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Detecting the Molecular System 
Signatures of Idiopathic Pulmonary 
Fibrosis through Integrated 
Genomic Analysis
Indu Gangwar1,3, Nitesh Kumar Sharma1,3, Ganesh Panzade1,3, Supriya Awasthi1,  
Anurag Agrawal2,3 & Ravi Shankar1,3

Idiopathic Pulmonary Fibrosis (IPF) is an incurable progressive fibrotic disease of the lungs. We currently 
lack a systematic understanding of IPF biology and a systems approach may offer new therapeutic 
insights. Here, for the first time, a large volume of high throughput genomics data has been unified 
to derive the most common molecular signatures of IPF. A set of 39 differentially expressed genes 
(DEGs) was found critical to distinguish IPF. Using high confidence evidences and experimental data, 
system level networks for IPF were reconstructed, involving 737 DEGs found common across at least 
two independent studies. This all provided one of the most comprehensive molecular system views for 
IPF underlining the regulatory and molecular consequences associated. 56 pathways crosstalks were 
identified which included critical pathways with specified directionality. The associated steps gained 
and lost due to crosstalk during IPF were also identified. A serially connected system of five crucial 
genes was found, potentially controlled by nine miRNAs and eight transcription factors exclusively in 
IPF when compared to NSIP and Sarcoidosis. Findings from this study have been implemented into a 
comprehensive molecular and systems database on IPF to facilitate devising diagnostic and therapeutic 
solutions for this deadly disease.

Idiopathic interstitial pneumonias (IIPs) are interstitial lung diseases with unidentified mechanism, distin-
guished by matrix deposition and alveolar epithelium disruption. Idiopathic pulmonary fibrosis (IPF) is a chronic 
fibrosing IIP that has no effective therapy with a mortality rate higher than many cancers; median survival from 
the time of diagnosis being about three years1. There is typically no response to general anti-inflammatory therapy 
such as glucocorticosteroids, which are effective in some IIPs such as Nonspecific Interstitial Pneumonia (NSIP). 
Some antifibrotic agents and adenosine receptor antagonist based solutions have shown some limited promise2–4. 
While new targets have emerged, such as proinflammatory cytokines (IL-4, IL-13)5, the negligible molecular 
systems information for IPF remains a problem. A gene expression level understanding of IPF is incomplete, with 
limited number of studies mostly microarray (MA) based6–11 and hardly a couple of RNA-seq studies12, 13. Also, 
very few study has been done covering systems biological perspectives but not specific to IPF9. Limited MA based 
studies with non-coding RNAs have also been performed, but small RNA-seq studies are lacking14–16.

From a systems biology perspective, IPF offers both opportunities and challenges. The main challenge is a 
likely heterogeneity within IPF, which is a clinical diagnosis based on typical diffuse radiological or pathological 
findings that may be seen in a limited form in other IIPs or even aged lungs. Further, the IPF lung is itself hetero-
geneous. Thus there is likely to be substantial background noise, as evidenced by high variability between studies. 
This also presents an opportunity to systematically consolidate all these studies, using computational approach 
to extract the underlining characteristic signatures for IPF. Such efforts are critical towards better molecular 
characterization of IPF that could lead to better diagnosis, classification and therapy. This is important because 
the therapeutic response is very different between different types of IIP and possibly within different subsets of 
IPF. There is also a need for unified information portal and database for molecular and systems biology of IPF 
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beyond the few existing resources on expression data reporting that have limited scope (https://research.cchmc.
org/pbge/lunggens/mainportal.html; http://montgomerylab.stanford.edu/resources.html). The present study has 
been carried out considering these factors. The study attempts to unify the best available gene expression data 
for IPF, derive its core characteristics towards generating a computational model of IPF pathology and create a 
comprehensive state-of-the-art database dedicated to IPF research.

Results and Discussion
A set of 39 differentially expressed genes (DEGs) appears critical to determine IPF.  While two 
prior RNA-seq studies (Deng et al., Nance et al.)12, 13 have been conducted, differed in their expression measure-
ment approaches to identify the DEGs and had very limited agreement. After implementing a common expres-
sion analysis protocol (Tophat-cuffdiff17, see methods), about 70% reads could be mapped, resulting into the 
identification of 487 and 860 DEGs in the two studies. 124 DEGs were found common between them. However, 
there was no DEG common across all the gene expression studies in IPF, clearly underlining the poor consensus 
in this area. This was potentially related to insufficient coverage in some studies due to limited number of MA 
probes. For example, data from the study done by Yue et al.7 covered only 4% of the total genes in the human 
genome.

