for a given worker i.
Based on the same approach, the conditional Lyapunov drift for the physical queue can be expressed as:

λ μ λ μ+ − + + + − − .⩽q t q t s q t t t s t1
2

( 1) 1
2

( ) 1
2

[( ) ( ) ] ( )[ ( ) ( ) ( )] (6)i i i i i i i i i
2 2 max 2 max max 2

From equations (5) and (6), equation (4) can be expressed as:

 λ μ λ μ λ μ∆ + + + − − + − − .⩽ ̄X t s Q t t s t q t t t s t X t( ( )) {( ) ( ) ( )[ ( ) ( )] ( )[ ( ) ( ) ( )] ( )} (7)i i i i i i i i i i i i i
max 2 max max 2

For simplicity of notation, let λ μ= + +C s( ) ( )i i i i
max 2 max max 2. From a worker i’s view point, he would wish 

to minimize both the cost incurred by task sub-delegation as well as drastic changes in his pending workload. 
Thus, we formulate a {drift + cost} expression to capture this dual goal as follows:



  

ρ ϕ

λ μ λ μ ρ ϕ

∆ +
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X t t t s t X t
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where ϕ = ∑ ∈t p t( ) ( )i k kn n
1

i
sub i

sub  represents the average price of service charged by worker i’s known trusted work-
ers at time slot t, and ρi(t) > 0 represents i’s general eagerness to work. A large value of ρi(t) indicates that a worker 
is highly motivated to work. It adjusts the relative importance given to the two components in the {drift + cost} 
expression. It can be inferred by keeping track of the worker’s productivity over a period of time, or be explicitly 
declared by the worker to control how the RTS-P agent behaves.

At the beginning of each time slot, the RTS-P agent observes qi(t) and Qi(t), as well as its owner i’s current 
context tuple 〈μi(t), λi(t), ϕi(t)〉, to determine the value of si(t) which minimizes the {drift + cost} expression. This 
form of combined value maximization and surprise minimization complies with the latest findings in human 
choice behaviours24. By only considering the terms containing the decision variable si(t) which can be controlled 
by the RTS-P agent in equation (8), the {drift + cost} objective function can be re-expressed as:

Minimize:

∑∑ ρ ϕ − −
=
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=T
s t t t q t Q t1 ( )[ ( ) ( ) ( ) ( )]

(9)t
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i i i i i
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⩽ ⩽s t q t0 ( ) ( ) (10)i i

τ∃ ∈ ∃ ∈ ∧ .τ⩾ ⩽k q t r t r t p t pn , ( ), ( ) ( ) ( ) (11)i
sub

j i k kmin j

τp j
 is the price the worker i charges for task τj. rmin(t) ∈ [0, 1] is a pre-determined reputation threshold value. In 

order to minimize equation (9), ŝ t( )i , the target value of si(t), is:

ρ ϕ

μ
=


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− −

− .
ˆ

⩾
s t

t t q t Q t
q t t

( )
0, if ( ) ( ) ( ) ( ) 0

( ) ( ), otherwise (12)
i

i i i i

i i

Intuitively, equation (12) means that when worker i is highly willing to work, the cost of sub-delegating is high, 
the current workload is low, and tasks in the pending tasks queue have not been pending for too long, worker i 
should not sub-delegate any tasks. Otherwise, worker i should try to sub-delegate as many tasks as possible. 
Nevertheless, the actual si(t) value also depends on the satisfaction of Constraint (11), which requires at least one 
worker k in ni

sub whose reputation is higher than the threshold, and who charges a price no higher than what 
worker i charges for the task (i.e., worker i does not incur any loss by sub-delegating the task to worker k).

