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Zooplankton Community Profiling 
in a Eutrophic Freshwater 
Ecosystem-Lake Tai Basin by DNA 
Metabarcoding
Jianghua Yang1, Xiaowei Zhang   1, Yuwei Xie1, Chao Song1, Yong Zhang2, Hongxia Yu1 & G. 
Allen Burton3

Communities of zooplankton, a critical portion of aquatic ecosystems, can be adversely affected 
by contamination resulting from human activities. Understanding the influence of environmental 
change on zooplankton communities under field-conditions is hindered by traditional labor-intensive 
approaches that are prone to taxonomic and enumeration mistakes. Here, metabarcoding of 
cytochrome c oxidase I (COI) region of mitochondrial DNA was used to characterize the genetic diversity 
of zooplankton. The species composition of zooplankton communities determined by metabarcoding 
was consistent with the results based on the traditional morphological approach. The spatial 
distribution of common species (frequency of occurrence >10 samples) by metabarcoding exhibited 
good agreement with morphological data. Furthermore, metabarcoding can clearly distinguish the 
composition of the zooplankton community between lake and river ecosystems. In general, rotifers 
were more abundant in riverine environments than lakes and reservoirs. Finally, the sequence read 
number of different taxonomic groups using metabarcoding was positively correlated with the 
zooplankton biomass inferred by density and body length of zooplankton. Overall, the utility of 
metabarcoding for taxonomic profiling of zooplankton communities was validated by the morphology-
based method on a large ecological scale. Metabarcoding of COI could be a powerful and efficient 
biomonitoring tool to protect local aquatic ecosystems.

Global freshwater and wetland ecosystems face multiple threats to their stability, including changes in land use, 
nutrient and toxicant pollution, and climate change1, 2. These disturbances could impair natural functioning (e.g. 
nitrogen cycle) and alter the structure (e.g. species composition) and function of communities and ecosystems. 
One of the significant outcomes of global environmental changes caused by activities of humans is greater con-
centrations of nitrogen and phosphorous in aquatic ecosystems. Due to overuse of fertilizers in agriculture and 
discharge of wastewater effluents to freshwater rivers and lakes, eutrophication leads to loss of biodiversity and 
deterioration of water quality3–5.

Biodiversity of aquatic ecosystems has enormous economic and aesthetic value and is largely responsible 
for maintaining and supporting environmental health and ecosystem services6. Zooplankton play vital roles in 
biogeochemical cycling of C and N, and aid the stability of aquatic food webs7. In addition, many zooplankton 
are sensitive to external perturbations and, consequently, a useful indicator of environmental stressors such as cli-
mate change, chemical and organic pollution8–10. However, understanding the influence of environmental change 
on zooplankton communities is hindered by the traditional taxonomy challenges11, 12. Traditional methods of 
identifying species, and enumerating individuals based on morphology is costly, time-consuming and requires 
highly trained individuals with expertise in identifying species in zooplankton communities, especially in large 
scale environmental investigations and monitoring programs13. In addition, traditional biological monitoring is 
only feasible for easily observable species, however, it is difficult or virtually impossible to use morphology-based 
method for some taxonomic groups (e.g. larvae of copepoda).
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Metabarcoding technology, which can be used to characterize compositions of species by use of environ-
mental DNA and next generation sequencing (NGS)14–16. In particular, metabarcoding have found several appli-
cations17, such as investigating biological diversity18, characterizing prey composition in gut contents19, and 
analyzing food-web dynamics20. Many studies have demonstrated that metabarcoding improve taxonomic res-
olution and can be useful in assessing biodiversity of zooplankton11, 12, 19. Several gene regions have been used 
in metabarcoding of zooplankton assemblages, such as hypervariable regions of 18S rRNA12, 21, 22, 28S rRNA23, 
mitochondrial 16S rRNA24 and COI25. Mitochondrial COI is one of the most commonly sequenced regions for 
biodiversity analyses of animals, including zooplankton diversity26. However, the standard COI primers target the 
658 base pair (bp) barcoding region, whose size is considered too large for high throughput sequencing platform 
(e.g. Ion torrent PGM). Leray et al. designed a new COI primer set which targets a 313 bp fragment to characterize 
the gut contents of fish19. Although the target length of this primer is very suitable for NGS and the products have 
a good performance on species identification, no study available uses it to characterize zooplankton diversity 
from the environmental samples. In the present study, metabarcoding of mitochondrial COI 313 bp region of 
mtDNA was used to characterize the genetic diversity of zooplankton in a eutrophic freshwater ecosystem - Tai 
Lake Basin in China. The specific objectives include: 1) to develop a metabarcoding protocol to assess the com-
ponents and structure of freshwater zooplankton communities; 2) to validate the results of metabarcoding by 
morphology-based monitoring data.