Because of these irregularities, the two studies performed by Yue et al.7 and Vuga et al.8 were discarded. A 
previous study done by Nance et al.13 became the starting point for reliable information generation. This RNA-seq 
study had reported an overlap for 82 DEGs with two MA studies (Meltzer et al.10, Yang et al.11) (referred onwards 
as Set A1). We further found an overlap for 176 DEGs (referred onwards as Set A2) between this RNA-seq and 
the study done by Cho et al.9. The intersection of Set A1 and A2 was a set of 39 DEGs (referred onwards as Set 
A) (Supplementary Figure S1A,B). Since Set A genes were similarly differentially expressed across four different 
high throughput studies (Cho et al., Meltzer et al., Yang et al. and Nance et al.)9–11, 13 we expected this set to be a 
more robust signature of IPF than the previously identified Set A113. To verify this, a comparative k-means cluster 
analysis was done over the sets while using Z-score transformed expression values.

With Set A1, the clustering analysis achieved accuracy of 92%, 83%, 98%, 100% and 87% (Table 1 
Supplementary Figure S2). Clustering based on Set A was better, yielding 92%, 89%, 97%, 100%, and 94% 
accuracy values (Table 1, Supplementary Figure S3). For the data from an RNA-seq study by Deng et al.12, the 

Clustering result with Set A1 genes

High throughput 
studies Total Sample IPF non-IPF Misclassified Success rate

Meltzer et al.10 23 17 6 2 92.00%

Cho et al.9 17 11 6 3 83.00%

Yang et al.11 169 119 50 5 98.00%

Sanders et al.40 8 4 4 0 100.00%

Nance et al.13 15 8 7 2 87.00%

Deng et al.12 6 3 3 2 67.00%

Clustering result with Set A genes

Total Sample IPF non-IPF Misclassified Success rate

Meltzer et al.10 23 17 6 2 92.00%

Cho et al.9 17 11 6 2 89.00%

Yang et al.11 169 119 50 6 97.50%

Sanders et al.40 8 4 4 0 100.00%

Nance et al.13 15 8 7 1 94.00%

Deng et al.12 6 3 3 2 67.00%

Clustering result with Set A genes over NSIP and Sarcoidosis samples

Total Sample IPF NSIP/Sarcoidosis Misclassified Success rate

Cho et al.9, Yang 
et al.43 23 11 12 0 100.00%

Cho et al.9, Crouser 
et al.42, Lockstone 
et al.41

32 11 21 0 100.00%

Clustering result with Set A1 genes over NSIP and Sarcoidosis samples

Total Sample IPF NSIP/Sarcoidosis Misclassified Success rate

Cho et al.9, Yang 
et al.43 23 11 12 0 100.00%

Cho et al.9, Crouser 
et al.42, Lockstone 
et al.41

32 11 21 0 100.00%

Table 1.  K-means clustering of Set A1(82 DEGs) and A(39 DEGs) done to distinguish IPF from non IPF 
samples. For each IPF study, samples were clustered under IPF and Non IPF group. Results highlight better 
performance of Set A genes to classify both type of high throughput studies, contrary to Set A1. Both sets were 
able to correctly distinguish even the samples from IPF like diseases Sarcoidosis and NSIP from IPF with 100% 
success.

https://research.cchmc.org/pbge/lunggens/mainportal.html
https://research.cchmc.org/pbge/lunggens/mainportal.html
http://montgomerylab.stanford.edu/resources.html
http://S1A,B
http://S2
http://S3
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clustering analysis with either set yielded only 67% accuracy. Due to very small size of this set, with three normal 
and three IPF individuals, this translates to only one misclassification per label. Besides this, these two different 
sets were also evaluated against the cases of Sarcoidosis and NSIP, the IIP diseases that are part of the differential 
diagnosis of IPF during clinical evaluation. Both the datasets perfectly distinguished all the cases for Sarcoidosis 
and NSIP from IPF (Table 1). Set A genes when chosen as the markers for IPF appeared better than previously 
considered top scoring pair (TSP) approach9. Benchmarking of study revealed only 5.1% misclassification of IPF 
samples with Set A genes while TSP approach had error of 11.2%. Further, TSP appeared biased towards experi-
ments. This suggested potential diagnostic utility for this gene set.

