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Geometric explanation of the 
rich-club phenomenon in complex 
networks
Máté Csigi1, Attila Kőrösi1, József Bíró1, Zalán Heszberger1, Yury Malkov2 & András Gulyás1

The rich club organization (the presence of highly connected hub core in a network) influences many 
structural and functional characteristics of networks including topology, the efficiency of paths and 
distribution of load. Despite its major role, the literature contains only a very limited set of models 
capable of generating networks with realistic rich club structure. One possible reason is that the rich 
club organization is a divisive property among complex networks which exhibit great diversity, in 
contrast to other metrics (e.g. diameter, clustering or degree distribution) which seem to behave very 
similarly across many networks. Here we propose a simple yet powerful geometry-based growing 
model which can generate realistic complex networks with high rich club diversity by controlling a single 
geometric parameter. The growing model is validated against the Internet, protein-protein interaction, 
airport and power grid networks.

The rich club organization plays a central role in the structure and function of networks1–8. Some networks (e.g. 
the human brain7, airport networks, social networks1 and the Internet8) have a strong rich club, meaning that 
their hubs are densely connected to each other. Others (e.g. protein-protein interaction networks1, the power 
grid9) behave quite the contrary as the subgraphs made out of their hubs are very sparse. This high variation 
across networks is illustrated in Fig. 1, which shows the normalized rich club coefficient ρ(k)1 as the function of 
degree k for the airport network, the Internet and the protein-protein interaction network. The explanation and 
reproduction of this great rich club diversity is highly non trivial. The state-of-the-art models targeting the rich 
club organization are based on heavy randomization techniques10–13, which shuffle network connections until a 
given organization structure is artificially imitated. Although these randomization-based models are fairly usable, 
they do not give deeper insight into the mechanisms causing this diversity during the evolution of the networks. 
Consequently, growing models capable of incorporating various rich club networks in a simple and intuitive 
manner would be useful towards deeper understanding of the underlying evolutionary reasons of this diversity.

Here we propose a simple geometry-based growing model which can explain the emergence of the rich club 
variability in real networks by adjusting a single spatial parameter. Our model is built upon the real-world obser-
vation that in some networks the establishment of very long connections is not feasible. For example, in power 
grid networks, the electric current cannot be transferred efficiently (i.e. without huge losses of energy) over large 
distances without intermediate transformations at middle stations14, 15. Similarly, optical networks apply signal 
re-generators for the transmission of light signals over large distances to be able to sustain the signal-to-noise 
ratio16. Also in certain social networks, middlemen as intermediate nodes may play crucial role in enhancing 
cooperation between the individuals or groups17. Such networks seem to implement an “artificial” threshold 
above which no direct connections are allowed. Other networks do not have such inherent thresholds and the 
length of the edges is only limited by the “natural” geometric boundary of the network. For example, in airport 
networks we can find very long links, because transferring passengers over large distances is not an issue with the 
current aviation technologies.

In this paper we confine these observations into a simple geometric growing model, in which we introduce 
a length threshold for creating edges. We show that such a growing model can naturally reproduce and account 
for the experienced diversity in the rich-club organization of networks, while keeping other network statistics 
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(diameter, degree distribution and clustering) intact. The applied geometric representation of networks is an 
active and quickly advancing research direction in network science18. There are numerous studies describing 
networks as random geometric graphs, performing some functions19, 20 (e.g. navigation, information transmis-
sion) or structural properties (e.g. small-world, clustering, modularity)21, 22 of networks in a geometric context, 
and disclosing some fundamental relations between topology and hidden metric spaces23. A the proper choice of 

Figure 1.  Illustration of the diverse rich club organization in real networks. The plot shows the normalized rich 
club coefficient ρ(k) as the function of degree k as: ρ φ= φ

φ
k k( ) , where ( )k

k
( )

( )unc
 is the density of the subgraph Gk of 

the network containing only the nodes with degree > k. The φunc is the same for the maximally randomized 
version of the network conserving the degree distribution. One can see that the subgraph of hubs in the airport 
network possesses about 1.5 times more links than in the randomized version. On the contrary, the hubs in the 
PPI network have less than the half of the connections experienced in its randomized counterpart.

Network N m R T

Generated T = 12 5000 3 50 12

Generated T = 30 5000 3 50 30

Generated T = 100 5000 3 50 100

Table 1.  Simulation settings.