Results
Profile of zooplankton composition based on metabarcoding data.  DNA metabarcoding of zoo-
plankton communities collected by the plankton net provided a reliable community profile on the 69 different 
sites across the Tai Lake basin sampled from 28-11-2013 to 12-12-2013 (Fig. S1 and Table S1). Most sequences 
(910,741 in 950,283, 95.8%) of eukaryotic mitochondria CO1 obtained can be assigned to a specific taxon 
(sequence similarity >80% and posterior probability >60% in SAP) by using NCBI Genbank and local species 
database and about 90% (819,253 in 910,741) of the sequenced reads belong to zooplankton individuals (Fig. S1). 
Rotifer, Copepod and Cladocera represented the three major taxa (Fig. S1, Fig. 1). There were five taxa with large 
numbers of reads, including Ploima (order), Branchionus calyciflorus, Synchaeta sp, Keratella cochlearis, Bosmina 
sp, and Calanoida (order). In general, the taxa that had a highly number of reads were also found from many 
samples. However, there were also some species, such as Pseudodiaptomus inopinus, Mesocyclops thermocyclo-
poides and Mesocyclops thermocyclopoides which contained only several hundred reads but were detected in many 
samples.

Components of eukaryotic plankton biodiversity.  Approximately 22% (217 in 1003) of OTUs 
observed in this study did not match any reference barcode or match to the “environmental invertebrate sample” 
in the NCBI database and were labelled as “unassigned”. The unassignable OTUs represented 7.6% of total reads. 
Approximately 40% of total assigned OTUs were classified as rotifers, while the greatest proportion of read counts 
were classified as calanoida. Only a small proportion of OTUs and reads were classified as Cyclopoda species. 
Due to the universality of eukaryotic primers used, approximately 5% of barcodes were classified as diatoms. The 
Neighbor-Joining (NJ) tree diagram based on the CO1 sequences demonstrates that all zooplankton taxa were 
clearly divided into three subgroups (rotifer, cladocera or copepod) (Fig. 1). Most rotifers had greater occurrences 
rivers, than in Tai lake or other small lakes. Nevertheless, Keratella cochlearis and Ploima (Order) are detected in 
both rivers and lakes. Although Bosmina sp. was observed in almost all samples, the relative abundance in lakes 
was greater than it in rivers (Fig. 1). The depth of sequencing (10000 reads per sample) is enough to saturate the 
sampling curve for identification of zooplankton communities (see SI, Fig. S2).

Comparison of metabarcoding data with monitoring data based on morphology.  The pro-
file of zooplankton communities from metabarcoding data is consistent with the results of morphology based 
data. There were 68 species of zooplankton that were identified based on morphology and 52 of those were also 
detected by use of DNA metabarcoding (see SI, Fig. S3). Most of the missed species (those species that were 
not found in metabarcoding but were in morphological assessments) have only a few or no reference barcode 
sequence in Genbank (see SI, Figs S4 and S5). Second, the occurrence frequency of zooplankton in metabarcod-
ing data were also consistent with traditional morphological identifications (Fig. 2A). In addition, about 80% of 
species that were identified by the morphological method could be detected by metabarcoding in most samples 
(Fig. 2B). Finally, the distribution characteristics of common species (frequency of occurrence >10 samples) by 
metabarcoding also exhibited good agreement (R = 0.52, p = 0.0001, mantel test with nperm = 9999) with the 
morphological monitoring data (Fig. 3). The comparison of zooplankton inferred biomass (inferred biomass = 
density × bodylength3) with the NGS read counts demonstrated that, as a new monitoring tool, metabarcoding 
can work well for zooplankton investigations and the monitoring results were highly consistent with the data 
based on traditional, visual identification based on morphology (Fig. 4).