Moving a step further, the identified genesets were considered for classification by implementing a support 
vector machine (SVM) model based on the gene expression data. Details of implementations are given in the 
methods section and associated supplementary methods. The average accuracy over 10 different randomly 
built models was observed higher for Set A with 92.72% compared to 91.03% accuracy observed for Set A1 
(Supplementary Figure S4). Also, the consistency and robustness of the classifiers with Set A genes was superior 
with higher average Matthews correlation coefficient (MCC) value of 0.85. Though, the performance difference 
between Set A1 and A is not very high, it is desirable to consider Set A as a better IPF marker set than A1 due 
to its shorter size and greater conservation across the available experimental data. Detailed results representing 
Area under curve (AUC), accuracy, specificity, sensitivity and MCC are given in Supplementary Table S1 and 
Figure S6. Also, it is noteworthy that the Sarcoidosis and NSIP individuals were classified with high accuracy as 
non-IPF cases (Supplementary Figure S6). This all clearly underlines that the recognized genesets are strong IPF 
markers, which could additionally be important in the elucidation of underlining molecular systems involved 
in IPF. Most of these genes were found associated with the process of lung development, maintenance, immune 
system signaling, collagen metabolism, Extracellular matrix (ECM) deposition, lipid metabolism, and cell-cell 
interactions, observations well supported by previous studies (Supplementary Table S2). An expression based 
classification and IPF classification tool has been provided at the associated portal. Considering the dependence 
on lungs biopsy samples to derive the expression data, the application of such classification system for IPF diag-
nosis may have practical limitations in most settings. However, it could be useful in high resource settings, where 
distinction between IPF and other IIPs is critical. In these settings, IPF patients may be referred to a lung trans-
plant program, while NSIP or Sarcoidosis may be treated with high doses of steroids. Open lung biopsies are not 
uncommon in this setting. Further, such a classification system displays the possibilities for future and could be 
useful in revalidation processes where the initial clinical diagnosis is discordant with the further clinical course.

After identifying the precise markers for IPF, the next objective was to define the system level map for 
IPF. Set A might be useful as a prominent molecular marker set for IPF. However, for pairwise comparison 
across the above mentioned five high throughout studies, a good consensus was observed for common DEGs 
(Supplementary Figure S1C,D). Presence of common genes across two totally different experiment sets may also 
be considered credible enough, though with lesser confidence than Set A genes. Considering such genes becomes 
useful to develop a system level map. With this view a new set of DEGs was created where every gene was found 
common to at least two different experimental studies. This resulted into a set of 737 DEGs, called Set B, the 
superset of Set A.

The regulatory components in IPF: Transcription Factors (TFs) and miRNAs.  Previous studies 
provided some limited details on TFs with respect to IPF18–20. A total of 31 DEGs in the above mentioned Set 
B were found as TFs. Among these, binding sites for 24 TFs were confirmed from literature and repository on 
experimentally validated TF-target interactions. Functional analysis emphasized on the fact that up-regulated 
TFs-target genes were associated with ECM-receptor interaction, Integrin family cell surface interactions, IGF-1 
and TGF-β signaling pathways. TFAP2A was found regulating highest number of genes in case of upregulated 
TFs. Similar analysis was done for the down-regulated TFs where CEBPD was found targeting maximum genes 
(Supplementary Figure S7A,B). In general, processes like fatty acids metabolism and immune system regulation 
were found targeted by the down-regulated TFs, concurring well with previous findings on downregulated genes 
(Supplementary Tables S3, S4 and S5).

miRNAs are one of the most important regulatory components of cell system. miRNAs like miR-29b, miR-
26a and let-7 were found associated with IPF21–23. However, it was quite evident that insufficient full coverage 
high throughput experiments have been done for miRNAs while studying IPF. This becomes more conspicuous 
when one looks for more sensitive method like sRNA-seq based studies where a big void exists. In the current 
study, high throughput data generated from three MA based studies (Cho et al., Yang et al., Milosevic et al.)9, 11, 24  
were considered for differential expression analysis of miRNAs in IPF, initially. However, no reliable sRNA-seq 
study was found for IPF. To overcome such scarcity, a strategy was employed where an RNA-seq data13 generated 
for longer RNA like mRNAs was utilized to indirectly derive the expression of miRNAs. Details are given in the 
methods section.

The relation between the precursor miRNA expression obtained from RNA-seq was compared with the same 
for mature miRNA expression obtained through MA. It was observed that most of the mature miRNAs displayed 
strong positive correlation for the precursor derived expression using RNA-seq data. A total of 54 overexpressed 
and 82 underexpressed miRNAs were detected (Supplementary Figure S8). An overlap was observed for 53 down-
regulated and 37 upregulated microRNAs from previously reported studies. 42 novel miRNAs (16 up and 26 
down) were identified in this study (Supplementary Table S8). 53 out of 54 upregulated and 75 among 82 down-
regulated miRNAs were found potentially targeting 5,969 and 7,728 genes, respectively. Experimental support 
was obtained for 818 interactions from all experimental data, including Cross Linking Ligation and Sequencing 
of Hybrids (CLASH) or Crosslinked Immunoprecipitation (CLIP) analysis. Experimentally supported miRNA 
interactions had 43 upregulated and 59 downregulated miRNAs, targeting 235 and 428 genes, respectively. 
Compared to previous studies9, 11, 24, the finding on miRNAs is more robust and elaborated due to inclusion of 

http://S4
http://S1
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data from multiple experiments including next generation sequencing. miR-539 (overexpressed) and miR-30 
family (underexpressed) were obtained as targeting the maximum number of genes (Supplementary Table S9). 
The interesting question yet to resolve was that how these regulators work together to define the molecular sys-
tems of IPF. The following sections address the same.