Automating Task Acceptance and Effort Pricing Decisions.  Taking the cost of task sub-delegation into account, 
the expected income for a worker i at time slot t becomes  ξ ϕ= −t p t r t a t p t r t f p t r t t s t{ ( ) ( ), ( )} ( ) ( ) ( ) ( ( ), ( )) ( ) ( )i i i i i i i i i i  
where ai(t) is a binary decision variable which controls if worker i accepts new tasks at the beginning of time slot t. 
In this case, a worker i would wish to maximize his income while minimizing drastic fluctuations in his pending 
workload. Similar to equation (8), this objective function can be formulated as an {income − drift} function:
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which is to be maximized.
A recent large scale empirical study in e-commerce, involving sellers from both eBay and Taobao25, suggests 

the following expression relating new demand (i.e., workload) for a worker to his price and reputation:

= − + + +f p t r t c c r t c N t c d p tln ( ( ), ( )) ln ( ) ln ( ) ln ( ) (14)i i i i
p

i i0 1 2 3

where c0 to c3 are positive constants, N t( )i
p  is the number of positive ratings received by i over a given period of 

time, and di represents how similar the quality of service provided by i is to what he promises. In this paper, we 
adopt equation (14) for modeling the dynamics of the demand for a worker’s service to derive the joint task 
acceptance and effort pricing strategy. Nevertheless, equation (14) can be replaced by other functions suitable for 
different systems without affecting the principle on which RTS-P operates.

By taking exponents on both sides of equation (14), we have:

= ϑf p t r t
p t

r t
( ( ), ( ))

( )
[ ( )] (15)i i i

i

i
c1

where ϑ = +e N t[ ( )]i
c c d

i
p c( )i0 3 2. As RTS-P only controls the decision variables pi(t) and ai(t) for effort pricing  

and task acceptance, we only consider the terms containing these decision variables on the right hand side of  
equation (13) and substitute f(pi(t), ri(t)) with equation (15). Thus, we have:

Maximize:
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min

where pi
min is the minimum price to cover i’s cost of service. We assume the value of pi

min does not change fre-
quently and can be treated as a constant with respect to i. The solution for maximizing this objective function can 
be obtained by finding the first order derivative of equation (16) and equating it to 0:

ρ
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Solving equation (18) yields:

Figure 2.  The HCN based on the Epinions trust network structure. Nodes represent worker agents and arrows 
represent trust relationships. The larger the size of a node, the more trusted a worker agent is.
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The result means that i should increase the price he charges for new tasks if his current workload is high, his cur-
rent reputation is low, or his eagerness to work is low (and vice versa), while ensuring that his price is always no 
less than pi

min. If i’s reputation is low, he is less likely to receive a large number of task requests. Thus, whenever 
others are willing to solicit i’s service, from i’s perspective, he should charge a higher price in order to capitalize on 
these opportunities.

To maximize equation (16):

ρ
=






− >

.
a t

p t r t t q t
( )

1, if ( ) ( ) ( ) ( ) 0
0, otherwise (20)

i
i i i i

In this paper, we ensure that a worker is never assigned more workload than the maximum workload he can han-
dle within one time slot. Thus, when ai(t) = 1, RTS-P accepts up to μi

max effort units worth of new workload into 
i’s pending tasks queue.

The core RTS-P algorithm is presented in Algorithm 1. It can be implemented as a personal decision support 
agent for each worker in an HCN. Multiple RTS-P agents can then communicate on their respective owners’ 
behalf to automate the task acceptance, sub-delegation, and pricing decisions to maximize the overall productiv-
ity of the given crowdsourcing network.

In our previous work18, we have proved that the joint task acceptance and sub-delegation decisions made 
under prices of service fixed by the crowdsourcers are asymptotically optimal compared to an oracle that 
knows the exact situation of each worker at all times. Although the addition of dynamic worker effort pricing in 
RTS-P allows workers to adjust their prices according to their changing situations, the joint task acceptance and 

Algorithm 1 RTS-P

Require: qi(t), Qi(t), pi
min, ri(t), rmin(t), ρi(t), ϕi(t), and the amount of new tasks demanding worker i’s service at time slot t, q t( )i

new .