16 species identified by morphology were not detected by metabarcoding, most of which are not commonly 
observed in the aquatic ecosystems of Lake Tai basin (see SI, Fig. S3). In addition, only 3 species of the 16 had 
CO1 barcode sequences in the NCBI Genbank (see SI, Fig. S4).

There were 20 species identified by morphology that appeared in more than ten samples. Eighteen of the 
20 species could be detected successfully by metabarcoding, except two species, Gastropus minor and Keratella 
ticinensis. Both species have no barcode sequence available indicated that the sequence from the missing species 
might not be annotated to the species level. In addition, a lot of rotifer OTUs cannot be assigned to the species 
level. For example, both ploima (order) and rotifer (phylum) represented more than 50 OTUs and appeared in 
at least 30 samples, but just assigned to the order or a higher taxonomic level. A similar situation also exists in 
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copepod and cladocera. Nevertheless, the metabarcoding method can detected more species than the traditional 
morphological method. Metabarcoding detected an additional 37 OTUs that were not found using morphology 
alone (Fig. S5).

Although rotifer with a small body size had a high density, larger copepods represented more of the inferred 
biomass overall (see SI, Fig. S6). In morphological monitoring data, the inferred biomass decreased from cope-
pod, rotifer to cladocera. Consistent with the inferred biomass data, copepod, rotifer and cladocera read number 
from metabarcoding also decreased (Fig. S7). In addition, the number of reads in metabarcoding has a highly 
positive correlation (Pearson correlation, p < 0.001) with zooplankton inferred biomass determined from density 
and body length (Fig. 4).

Differences in zooplankton communities between lakes and rivers.  The composition and biodi-
versity of zooplankton communities were dissimilar among different types of water bodies (Figs 1 and 5). NMDS 
analysis based on OTU read abundance indicated community samples collected from lakes could be clearly dis-
criminated from rivers. In addition, samples from Tai Lake were discriminated from those collected from smaller 
lakes (Fig. 5A). Although the morphological data can also indicate the statistical difference of the zooplankton 
composition between Tai Lake and river/lake (p < 0.05), but morphological approach failed to discern the differ-
ence between rivers and small lakes (Fig. 5B). On the other hand, metabarcoding data showed that river, lake and 
Tai Lake had distinct zooplankton community profile (p < 0.001) in the NMDS1 by ANOVA with Duncan’s post 
hoc tests. Proportions of the three main groups (rotifer, copepod and cladocera) also differed among water body 
types. In samples from rivers, in general, most species of zooplankton were rotifers, which have relatively smaller 
bodies compared to copepods. However, the proportion of copepods was greater in lakes and rotifers were less 
common (Fig. 5C).

Figure 1.  Phylogenetic distribution of assignable components of zooplankton CO1 diversity. (A) A tree 
diagram of representative sequence of each taxon. Distance was measured by the number of base substitutions 
per site, based on the Kimura two-parameter (K2P) method. One thousand bootstrap trials were run using the 
neighbor-joining algorithm of the Mega 6.0 program. (B) Number of reads of each taxon. (C) Number of OTUs 
of each taxon. (D) Number of reads per OTU. (E) Occurrences of each taxon in all samples. (F) Proportions of 
OTUs in the same taxon. Different color represents different OTU, and stacked bar means relative abundance of 
each OTU. (G) Distribution of each taxon in all samples. The color weighted by relative reads abundance (e.g. 
0.01 means the number of reads for this taxon accounts for 1% of total number of reads).
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Discussion
Compared with traditional morphology-based taxonomy, DNA metabarcoding identified a greater number of 
species and provided additional information to understand the ecology of zooplankton community. Since the 
zooplankton community was enriched by filtering the lake water with a plankton net, most of the sequences 
obtained in the present study were assigned to the zooplankton. Rotifera, cladocera and copepod, which are 
the three main zooplankton groups and the primary functional groups in freshwater aquatic ecosystems, can 
be detected by metabarcoding, although other aquatic organisms, including aquatic insects, diatoms, protista, 
and nematodes were also detected marginally (11.2% of zooplankton sequences) because of the universality of 
primers. Approximately 20% of OTUs, representing a small proportion (7.6%) of total reads, were unassignable, 
which suggested the rare and minute taxa that escaped previous characterization27. Species of rotifer contributed 
significantly to biodiversity of the freshwater ecosystems28 because rotifer OTUs represented more than half of the 
total OTUs in zooplankton communities. Calanoida, for which the greatest abundances of reads were observed, 
represented a large proportion of the biomass in the ecosystem. The identification of zooplankton species was sig-
nificantly improved by metabarcoding, especially for those copepods at early life stage (traditional morphological 
method assigned it to “copepod larvae”). Taxonomy based on DNA barcoding makes it possible to identify the 
species of copepods larvae29, which improves the description of the species composition.

