Skip to main content
. Author manuscript; available in PMC: 2018 May 1.
Published in final edited form as: Addiction. 2017 Feb 18;112(5):901–909. doi: 10.1111/add.13743

Table 3.

Results for the first regression, which focuses on the effects of the second-stage randomized treatment options for responders (A2R), and non-responders (A2NR); and estimated conditional effects of the second-stage randomized treatment options for responders

Parameter Estimate 90% CI ii
Intercept −0.06 −0.15 −0.03
Gender −0.03 −0.08 0.02
O11: Baseline years of alcohol consumption −0.003 −0.02 0.02
A1: Nonresponse criterion 0.01 −0.01 0.03
O21: Proportion of drinking days during stage 1 −1.07 −1.20 −0.96
A2R: Maintenance tactic for responders 0.003 −0.02 0.02
A2NR : Rescue tactic for non-responders −0.02 −0.06 0.04
A2R × O21: Maintenance tactic for responders × Proportion of drinking days during stage 1 0.14 0.06 0.24

Estimated Conditional Effects of Maintenance Tactics Estimate 90% CI ii

Percent drinking days during stage 1 = 0
(24% of responders had O21=0)
0.006 −0.04 0.04
Percent drinking days during stage 1 = 10%
(43% of responders had 0< O21 ≤0.1)
0.04 −0.002 0.06
Percent drinking days during stage 1 = 20%
(14% of responders had 0.1< O21 ≤0.2)
0.06 0.02 0.12
Percent drinking days during stage 1 = 30%
(10% of responders had 0.2< O21 ≤0.3; and 9% had 0.3< O21)
0.10 0.04 0.16
ii

The estimated regression coefficients and associated lower and upper limit of the 90% confidence intervals (CI) are summarized across ten imputed datasets. We set the Type I error rate to 0.10, rather than 0.05, given the illustrative nature of this analysis. Moreover, the aim of the analysis is to generate hypotheses about useful tailoring variables. Hence, from a clinical standpoint, it is sensible to tolerate a greater probability of detecting a false effect in order to improve the ability to detect true effects (see Collins et al. [50]; Dziak et al. [51]; McKay et al.,[52]).