Gene regulatory network (GRN) and potential Feed-Forward Loops (FFLs) in IPF.  Co-regulation 
of miRNAs and TFs on same target genes was found to be most common in mammalian genomes25. Network 
motifs in the form of 3 and 4 nodes recurring circuits, referred as FFLs, are considered important in understand-
ing molecular mechanism of disease through capturing the disease expressing network circuits26–29. Realizing the 
importance of the combined effects of various regulatory components, IPF specific network motifs were studied 
in terms of potential FFLs and concerted regulatory orientations in IPF. While motifs other than FFL are also 
likely to be important in IPF, here we focused exclusively on FFL because of their instability and potential for 
dysregulation.

For Set A based potential FFLs, an important observation was that two miRNA-FFLs were consisted of 
miR-210 targeting matrix metalloproteinase gene (MMP16) in combination with TFs MYOCD and RUNX2. 
MMP16 is known to be involved in collagen bundle assembly which was observed as upregulated due to down-
regulation of miR-210 in IPF. This gives explanation for the observation from the previous study which reported 
that MMP16 is characteristically upregulated in IPF30. Another important observation was the identification of 
miR-30 family downregulation which goes in line with a previous study23. miR-30 was found regulating highest 
number of potential FFLs, mainly consisting of Tetraspanin, involved in alveolar epithelial integrity31, PTGFRN, 
involved in fibroblasts proliferation and collagen production32 as well as SFRP2, a modulator of Wnt signaling and 
a chemokine gene CXCL14, responsible for their overexpression during disease in combination with differentially 
upregulated TFs BHLHE22 and SIX4.

TF-FFLs for larger network of Set B was composed of 49 miRNA-gene, 63 TF-gene and 32 TF-miRNA interac-
tions (Supplementary Dataset 1). Within TF-FFLs, a differentially downregulated TF, NFE2 (antioxidant enzymes 
regulator), emerged as an important regulator, targeting crucial genes for IPF phenotypes (FZD5, HHIP, CRTAC1 
and EPB41L5) through direct targeting and via upregulation of miR-214. Interesting finding from this study was 
the observation of potential regulatory circuits having five miRNA clusters. Clusters of [miR-181a, miR-181b], 
[miR-93, miR-106b], [miR-17, miR-18a, miR-92a] and [miR-30b, miR-30d] were differentially downregulated 
whereas cluster of miR-133a and miR-1 was upregulated in IPF. Down regulated miRNA clusters were associated 
with genes involved in Wnt, p53, Jak-STAT, PI3K-Akt, Prolactin signaling and cell adhesion molecules (CAMs) 
whereas upregulated miRNA cluster was found targeting genes of Fructose and mannose metabolism, cAMP, 
Hedgehog, PPAR, AMPK signaling, Sphingolipid and fatty acid metabolism. In this way, several network motifs 
in the form of potential FFLs were identified regulating mainly the process of extracellular matrix organizations, 
apoptosis, cell proliferation and fatty acid metabolism. Besides having the potential FFL view, it was evident that 
for many miRNAs multiple targets existed while for several genes multiple targeting miRNAs existed.

Gene regulatory networks were constructed based on the involvement of several common DEGs in IPF, using 
various network parameters. The networks consisted of 940 nodes connected through 20,207 edges for the set 
of 737 genes (Set B), and 256 nodes joined via 1,663 edges in the subnetwork of 39 genes (Set A), depicting var-
ious important nodes of multiple connectivity. Genes FZD5 along with KCNMA1 involved in repolarization of 
membrane potential were found as the most important nodes containing highest in-degrees in the GRN of Set A. 
KCNMA1 gene was observed upregulated in IPF contrary to FZD5. The observations with KCNMA1 is critical 
because smooth cell/myofibroblast activity is enhanced during IPF where KCNMA1 has a stake. On the other 
hand, FZD5 is involved in several biological pathways such as Wnt signaling, Hippo signaling and was found 
downregulated in IPF. Hub gene FZD5 was observed targeted through upregulated miR-155 whose upregula-
tion was supported by a previous study in favor of Epithelial to mesenchymal transition (EMT) process33. The 
underexpressed miR-627 and miR-30 families were observed as critical regulatory hub miRNAs responsible for 
overproduction of mucin type O-Glycans, increased ECM accumulation and stimulation of mTOR signaling, 
Cytokine-cytokine receptor interaction, Chemokine signaling and cardiomyopathy. Similarly, upregulated hub 
miRNA miR-539 was observed targeting the genes involved in steroid biosynthesis (Supplementary Tables S9 
and S11). In overall, the upregulated DEGs in the GRN were enriched in ECM receptor interaction, p53 signaling 
pathway, ABC transporters and CAMs. The downregulated DEGs were found enriched in fatty acid metabo-
lism and AMPK signaling pathways. Detailed discussion on this section is covered in supplementary discussion 
section.