Figure 2.  Comparison of metabarcoding data with traditional monitoring data on zooplankton species 
monitoring. (A) Frequency of occurrence of each species by metabarcoding and morphological method. 
(B) The top panel shows the proportion of OTUs in metabarcoding data matched to the morphological 
identification at each site. Red color indicates the proportion of species detected by both morphological method 
and metabarcoding. Grey color indicates the proportion of species detected by metabarcoding only. The 
bottom panel shows the proportion of species detected by metabarcoding at each sample. (e.g. 0.8 means 80% 
morphological species detected by metabarcoding).
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The inferred biomass of zooplankton estimated by density and body length had a good linear correlation 
with the read counts in metabarcoding (Fig. 4). The utility of DNA metabarcoding for quantifying the species 
abundances is currently limited by both biological and technical biases which influence sequence read counts, 
such as PCR amplification biases, primers biases, DNA copy number variation30. Even sequencing biases will 
affect the abundance estimation in metabarcoding analysis31, 32. For the first time, we tried to estimate the biomass 
of zooplankton using body length and density of zooplankton in the present study, and found that the inferred 
biomass showed a strong linear correlation with the number of sequence reads. Although most of the freshwater 

Figure 3.  Comparison of the distribution characteristics of common species between metabarcoding and 
morphological data. Common species means the frequency of occurrence >10 samples. (A) Metabarcoding 
data. Green dot indicates the species were detected by metabarcoding. (B) Morphology monitoring data. Green 
dot indicates the species appeared in both quantitative and qualitative sample and red dot indicates the species 
only appeared in the qualitative sample. (R = 0.52, p = 0.0001, mantel test, 9999 permutations). “llim” means 
empirical upper confidence limits of r value. “ulim” means empirical lower confidence limits of r value.

Figure 4.  Relationship between inferred biomass of zooplankton in traditional monitoring data and the 
number of reads in metabarcoding data. The inferred biomass of zooplankton was roughly estimated by the 
density and body length (biomass = density × bodylength3).
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zooplankton are rarely homogenous in shape, body length parameter can basically reflect the size of zooplankton. 
So, the inferred biomass may be useful to estimate the abundance of zooplankton when the real biomass data (like 
dry weight) is absent. However, the relationship between inferred biomass and read number does not indicate 
that metabarcoding is an accurate quantitative biomonitoring tool for zooplankton communities. Because the 
read counts are highly dependent on the amount of DNA as well as gene copy number and primer bias33. We 
have shown that metabarcoding read counts can provide a preliminary or a semi-quantitative estimation of rel-
ative abundance with less effort than that based on enumeration of individuals and dry weight using traditional 
methods34. Overall, the metabarcoding of bulk DNA approach presented here provided a more complete char-
acterization of the species composition of zooplankton, which may be applicable to other taxa (diatom, Protista, 
insect and even fish).

Structures of zooplankton communities were significantly different in lake and river ecosystems. In general, 
rotifers were more abundant in riverine environments than lakes and reservoirs. There are a number of reasons 
rotifer might be fewer in number in lakes (temperature, grazer pressure, food availability, hydrodynamics)35–37. 
Previous studies have illustrated that smaller-bodied zooplankton species, which are more tolerant of relatively 
high temperatures, have more rapid cycles of development and reproduction, than do larger species38–40. The 
smaller body size, phenotypic plasticity and adaptable trophus apparently likely contribute to success of rotifers41. 
The abundance of smaller-bodied zooplanktons (such as rotifers) were reduced in lakes suggest that the zooplank-
ton community is likely more vulnerable to environmental stressors (e.g., temperature rise and eutrophication) 
than those in rivers. Since smaller zooplankton cycle more nutrients larger species42, this implies that nutrient 
cycling may also be reduced in lakes. In addition to size differences, biodiversity based on OTUs was greater 
in riverine than lake environments. Over the past two decades, it has been shown that ecosystems with greater 
biodiversity are more efficient at removing nutrients from water than are ecosystems with fewer species43–45. So 
the greater biodiversity of rivers suggests this community has adapted to cycling greater amounts of nutrients, 
thus maximizing use of available nutrients. The observed differences of community composition between water 
body types may be caused by many environmental factors including the differences in physical and hydrologic 
conditions46. Some environmental toxic factors, e.g. total ammonia nitrogen (TAN), also has a high potential to 
cause shifts in zooplankton communities47.