Figure 2.  Details of the model. Panel (a) shows the exact pseudocode of the generation process. Panel (b) plots 
a sample network generated by the model. Panels (c,d) shows the time evolution of the network for m = 2. In 
panel (c) a green node is added to a network consisting the two blue nodes only. The red circle represents the 
threshold around the new node. As neither of the two blue points reside within the red circle two bridge nodes 
(red) are inserted to the midpoints of the edges. Panel (d) shows the same network in a later time instant. In this 
later phase the new green node can connect directly (bridge nodes are not needed) to the two nearest blue nodes 
as they are closer than T.



www.nature.com/scientificreports/

3Scientific Reports | 7: 1730  | DOI:10.1038/s41598-017-01824-y

geometry (e.g. Euclidean, Bolyai-Lobachevskian hyperbolic geometry or other metric space) can also promote 
the interpretation of numerous network processes24–26.

Results
In our model N nodes are randomly generated one after another on an Euclidean 2D R-disk with uniformly 
distributed coordinates. When adding a new node, it selects the m closest nodes already residing on the disk (if 
there are less than m nodes on the disk then it selects all of them). The distances between the new node and the 
old ones are calculated by the Euclidean distances normalized by a function of the old node degrees (as in the 
Growing Homophilic model22). If this “effective” distance between the new node and a selected one is smaller 
than the threshold T then they are directly connected, otherwise a so-called “bridge” node to the midpoint of the 
two nodes is established and connects to both nodes. The formal description of the network generation process is 
performed in panel (a) of Fig. 2, while panel (b) shows a small network generated with the model.

Time evolution of the model, as new nodes are inserted into the network at different stages is shown in Fig. 2. 
For the sake of simplicity, in this illustration the distance normalization by node degrees is omitted. At the begin-
ning of the generation process, many bridge nodes are inserted as the distance between the nodes is typically 
larger than T (see panel (c) in Fig. 2). As the network grows, the average node density and degrees increases, so 
the typical normalized distance between the nodes will fall below T and no more bridge nodes are added (panel 
(d) in Fig. 2). From this stage the model falls back to the growing homophilic model analyzed in ref. 22. Setting T 
to a very large value (e.g. T > 2R) completely recovers the model in ref. 22 because bridge nodes are never inserted 
to the graph. We show, that by varying T, the model generates complex networks with diverse rich-club organi-
zation, while having scale-free degree distribution, small diameter and large clustering. In the remaining of the 
paper we will use the settings summarized in Table 1 in our analytical and simulation results.

Number of bridge nodes.  First, we show that the total number of bridge nodes quickly converges to a 
relatively small value compared to the network size (N) during the generation of the graph, and this value is inde-
pendent of the graph size. To support this observation we give a recursive estimation of the expected number of 
new bridge nodes generated at each step of the model, and based on this recursion a mathematical expression is 
given to the limit of the expected total number of bridge nodes (see Methods for more details). By analyzing the 
recursion one can show that the expected number of bridge nodes at step N denoted by bN can approximately be 
expressed in the form

Figure 3.  The recursively estimated number of bridge nodes in each iteration is plotted with the simulated 
values. The T = 12 line shows the average of 15 simulation runs.

Network N Edges Diameter Avg. dist. Clustering coefficient

Generated T = 12 5030 15024 10 4.54 0.66

Generated T = 30 5004 14998 9 4.51 0.67

Generated T = 100 5000 14994 10 4.46 0.69

PPI network 5084 22148 10 3.98 0.12

Airport network 2845 10409 10 3.75 0.59

Internet 23748 58414 10 3.52 0.61

Table 2.  Basic topological properties of real and generated networks.
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≈ − + +b f N f N fexp( log ), (1)N 1 2 3

where the functions f1, f2 and f3 may depend on R, T, m but are independent from N. From this it immediately 
follows, that for the total number of bridge nodes BN

∫≈ − + + → → ∞
=

−B f x f x f x f E f Nexp( log )d exp( ) ( )as (2)N
x

N
f

1 1 2 3 3 12

where E is the exponential integral function. The vanishing term during the convergence in BN is +
−N E f N( )

f
f

1
1

2
2

 
and also approximately exponential.