Pathway crosstalk analysis reveals compromised and benefited systems in IPF.  Crosstalking 
pathways were identified by integrating gene expression and genome wide Protein Protein Interaction (PPI) data. 
A total of 56 pathways crosstalks were found for Set B genes (Supplementary Dataset 2), most of which very 
clearly captured the potential causes and communications responsible for the IPF phenotype while displaying the 
benefited and compromised pathways chains in IPF.

For example, when PPAR signaling pathway crosstalked with cytokine-cytokine receptor interaction and 
chemokine signaling pathway, transmembrane receptor activity was compromised influencing lipid transport 
via increased steroid binding and cholesterol transporter activity. Similarly, when the same pathway joined the 
complement and coagulation cascades, positive regulation of cellular metabolic process was found decreased and 
processes related to extracellular matrix and structure organization benefited, a well-known phenotype of IPF. 
Additionally, same process when crosstalked with leukocyte transendothelial migration pathway, extracellular 
matrix organization activity induction becomes prominent at the cost of signal transduction activity to enhance 
fibrotic responses, concurring well with an earlier study34.

http://S9
http://1
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A prominent and critical marker of IPF is TGF-β, a cytokine stimulator. TGF-β signaling pathway crosstalk 
with Wnt signaling pathway was observed in agreement to the study demonstrating a novel link between these 
two pathways with turning down of the expression of Dickkopf-1 which acts antagonistically in Wnt signaling 
pathway35. Additionally, same pathway was found in crosstalk with pathways such as leukocyte transendothe-
lial migration, molding of biological system towards processes involved in extracellular matrix organization. 
Regulation of endopeptidase activity was compromised to enhance cell surface receptor signaling and cell adhe-
sion as a result of crosstalk between Wnt signaling pathway and TNF signaling pathway. This way, crosstalk analy-
sis revealed several dynamic molecular and system level facets associated with IPF. Detailed information covering 
all pathways crosstalks and their system influence is provided at the companion IPF database.

An IPF molecular system model.  A pathway model demonstrating highly influenced pathways in IPF 
condition was developed (Fig. 1). Increased expression of chemokines (CXCL12, CXCL14) and TGFB3 shown 
in the model is in agreement with previous studies36, 37. TGFB3 binds to its receptor and activates Smad mediated 
signaling, leading to modulation of apoptosis and G1 stage arrest. TGFB3 and TGFB2 were co-expressing with 
LTBP1 (Latent TGFβ binding Protein) regulated by THBS138. High expression of TGFB3 induces Smad3 which 
in association with ATF3 represses inhibitor of differentiation (ID1)39 known to be a TGF β responsive gene 
which negatively regulates cell differentiation. Wnt plays an important role in IPF through binding to Frizzled 
receptor and further activation of β-catenin. Frizzled (FZD5) appeared downregulated in IPF due to inhibitory 
regulation by miR-10a*, miR-302d, miR-133b, miR-539, miR-214* and miR-34c-3p (all upregulated) through 
four potential miR-FFLs with AFF3, HOPX, ID1, KLF6 and one potential TF-FFL (CSRNP1, hsa-miR-133b and 
FZD5). Genes related to cell proliferation (CCND1 and CCND2) and matrix metallopeptidases (MMPs) involved 
in cell-cell adhesion appeared upregulated due to combined action of differentially downregulated miRNA (miR-
210) and upregulated TFs (TP63, MYOCD) via two potential 3-nodes FFLs (miR-210, TP63, CCND2), (miR-210, 
MYOCD, MMP16) and a potential 4-nodes FFL (hsa-miR-210, TP63, CCND2, IGF1) for CCND2 and MMPs in 
IPF condition (Fig. 1). Furthermore, Hedgehog signaling appeared induced through the activation of hedgehog 
ligand via reduced activity of Hedgehog inhibitory protein (HHIP) due to regulatory network motifs of upregu-
lated miRNAs (miR-409-3p, miR-495 and miR-539) with downregulated TFs AFF3, ID1 and HOPX in disease. 
BOC gene targeted by miR-126 and miR-29c* (downregulated miRNAs in IPF) positively regulates the Hedgehog 
signaling through activation of Gli proteins leading to further activation of genes involved in cell proliferation. 
Additionally, this study revealed pathway crosstalk among four crucial pathways differentially regulated in IPF. 