Although the morphological data can discriminate the difference of zooplankton composition between rivers 
and lake, such difference was more significantly shown by metabarcoding data. It indicated that metabarcoding 

Figure 5.  Composition of species and diversity of various types of aquatic environments (Tai Lake, 
Reservoir, River and Lake. Here, “Lake” means all the relative small lakes around Tai Lake). (A) Non-metric 
multidimensional scaling (NMDS) of zooplankton community components based on CO1 OTUs. (B) NMDS 
analysis of zooplankton community components based on morphological data. The boxplot below the NMDS 
illustrates the differences of NMDS1 between types of aquatic environments. Significance of ANOVA with 
Duncan’s post hoc tests was determined at P values < 0.001 (***) and <0.05 (*). (C) Proportions of rotifer, 
calanoida, cyclopoida and cladocera (based on metabarcoding data) in each sample.
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can better reveal the composition characterized of zooplankton than morphological identification. And it is more 
sensitive to reflect the alteration of zooplankton community against environmental factors. Because metabarcod-
ing significantly improved the capability of species identification. This is important for us to understanding the 
influence of water quality on zooplankton structure.

Although metabarcoding is a very promising approach for biomonitoring, there are still some limitations 
and weaknesses by itself. Firstly, some technical biases related to the PCR reaction, primer specificity and even 
sequence analysis would affect the final results14, 48. So multi-PCR reaction replicates and using different primers 
for different taxon are necessary to reduce the biases of PCR. Furthermore, oligonucleotides (capture probes) that 
target conserved regions or directly sequence the eDNA can also avoid PCR error and primer biases49. The stand-
ardized NGS data analysis pipeline is also important to improve the reliability of metabarcoding and reduces the 
divergences between molecular and morphological results50, 51. Secondly, the incompleteness and inaccuracy of 
reference databases were believed to be the main hindrance to assigning taxonomy to metabarcoding sequences 
and lead to some species to be unidentified52. Most of the species which have barcode sequence that can be 
assigned to the species level. So constantly improving reference databases, especially local species database, is 
important for routine biomonitoring. Lastly, DNA based approach could not distinguish the life stage and health 
status of the individuals. Therefore, if the information of life stage and health status is important, combining the 
molecular approach and morphological methods together for bio-assessment are recommended.

Preforming multi-marker genes might provide potential advantages in the future study of metabarcoding. The 
depth of sequencing provided by NGS makes this more feasible than the past. Multi genes (e.g. mitochondrial 16S 
rRNA and nuclear 18S rRNA) provide important confirmatory evidence for phylogenetic analysis. Many studies 
demonstrated that COI was an ideal candidate marker of animal for high-throughput sequencing-based biodi-
versity assessment. However, some taxa in aquatic communities, including dominant taxonomic groups such as 
Copepod and Cladocera, might be difficult to be PCR amplified when using COI for barcoding analysis53. Using 
different types of genetic markers could reduce the bias of primers and enhance the performance of biodiversity 
assessment in aquatic communities.

In summary, the genetic diversity of zooplankton was used to characterize the freshwater community on 
a large ecological scale, in Lake Tai basin of Eastern China. Metabarcoding of community DNA significantly 
increased the number of zooplankton taxa that can be observed in biomonitoring. The species composition of 
zooplankton community from metabarcoding data was consistent with the results based on traditional morpho-
logical data. DNA based approach could more clearly show the difference of zooplankton community between 
lake and river ecosystems. Finally, metabarcoding can provide a preliminary or even a semi-quantitative estima-
tion of abundance with less effort than that based on enumeration of individuals and dry weight by traditional 
taxonomy. The developed metabarcoding protocol could be a powerful and efficient bio-assessment and biomon-
itoring tool to protect local aquatic ecosystem.