In Fig. 3 the expected total number of bridge nodes (BN) calculated by recursion (9) is plotted in each iteration 
together with the simulation result for the same parameters. The two plots readily justify that BN has a characteris-
tic plateau after certain iterations, which means that BN converges to a finite fixed value during the graph genera-
tion process. This also illustrates that for sufficiently large networks the total number of bridge nodes is negligible 
comparing to the network size. Furthermore, according to statistical tests the overall distribution of the nodes 
on the R-disk is apparently not affected by the existence of the bridge nodes, and still can be treated as uniform.

Diameter, clustering and degree distribution.  The diameter of all three generated networks (see 
Table 1) is around 9–10, similar to the real networks (Table 2). Figure 4 shows that the diameter of the T = 12 

Figure 4.  Small world property of T = 12 networks. The diameter of the network grows logarithmically with the 
number of nodes.

Figure 5.  The degree distributions of our simulated networks. The plot confirms that the choice of T does not 
effect the degree distribution, which is a power-law with γ = 3.
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networks is an approximate logarithmic function of the network size, which confirms the small-world property. 
Also the generated networks have high clustering coefficients with values very close to that of real networks. 
Finally, Table 2 confirms that the clustering coefficient is insensitive to the threshold parameter. Now we show that 
the generated networks has scale-free degree distribution independently of T.

Theorem 1 The networks produced by the model have scale-free degree distribution with γ = 3 when N → ∞.
Proof: Suppose we compute the effective distance as =deff

d

k
Euc . At each insertion step the algorithm connects 

the new element to exactly m neighbors that globally minimize the normalized distance. To infer the degree dis-
tribution of the neighbor elements, we temporary fix the distance to the m + 1-th nearest neighbor +d m

eff
1 and 

randomly shuffle positions of the m neighbor nodes under the condition that they all remain the m nearest neigh-
bors with respect to the new element (i.e. having effective distance to the new element less than +d m

eff
1).

For every possible value of the neighbor degree k, possible element positions are bounded in the initial 
Euclidean space by a radius rEuc =  +d km

eff
1 . Since the nodes are distributed uniformly in the Euclidean space, the 

probability of having an element with degree k proportional to the rEuc-ball volume. Thus, under fixed +d m
eff

1 the 
overall probability of connecting to an element with degree k is proportional to (k).

The probability inferred for a fixed value of +d m
eff

1 does not depend on either the value of +d m
eff

1, or the positions 
of the nodes that are not the closest neighbors of the inserted elements, so that is true for every possible positions 
of the elements in the Euclidean space and overall probability of connection to a node is proportional to its degree 
(k). This means that new nodes connect to the old ones with probability proportional to k, which is equivalent to 
the Barabasi-Albert model27, proved to produce scale-free networks with γ = 3.

Figure 6.  Rich-club organization in networks generated by the model with different settings of T. The plot 
readily confirms that our model is able to generate rich-club diversity by simply adjusting T. We note the 
remarkable similarity with the same plot for real networks in Fig. 1.

Figure 7.  Edge length distribution in networks with different rich club organization. While panel (a) shows a 
continuously decreasing length distribution in case of rich-club networks, there is a clearly visible plateau before 
the cutoff of the CCDF function in networks having no rich-clubs (panel (b)).
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The Fig. 5 shows the degree distributions of three networks generated with our model with various values of 
T. The plot readily confirms that the degree distributions are indeed scale-free with γ = 3 independently of T.

Rich-club coefficient.  Although the insertion of bridge nodes keeps degree distribution, clustering and 
diameter intact, the simulation results plotted in Fig. 6 clearly show that the graphs generated by the model differ 
greatly in their rich-club organization depending on T. Setting T to the diameter of the R-disk (T = 100, red trian-
gles in Fig. 6), the model does not limit the lengths of the edges artificially, so the only limiting factor is the natural 
geometry of the disk itself. In this case we obtain a network with a strong rich-club, similarly to the airport net-
work. Conversely, adjusting T to 12, the model will create only edges having deff < 12. This is a strong “artificial” 
limitation for the edge lengths imposed by the generation process. As a result, the model yields a network with 
no rich-club (T = 12, blue squares in Fig. 6), likewise the PPI network. We note the appealing similarity between 
Figs 1 and 6, showing the rich-club diversity in real networks.