Figure 1.  A molecular system model for IPF. It involves four crucial biological pathways (Hedgehog signaling, 
Wnt signaling, TGFβ signaling and Cytokine-chemokine signaling) having cross-talk with each other. The 
model describes the mechanism and several regulatory components involved in IPF disease mechanism causing 
increased cell proliferation, adhesion, reduced differentiation, altered apoptosis and epithelial to mesenchymal 
transition. DEGs Frizzled 5 receptor, LTBP1, HHIP, BOC, CXCL12, CXCL14, ARRB1, NBL1 and SOCS3 
appeared critical in IPF.
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Target genes of Hedgehog and Canonical Wnt signaling were found in crosstalk with TGFB3 which further cross-
talked with cytokine (CXCL12) stimulating chemokine signaling pathway.

To further elaborate the IPF disease progression mechanism, Set A’s DEGs were mapped to the pathways 
interactome. Differential expression values were derived for associated genes to depict the degree expression 
changes during IPF progression compared to similar diseases (NSIP and Sarcoidosis). Study revealed a dras-
tic change taking place from normal to early IPF stage, clearly underlining the processes which distinguish 
IPF from the rest (Fig. 2A–E). The matrix metalloproteinases gene exhibited highest expression shift, and 
appeared among the most important system chains along with SERPINE1, CXCR2, Tenasein C, FABP4, and 
CCND1. Among all these major observations for IPF, a system of five serially connected downregulated genes 
(ACADL-HMGCR-FLT1-FZD5-ARRB1), enriched in regulation of MAPK cascading, potentially targeted by 
nine different miRNAs and under control of eight different TFs (Fig. 2F) stands out as a crucially IPF specific spot 
for promising therapeutic interventions for IPF. This all brings a comprehensive, high confidence dynamic system 
model for IPF. The model proposed here represents a simpler view to underline the important system differences 
between a normal and IPF condition. This does not take into account the changes in cellular composition of the 
IPF lung, or the heterogeneity within IPF such that areas of disease are interspersed with normal areas. While 
models that account for these factors would be superior, it is a difficult task to achieve due to poorly understood 
factors like remodeling in normal lungs with age, dynamic transitions in cell states and technical challenges in 
obtaining precisely homogeneous samples.

The Molecular Systems Database and Information Portal for IPF.  The findings and information 
generated through this study have been converted into a state-of-the-art database and information portal, IPF 
Information Portal (IPFIP), the resource for this disease, freely available online at http://14.139.59.221/ipf and 
http://scbb.ihbt.res.in/SCBB_dept/Software.php.

Conclusion
After analysis of a large volume of high throughput genomic data, a set of 39 differentially expressed genes (DEGs) 
emerged critical to distinguish IPF. Experimentally validated and high confidence data with multiple evidences 
were used to reconstruct the system model for IPF, incorporating various PPI and regulatory interactions. Careful 
analysis of the networks identified several critical potential FFLs as well as compromised and benefited routes 
in various pathways, marking the phenotype of IPF. A system of serially connected five genes, eight TFs and 
nine miRNAs appeared exclusive to IPF, which could be promising for therapeutic interventions. In future, the 

Figure 2.  Variation in differential expression of most confident Set A genes along with their first neighbors 
during IPF progression. (A) Normal to Early IPF shifts in differential expression, (B) Early to advanced IPF 
shifts in differential expression, (C) Normal to Advanced IPF shift in differential expression, (D) differentially 
expressing genes in NSIP and in (E) Sarcoidosis. Green color depicts the degree of overexpression whereas red 
shows degree of underexpression, (F) Critical chain of five serially connected genes (ACADL-HMGCR-FLT1-
FZD5-ARRB1) which appeared downregulated in IPF specifically. This chain is broken in Sarcoidosis due to 
upregulation of FLT1 while in case of NSIP, the chain is not completely formed. Eight TFs and nine miRNAs 
appeared crucial in regulating IPF through these check points.

http://14.139.59.221/ipf
http://scbb.ihbt.res.in/SCBB_dept/Software.php
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expression of associated miRNAs in this system could be controlled in order to verify their potential role as thera-
peutic targets for IPF to design therapeutic agents. Finally, this study has generated a state-of-the-art database on 
IPF where the involved components can be analyzed and visualized in a highly informative manner. This database 
would be very useful for any molecular systems research on IPF.