   1:   ← 





ρ

p t p( ) max ,i i
qi t

i t ri t
min ( )

2 ( ) ( )
;

   2:   if ai(t) = 1 then

   3:      if μ>q t( )i
new

i
max then

   4:            λ μ←t( )i i
max

   5:       else

   6:            λ ←t q t( ) ( )i i
new   (t);

   7:       end if

   8:   else

   9:       λi(t) ← 0;

   10:  end if

   11:  Return the λ
 − 

q t t( ) ( )i
new

i  unaccepted tasks to the original sub-delegator(s);

   12:  if ρ ϕ − − ⩾t t q t Q t( ) ( ) ( ) ( ) 0i i i i  then

   13:       si(t) ← 0;

   14:  else

   15:       si(t) ← qi(t) − μi(t);

   16:       for each worker k in ni
sub with ⩾r t r t( ) ( )k min  do

   17:         Set dk(t) to denote the amount of workload from sub-delegating tasks in si(t) which satisfies 
τ⩽p t p( )k j

;

   18:         if dk(t) > 0 then

   19:            uk(t) ← Invoking worker k’s RTS-P agent with + =q t d t( ) ( )k
new

k ;

   20:         end if

   21:         si(t)− = [dk(t) − uk(t)];

   22:         if si(t) = 0 then

   23:             Exit the for loop;

   24:           end if

   25:       end for

   26:  end if

   27:  Update qi(t + 1) following equation (1)

   28:  Update Qi(t + 1) following equation (3)
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sub-delegation decisions are made only after the prices have been set. Thus, the original theoretical analysis is still 
valid for RTS-P. Interested readers may refer to the Analysis section in Yu et al.18.

Results
To evaluate the performance of RTS-P under realistic settings, it is compared with four state-of-the-art 
approaches through extensive numerical experiments in an HCN based on the Epinions trust network dataset26. 
This real-world dataset allows us to construct realistic scenarios for performance comparison. The simulations 
facilitate understanding of the behavior of RTS-P under different situations.

Model Implementation on a Real Network.  The Epinions trust network dataset used in the experiments 
contains N = 10,476 workers, each represented by a node in the network structure. These nodes are connected by 
weighted and directed edges. A weight of “+1” represents a trust relationship, while a weight of “−1” represents 
a distrust relationship. The dataset contains 15,742 trust relationships and 2,170 distrust relationships. Based on 
this dataset, we construct an HCN populated by worker agents with different characteristics. For a worker agent i 
in the experiment, ni

sub consists of other worker agents connected with i through a directed “+1” edge originating 
from i. We assume that agents do not have global awareness. Thus, a worker agent i may only delegate or 
sub-delegate tasks to other worker agents in ni

sub. Each worker agent i has an innate trustworthiness hi ∈ [0, 1] 
which dictates its probability of producing satisfactory results for tasks delegated to it in simulations. This value is 
computed using the number of other agents trusting and distrusting agent i in the dataset following the Beta 
Reputation Model27.

Figure 2 illustrates the crowdsourcing network derived from the dataset. The size of a node in the figure 
reflects the worker agent’s hi value. The larger the size of a node, the more trusted the worker agent is. Let ρ be the 
workers’ average eagerness to work in a given crowdsourcing network:

∑ρ ρ= .
=N

t1 ( )
(21)i

N

i
1

The value of ρ is varied from 1 to 100 to simulate different levels of workers’ general eagerness to work.
The relationship between worker agents’ μi

max values and hi values is varied in three different ways as denoted 
by a setting variable ∈ − +μR { , 0, }h . Under = −μR h , μi

max values are inversely proportional to hi values (i.e., 
workers who produce high quality results have small task processing capacities). Under =μR 0h , μi

max values are 
independent from hi values (i.e., workers’ task processing capacities are not related to the quality of their work). 
Under = +μR h , μi