Discussion
An intriguing question could be whether our model captures something fundamental from the growth processes 
of real networks, or exhibit similar rich-club diversity simply by chance. To answer this question we have per-
formed the CCDF’s (Complementary Cumulative Distribution Function) of the normalized edge length distri-
bution in a rich-club (airports with flights in the US) and a non rich-club network (the North American Power 
Grid) together with the networks generated with our model in Fig. 7. Panel (a) shows continuously significant 
(on all length scale) decrease of edge length distributions before the final “natural” cutoff for the airport and the 
T = 100 networks caused by the geometry of the continent and the R-disk respectively. On panel (b) however we 
can observe a clearly visible plateau before the cutoff of the edge lengths in the power grid network. This means 
that edge lengths are much denser near the cutoff, which in this case is rather “artificial” and caused by the growth 
process of the network and not the underlying geometry. Our model produces a very similar edge length distri-
bution for the setting T = 12. These results hint that networks with no rich-clubs have a very similar limiting for 
the length of the connections as our model does. As a consequence, this length-limiting phenomenon can also 
account for the emergence of the observed diverse rich-club organization in real networks.

These two examples also underline that our method is parsimonious in a sense that the rich club organization 
can be tuned by only a single geometric threshold parameter in a growing homophilic model. We think the results 
presented in this paper are strong indications that the rich club diversity can be placed at all on a growing/evolu-
tionary perspective, and provide deeper insight into the mechanisms resulting certain rich club behavior during 
the growth of networks.

Methods
Recursive estimation of the number of bridge nodes.  Let A(r, T, R) be the area of the intersection of 
an r–centered disk with radius T and the R–disk, and let p(r, T, R) be the fraction of A(r, T, R) and the area of the 
R–disk, i.e. =

π
p r T R( , , ) A r T R

R
( , , )

2 . Further, let us assume that there are already j nodes in the network. The (j + 1)th 
randomly generated node will connect to the m nearest neighbors. For calculating the necessary bridge nodes in 
this step, the task is to determine what are the nodes among the m nearest neighbors which are farther than T. To 
ease the computation, the degrees of the neighbors are substituted by their expectation values (denoted by kj and 
to be determined later). Since the effective distance is computed as the Euclidean distance divided by kj , it is 
approximately equivalent to investigate the expected number of points among the m nearest ones being outside 
of the (j + 1)th node T kj - radius vicinity. This will be equal to the expected number of newly inserted bridge 
nodes at this step. Denote the radial coordinate of the (j + 1)th node by r and assume that the previously generated 
random points and established bridge nodes are still evenly distributed on the R–disk. With this, the probability 
that i, 0 ≤ i ≤ j nodes among the j ones are closer to the (j + 1)th node than T kj  is







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and hence the expected number of necessary bridge nodes at this step is
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Note, that this is still a conditional expectation value which is to be de-conditioned by the density of the 
radial coordinate r. Towards the de-conditioning, first the function A(r, T, R) is to be determined. Clearly, A(r, T, 
R) = T2π if r ≤ R − T, i.e. there is no intersection of the two disks. Otherwise, if r ≥ R − T then by using straight-
forward geometrical calculations

α γ= + − − − −A r T R R T s s R s T s r( , , ) 2 ( )( )( ) (5)2 2
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+ −

=
+ −

=
+ +
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2
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Now, the de-conditioning is possible with p(r, T, R) = A(r, T, R)/(R2π) and the density of the radial coordinate 
r, which is r

R
2

2
. Further, let j(N) = N + b1 + b2 + … +bN where N is the randomly generated points and bl l = 1, …, 

N is the expected number of bridge nodes established after the lth random node. For completing the recursive 
estimation, the expected degree should also be expressed upon the lth random node generation. This is

=
− + ∑
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>

+
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For l = 1 let b1 = 0, =k 01  and let = ∑ =B bN i
N

i1 . The main recursion can now be expressed as

∫ β= .+
= ( )b r T k R m r

R
r, , , 2 d

(9)N
r

R
j N j N1

0
( ) ( ) 2

Data Availability.  The data that support the findings of this study are available from public data reposito-
ries. In particular, the topology of the AS level Internet has been downloaded from CAIDA (Center for Applied 
Internet Data Analysis, www.caida.org). We have downloaded the airport network from the OpenFlights database 
(www.openflights.org). We used the DIP28 database as a source for the protein-protein interaction network of the 
S. cerevisiae. Finally, the map of the north american power grid has been downloaded from ref. 29.
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