Materials and Methods
Data processing and analysis.  Fourteen high throughput studies were included containing six IPF 
MAs (GSE31934, GSE10921, GSE21411, GSE24206, GSE32537, GSE35147)7–11, 40, two RNA-seq (SRP010041, 
SRP033095)12, 13, three miRNA MA (GSE21394, GSE32538, GSE27430)9, 11, 24, two MAs for Sarcoidosis 
(GSE16538, GSE19976)41, 42 and one MA of NSIP (GSE5774)43 (Supplementary Table S12). All initial data from 
MA and RNA-seq based high throughput studies were collected from Gene Expression Omnibus (GEO) and 
Sequence Read Archive (SRA). RNA-seq data was cleaned using filteR44. TOPHAT 2.1.045 was used for mapping 
RNA-seq reads across the human genome (hg38) with default parameters. The alignment results were saved 
in BAM format. CUFFLINK-CUFFDIFF tools were used for expression analysis for RNA-seq data. The work 
flow of IPF high-throughput data processing to generate high confidence gene sets is given in Fig. 3. For Micro-
array gene data, GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) tool containing R, Biobase46, GEOquery47 
and limma48 packages was used with some basic changes in Rscript. Based on the information derived from 
the clustering of different gene sets with varying number of DEGs (detailed in the result section), set of feature 
genes was formed. The relative genome wide normalized expression values of these feature genes were used for 
vector transformational representation of each individual sample considered in this study. Features expression 
transformation into Z-score for each experimental dataset was done to bring the expression values on same scale 
irrespective of their platform and experimental design. The classification was implemented with 5-fold cross 
validation using LibSVM49.

Identification of IPF specific transcription factors and miRNAs.  DEGs having TF activity were iden-
tified. Sequences of DEGs were downloaded from Ensembl and were searched for homology in UniProt and 
AnimalTFDB 2.050 using BLASTX with the E-value threshold of 1E-05. Binding sites analysis was done using 
PROMO (TRANSFAC v8.3)51, CHIP-seq (ReMap)52 and manual curations. As the TFs activate the gene expres-
sion, positive expression correlation is expected between the TF-target gene pair. Z-score normalized expression 
values were used to find the correlation between TF and target genes. For selecting the significantly enriched 
categories, p-value cut off (0.05) with Benjamini-Hochberg test adjustment was applied.

miRNA expression analysis was done using four high throughput studies, mentioned above. Interestingly, so 
far, no small RNA-seq study has been done for miRNAs with respect to IPF. In this study the RNA-seq reads were 
utilized to detect the active miRNA regions of genome. The overlapped reads with miRNA precursor regions 
(taken from miRBase V21) were expected to express along with other coding genes. Such mapping reads were 
capable to provide the expression information of the precursor miRNAs, which in turn indicate the expression 
level of mature miRNAs. Differentially expressed miRNAs were selected using log2fold change (> = 1) consid-
ering Reads Per Kilobase of transcript per Million (RPKM) values in both conditions, whereas differentially 
expressed miRNAs (DEmiRs) from MA studies were selected using GEO2R (p-value < 0.05). miRNAs which 
were having at-least two or more studies with same differential expression status were taken as final set of DEmiR. 
miRNAs from RNA-seq approach were preferred over MA in case of contradictory differential expression status 
(Supplementary Dataset 3). The filtered DEmiRs were analyzed for their target genes using TargetScan53 supple-
mented with experimentally validated interactions data from CLASH and CLIP-seq using miRTarBase version 
6.054 while considering a negative expression correlation (“r” < = −0.7) for each miRNA-target. A work flow for 
miRNA analysis is provided in Supplementary Figure S8.

IPF mediated regulatory network construction and motifs identification.  Regulatory relation-
ships in form of miRNA-gene, miRNA-TF, TF-gene and TF-miRNA were considered for generation of regula-
tory network to unveil disease mechanism in IPF. Differentially expressed miRNAs, genes in IPF condition with 
respect to normal patient and TFs controlling both were retrieved for deciphering all such relationships. All 
types of interaction pairs were merged and unified to construct IPF-specific regulatory network. TF and miRNA 
regulatory network modules having various potential FFLs were derived at k-threshold of 3 using clique perco-
lation algorithm, CFinder55. Potential FFLs are made of interconnected complete subgraph of TFs, differentially 
expressed miRNAs and genes. Variations in the type of potential FFL occur due to regulatory interaction between 
TFs and miRNAs. The work flow for the construction of TF-miRNA mediated regulatory network and statistics of 
three and four node FFLs for the three sets is illustrated in Supplementary Figure S9A and B, respectively.