max values are directly proportional to hi values (i.e., workers who produce high quality results 
have large task processing capacities). These settings are created to simulate different worker behaviour 
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Figure 3.  Experimental results under the worker behaviour characteristic setting = +μR h : (a) The percentage 
of all tasks successfully sub-delegated by RTS-P agents; (b) The average sub-delegation chain length; (c) The 
average task expiry rates vs. the average task failure rates; (d) The total income as a percentage of the total 
income of RTS-P agents.
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Figure 4.  Experimental results under the worker behaviour characteristic setting =μR 0h : (a) The percentage of 
all tasks successfully sub-delegated by RTS-P agents; (b) The average sub-delegation chain length; (c) The 
average task expiry rates vs. the average task failure rates; (d) The total income as a percentage of the total 
income of RTS-P agents.
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characteristics to study how effectively RTS-P copes with these situations. Files containing the HCNs used in the 
experiments can be downloaded from http://goo.gl/QyRjTs.

In the experiments, we assume that the outcome for each task is binary (i.e., a task is regarded to be successful 
if the worker agent produces the correct result before the stipulated deadline; otherwise, it is considered unsuc-
cessful). A worker agent is only paid if it completes a task successfully. Five duplicate crowdsourcing networks are 
created in the experiments to study the relative performance of the 5 approaches. They are:

1.	 The Equality-based Approach (EA): tasks are uniformly distributed among worker agents in a crowd-
sourcer agent j’s nj

sub without regard to their reputations.
2.	 The Reputation-based Approach (RA): the probability for a worker agent i to be selected by a crowdsourcer 

agent j is determined by its reputation standing among all worker agents in nj
sub following the softmax 

choice rule28.
3.	 The Global Considerations (GC) Approach: a crowdsourcer agent j adjusts the probability for tasks to be 

delegated to each worker agent in nj
sub following the approach in Grubshtein et al.13.

4.	 The DRAFT Approach: worker agents make task request acceptance decisions following the approach in Yu 
et al.15.

5.	 The RTS-P Approach: worker agents follow the approach proposed in this paper.

Approaches 1 to 4 do not support task sub-delegation.
The overall workload level in the experimental HCN is adjusted to simulate different operational conditions. 

As the workload is measured in relative terms to the collective task processing capacity of the worker agents, we 
compute the maximum throughput θ of a given crowdsourcing network as θ μ= ∑ = hi

N
i i1

max. At each time step, a 
proportion of the agents, pa, from the network are selected at random to act as crowdsourcers from which tasks 
originate. Based on empirical studies of the mTurk crowdsourcing system29,30, the ratio between crowdsourcers 
and workers is close to 1:20. Thus, we set pa = 5%. The workload for a given crowdsourcing network is measured 
by the Load Factor (LF). It is calculated as =

θ
LF

wreq , where wreq is the amount of new workload generated by 
crowdsourcer agents at each time slot. In the experiments, the LF value ranges from 5% to 100% in 5% incre-
ments. Under each LF setting, the simulation is run for T = 10,000 time slots. Task deadlines are randomized. On 
average, a task must be completed within 5 time slots after it is first assigned to a worker agent.