Materials and Methods
Sampling sites.  The catchment of Tai Lake (Ch: Taihu), which is situated in the lower reaches of the Yangtze 
River in south-eastern China, is one of the most densely populated and developed areas in China54. About 
17% of the total territory is covered by lakes and river channels. Tai Lake is the third largest freshwater lake in 
China (2400 km2). In the vicinity of Tai Lake, there are several small lakes, Ge Lake (146.9 km2), Yangcheng Lake 
(118.9 km2), Changdang Lake (89.0 km2), Cheng Lake (40.6 km2), Kuncheng Lake (17.9 km2), Yuandang Lake 
(13.0 km2), Kuilei Lake (6.73 km2), and Ezhendang Lake (5.2 km2). In the current study, a total of 69 sampling sites 
(27 sites in Tai Lake, 25 sites in the Yangtze River and tributaries, 15 sites in smaller lakes and 2 sites in reservoirs) 
across the basin were sampled from 28-11-2013 to 12-12-2013. Sampling sites were grouped into four categories 
according to the type of water body: 1) Tai Lake, 2) Reservoir, 3) River and 4) Lake. Here, “Lake” means all the 
relatively smaller lakes around Tai Lake (Fig. S1 and Table S1).

Collection and identification of Zooplankton.  Quantitative and qualitative sampling methods are the 
most commonly used standard sampling method for plankton diversity analysis. At each sampling site, two quan-
titative samples of zooplankton were collected by use of a plankton net (46-μm mesh, 0.316-m opening diameter) 
through which 20 L of water were passed (Fig. 1B). One sample was used for metabarcoding analysis while the 
other was used for traditional identification of zooplankton based on morphological taxonomy. A qualitative 
sample (zooplankton enriched by plankton net from a large volume of lake water) was collected to maximize the 
morphological identification of zooplankton at each site. In the laboratory, the zooplankton samples that enriched 
by plankton net from 20 L water were further filtered through 5-μm microporous filter paper (Millipore, USA). 
Filter membranes were then placed in a 5-mL centrifuge tube and stored at −20 °C until extraction of DNA. The 
E.Z.N.A. water DNA kit (Omega, USA) was used to isolate DNA from zooplankton trapped on the filter paper. 
All zooplankton were identified to species by use of traditional taxonomic methods55–57, based on morphology 
although in a few cases the specimens could be identified only to genus or higher level of taxonomy.

Amplification by PCR and next generation sequencing (NGS).  The gene for eukaryotic mitochon-
dria cytochrome c oxidase I (COI) was amplified by use of the degenerate primer (mlCOIintF and gHCO2198)19. 
Amplification by PCR was performed with a final volume of 50 μL, made up of 1 μL of 10 μM of primers, 2 μL of 
DNA template, 37.8 μL of ultrapure water, 5 μL of 10 × PCR High Fidelity PCR buffer, 2 μL of MgSO4 (50 mM), 
1 μL of dNTP mix (10 mM) and 0.2 μL of Platinum Taq DNA polymerase (Invitrogen, USA). To minimize poten-
tial bias of the PCR, triplicate PCR reactions were performed for each sample. Amplifications by PCR were per-
formed in 96-well plates using a SureCycler 8800 thermal cycler (Agilent Technologies, USA). Although a lower 
PCR cycle number can help improve the diversity of PCR amplicons from environmental samples58, a “touch-
down” PCR profile with 41 cycles was used to maximize the products and minimize the probability of non-specific 
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amplification because of the high level of degeneracy of the primer sequences19. PCR was conducted for 16 initial 
cycles as follows: denaturation for 10 s at 95 °C, annealing for 30 s at 62 °C (1 °C per cycle), and extension for 60 s at 
72 °C, followed by 25 cycles at an annealing temperature of 46 °C. The final extension was performed at 72 °C for 
10 min. A negative control reaction with no DNA template was included in all experiments. PCR products were 
detected on a 2% (w/v) agarose gel, and fragments from the gel were purified by use of the MinElute gel extraction 
kit (Qiagen, CA, USA). After purification on the gel, products of PCR were quantified by use of Qubit dsDNA HS 
assay kits (Invitrogen, USA), and the final concentration was adjusted to 10 ng/μL using molecular grade water.