IPF specific potential FFLs were evaluated for their significance in comparison to randomized networks. For 
this purpose, we compared real regulatory networks to randomized ones, preserving same degree as for the real 
one to estimate the probability that an FFL appears in the randomized networks. 1000 randomized networks were 
built, implementing edge swapping algorithm present in igraph56 R-package. The degree was kept same as for 
real regulatory network. All potential FFLs in each of the regulatory network were statistically analyzed for their 
significance while comparing to 1000 randomized regulatory networks. Only those FFLs were considered further 
for the depiction of regulatory mechanism in IPF which were found statistically significant at 5% level.

Network properties of built TF-miRNA derived regulatory networks were extracted as a consequence of their 
significance. Cytoscape version 3.157 was used for network visualization and analysis of various network parame-
ters such as degree connectivity, betweenness and closeness centrality etc. Hub miRNAs and TFs were identified 
by sorting their outdegrees in descending order and top five hub components in each category were separated. 
Hub IPF genes were determined on the basis of indegree distribution.

http://S12
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://3
http://S8
http://S9A and B
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Pathway crosstalk analysis for IPF.  Set B DEGs were utilized for pathway crosstalk network reconstruc-
tion. Pathways information related to such genes were retrieved from KEGG database. Human protein interac-
tion data was downloaded from STRING v10 repository58 of functional protein interaction. A global pathway 
crosstalk approach was utilized to decipher IPF mediated pathway crosstalk59. To determine the background 
distribution, each pathway was randomized via shuffling of genes with genes having same degree in PPI database. 
Randomization process was performed 1000 times and protein interaction count was calculated for all rand-
omized pathway pairs. Protein pairs which scored significant p-value against the random model pair occurrence 
were considered as cross talk pairs.

The obtained significant pathway pairs in crosstalk were filtered for those pairs having differentially up regu-
lated genes in both pathways. First neighbors of these DEGs in STRING database containing confidence of 500 

Figure 3.  Protocol showing various steps in high-throughput data processing. Two MA studies were discarded 
due to less number of probes. Initially, Set A2 was constructed using one MA (GSE21411)9 and one RNA-seq 
(SRP033095)13 study. Set A was developed from overlap of Set A1 and Set A2. To construct Set B, DEGs were 
chosen so that they occurred in least two different high throughput studies. A SVM based classification model 
was generated for using Set A to distinguish IPF sample from non IPF ones.
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(covering most of the experimentally validated protein-protein interactions) were chosen for further analysis. 
Gene ontology enrichment analysis was done using GO-TermFinder60. Gene sets were extracted for benefited and 
compromised system chains due to pathway crosstalk in the disease condition. Detailed illustration representing 
pathway crosstalk network analysis pipeline in IPF is shown in Fig. 4. The full method details have been made 
available in the supplementary methods.

IPF Information Repository.  The portal is implemented using advance libraries of HTML5. Portal 
homepage and background pages are developed in HTML5/CSS, JQuery/JavaScript with support of Bootstrap 
packages. Portal work flow is described in Supplementary Figure S10. Background connection is established by 
PHP version 5.2 with PERL version 5.18 and shell scripting. MySQL version 5.7 database connection is estab-
lished through the PHP. The database provides the facility for IPF sample identification from expression data, 
crosstalk and network analysis and can be searched for genes, miRNAs and important pathways. All the inter-
action can be visualized in selective mode. Common target analysis is also activated for miRNAs which can 
be extended to the network. All the network elements can be selected for pathways and functional enrichment 
analysis. The analysis can be done in comparative mode. The network relationships between nodes and edges 
are structured into JSON file via in-house built PERL script. A set of full network JSON file is loaded into D3, a 
web based visualization open library. Network properties are represented into html tables using JavaScript for 
gene regulatory and protein-protein interaction networks. Query sent by a user from HTML pages is processed 
through PHP in the background and retrieves results of respective sections (like search, network, classification 
of IPF samples etc.).

Figure 4.  Pipeline depicting global pathway crosstalk network generation protocol for DEGs. Crosstalk 
network analysis starts by filtering out the pathways containing less than six genes, considering sufficient 
number of genes to address biological relevance of analysis. Protein interactions occurring between all pathway 
pairs were counted. Every pathway pair was randomized 1000 times and protein interaction counts in real 
network were compared with randomized ones. Significant pathway pairs were further analyzed to obtain the 
benefited and compromised chains in IPF specific pathway crosstalks.

http://S10
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