Simulation Results.  As shown in Figs 3(a), 4(a) and 5(a), as LF increases, RTS-P agents sub-delegate an 
increasing percentage of their workload to other trusted worker agents in the network to mitigate delays for all 
worker behaviour characteristic settings. If the worker agents are more eager to work as indicated by larger ρ 
values (i.e., worker agents prefer working on their tasks instead of sub-delegating them), fewer tasks are 
sub-delegated. The highest percentage of tasks is sub-delegated under low general eagerness to work and high 
workload conditions. As ρ increases, this peak sub-delegation percentage shifts towards higher workload condi-
tions. Under = +μR h  (Fig. 3(a)), as LF approaches 100%, an increasing percentage of tasks are sub-delegated. 
However, when ρ values are small and LF values are large (i.e. the general eagerness to work is low while the 
overall workload is high), the trend reverses. Under =μR 0h  (Fig. 4(a)), fewer trustworthy RTS-P agents are able 
to accommodate new tasks. Thus, there appears to be a systemic “downward shift” of the contour lines in the fig-
ure, indicating fewer tasks are being successfully sub-delegated even when agents show high willingness to work 
(i.e., larger ρ values). Under = −μR h  (Fig. 5(a)), workers who produce good results have lower productivity. The 
systemic downward shift of the contour lines is more pronounced compared to Fig. 4(a). The same trends can be 
observed for the average sub-delegation chain lengths in Figs 3(b), 4(b) and 5(b). This indicates that as the μR h 
value decreases (i.e., the dichotomy between workers’ productivity and quality of work increases), RTS-P adapts 
its strategy by reducing task sub-delegation throughout the HCN, especially in cases in which workers are highly 
eager to work and overall workload is high.

The trade-off between the average task failure rates and the average task expiry rates achieved by all five 
approaches under different μR h settings is shown in Figs 3(c), 4(c) and 5(c). The overall effect of the RTS-P strategy 
is to significantly reduce the average task expiry rate (i.e., improving the timeliness of obtaining task results). This 
comes at the expense of a slightly lower average task result quality. The average task failure rates of RTS-P under 

25 50 75 100

25

50

75

100

5
5

5
10

10

10

15

15

20

20

25

30

35

40

Load Factor (%)
(a)

ρ 
V

al
ue

s

25 50 75 100

25

50

75

100

0.
17

5
0.
17

5
0.
17

5
0.
35

0.35

0.
35

0.
52

5
0.
52

5
0.
52

5
0.
7

0.7
0.7

0.
87

5

0.875

0.
87

5

1.
05

1.
05

1.05

1.
22

5

1.
4

1.4

1.
57

5

1.575
1.
75

1.
92
5

1.
1

1.
1

1.1

1.
2

1.
4

1.4

1.
6

1.6
1.

8

1.
9

Load Factor (%)
(b)

ρ 
V

al
ue

s

5.5 6 6.5 7
0

10

20

30

40
EA

RA
GC

DRAFT

RTS−P

Avg. Task Failure Rate (%)
(c)

A
vg

. T
as

k 
E

xp
ir

y 
R

at
e 

(%
)

0 20 40 60 80 100
0

20

40

60

80

100

Load Factor (%)
(d)

%
 R

T
S−

P 
W

or
ke

rs
‘ 

T
ot

al
 E

ar
ni

ng
s

EA
RA
GC
DRAFT
RTS−P

Figure 5.  Experimental results under the worker behaviour characteristic setting = −μR h : (a) The percentage 
of all tasks successfully sub-delegated by RTS-P agents; (b) The average sub-delegation chain length; (c) The 
average task expiry rates vs. the average task failure rates; (d) The total income as a percentage of the total 
income of RTS-P agents.
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all μR h settings are comparable to those of GC and consistently stay below 7%. The average task expiry rates of 
RTS-P under all μR h settings are significantly lower than all other approaches (more than 20% lower than the best 
performing approach - DRAFT - under the most challenging situation of = −μR h ). By making workers sacrifice 
task quality to a small extent, RTS-P significantly increases the total number of tasks completed by an HCN, put-
ting the Parrondo’s Paradox31 to work on a large scale.

Figures 3(d), 4(d) and 5(d) illustrate the total earnings derived by worker agents following the five different 
approaches under different μR h settings. The results are averaged over all ρ value settings in the experiments. As 
RTS-P worker agents consistently achieve the highest total earnings, RTS-P is used as the benchmark for all other 
approaches. It can be observed that the total earnings achieved by EA, RA and GC worker agents as a percentage of 
those achieved by RTS-P worker agents start to drop under low LF conditions. As LF approaches 100%, EA, RA and 
GC worker agents achieve around 70% of RTS-P worker agents’ total earnings. DRAFT worker agents earned the 
same amounts as RTS-P under low LF conditions. The performance of DRAFT worker agents starts to deteriorate 
under medium LF conditions. As LF approaches 100%, DRAFT worker agents achieve around 75–80% of RTS-P 
worker agents’ total earnings. Under the challenging situation of = −μR h  (Fig. 5(d)), the advantage of RTS-P over 
other approaches stalls under high LF conditions. However, when averaged over all LF conditions, RTS-P consist-
ently maintains at least a 14.9% advantage on average over the best performing approach - DRAFT - under all μR h 
settings. Overall, RTS-P significantly outperforms existing approaches and its performance is robust in the face of 
different worker behaviour characteristics.

Discussion
To summarize, the proposed RTS-P approach leverages Lyapunov stochastic network queueing theory to make 
joint decisions on task acceptance, sub-delegation, and effort pricing. To our knowledge, RTS-P is the first princi-
pled computational approach to assist hierarchical crowdsourcing workers to dynamically sub-delegate tasks and 
adjust the price of their services based on changing situational factors while ensuring efficient utilization of their 
collective productivity. High resolution numerical experiments show that RTS-P is robust under various worker 
behaviour characteristics and significantly outperforms state-of-the-art approaches, especially under conditions 
of high workload. As recent empirical results show that such conditions are common among crowdsourcing 
projects32, RTS-P can be a useful tool to help HCNs mitigate the adverse effects of herding through efficiently 
harnessing the available human resources.

Furthermore, a worker can adjust the ρi(t) variable value of his RTS-P agent to take on different roles in a 
crowdsourcing network. Since each worker can establish his trust relationships with a set of known workers, a 
worker can focus on tracking workers’ historical performance and building up his list of trusted workers. With 
such a list, he could reduce the ρi(t) value of his RTS-P agent so as to sub-delegate most of the accepted tasks to 
other trusted workers, thereby deriving most of his earnings from sub-delegation. By doing so, these workers can 
serve as task brokerage agents and provide a useful service to the crowdsourcing network. Other workers who 
are able to spend more time and effort completing tasks can increase the ρi(t) values of their RTS-P agents so as 
to accept more tasks and sub-delegate only when absolutely necessary, thereby deriving most of their earnings 
through completing tasks.

RTS-P helps each worker compute a suitable effort price under different situations so that their collective 
benefits can be maximized. As a task propagates through a sub-delegation chain, subsequent price proposals are 
subject to Constraint (11) which dictates that workers with prices exceeding the current price for the task being 
considered for sub-delegation should not be selected (as this will cause the sub-delegator to incur a loss). Thus, 
there will never be a situation in which a crowdsourcer is forced to accept prices higher than what he can afford. 
Rather, prices reflect the current demand placed on the workers, and crowdsourcers can decide to either wait or 
increase their budgets. Such a signal helps coordinate the crowdsourcers’ actions to reduce herding in the crowd-
sourcing network.

Following this work, we foresee a series of interesting research directions. RTS-P works well for workers who 
have accumulated some historical performance data in the system. For workers new to a system, there is a large 
body of literature on reputation bootstrapping33–35. Methods from these works can be put in front of RTS-P as 
a module to build up a system workflow to help new workers build up their track records. The most important 
direction of this field lies in understanding the dynamics of how the volume of task requests for a worker varies 
with his reputation and effort pricing. Large-scale user studies in crowdsourcing networks will be needed to 
investigate this topic. Furthermore, this field will also benefit from more detailed empirical evidence on how 
workers decide on what types of tasks to accept and what incentive mechanisms are effective.

In conclusion, the proposed approach and results provide a stepping stone towards more efficient manage-
ment of large-scale hierarchical crowdsourcing based on evidence about workers’ behaviours, and ultimately help 
improve the collective productivity of our connected world.
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