To ensure a homogeneous number of sequencing reads from each sample, amplicons were mixed in equal 
concentrations (10 ng/μL) in an equimolar pool. One hundred ng of the pooled amplicon in a total volume of 
79 μL of nuclease-free water was used in end-repair and ligation of adaptors by use of the Ion Plus fragment 
library kit (Life Technologies, USA) according to the manufacturer’s protocols. To eliminate primer dimers and 
PCR artifacts <100 bp, the end-repaired and ligated adaptor DNA was purified with the Agencourt AMPure XP 
kit (Beckman Coulter, Germany). The purified amplicon library was then transferred to new 1.5-mL Eppendorf 
LoBind tubes (Eppendorf, Germany) and assessed for region size distribution and DNA concentration using an 
Agilent 2100 bioanalyzer (Agilent Technologies, USA).

Quantified, size-selected amplicon libraries (467 bp), including amplification primers, MID tags, and Ion 
Torrent adaptors, were serially diluted to a final concentration of 100 pM and attached to the surface of Ion Sphere 
particles (ISPs) using the Ion PGM template OT2 400 kit (Life Technologies, USA). The ISPs were enriched on the 
Ion OneTouch enrichment system (Life Technologies, USA) and together with the template were sequenced on 
“318 v2” micro-chips using the Ion PGM sequencing 400 kit (Life Technologies, USA) with the Ion Torrent PGM 
(Life Technologies, USA) for 850 flows according to the manufacturer’s protocols.

Bioinformatics.  The ION Torrent server auto-sorts sequences into groups, based on the library barcode, 
then generates a FASTQ format file containing bases and quality information. Fastx toolkits and Bio-python 
were then used, to reverse complement the FASTQ file and to convert the FASTQ file to FASTA and qual files, 
respectively59. The QIIME (Quantitative Insights into Microbial Ecology v1.8.0) platform60 was used to filter 
low-quality reads and to discard reads with more than two mismatches in the primer sequence by the split_librar-
ies.py command with the parameters –w 50 –s 20 –m 2. Chimera filtering were performed by “usearch -uchime_
denovo” in USEARCH program which base on UCHIME algorithm61. The above steps were completed using the 
Bio-Linux 8 system, which integrates all of the above-mentioned tools62. Short reads (<250 bp) were filtered using 
the “Biostrings” package in R software (3.1.2) with the Bioconductor environment63. Operational taxonomic units 
(OTUs) were selected with a sequence similarity cutoff of 97% following the UPARSE (USEARCH 7) pipeline64. 
The sequences from different samples were merged together for OTUs clustering and the OTU table were gener-
ated by the command “usearch –usearch_global”. For each OTU, a representative sequence was chosen and the 
Statistical Assignment Package (SAP, 1.3.2 version) was used to assign the representative sequence to a specific 
taxonomic group65 against a reference database (NCBI nucleotide database in Genbank). SAP retrieves homo-
logues for each query sequences and builds 10,000 unrooted phylogenetic trees. It then calculates the posterior 
probability for the query sequence to belong to a taxonomic group at each levels (phylum, class, order, family, 
genus and species) respectively. Here we allowed SAP to retrieves 100 homologues at >80% sequence similarity 
and we accepted assignments at a significance level of 60% (posterior probability). To extend the reference data-
base and improve sequence annotation, 70 zooplankton species (also come from Tai Lake basin) were sequenced 
to capture the COI sequence (Table S2). Briefly, DNA was extracted from each zooplankton individual using a 
modified HotShot protocol66. A hierarchical tagging approach was used to sequence all samples in a single PGM 
sequencing reaction to obtain the barcode sequence67. The barcode sequences were submitted to NCBI Genbank 
(Table S3). The Kimura two-parameter (K2P) distance model was used to calculate genetic divergences of each 
zooplankton68. A tree diagram was constructed using the neighbor-joining (NJ) method, which provided a graph-
ical representation of the patterns of COI divergences69 using MEGA 6 software70.

Biodiversity.  Shannon’s diversity index was estimated using relative abundances of each OTU by the “Vegan” 
package in R software. All samples were rarefied at the lowest sequencing depth to reduce biases resulting from 
differences in sequencing depth.

Statistical analyses.  Non-metric multidimensional scaling (NMDS) was employed to cluster samples 
according to various types of water bodies71. The original species data were transformed by the “Hellinger” 
method in “Vegan” package before NMDS72. The water temperature was statistically analyzed by one-way 
ANOVA and post-hoc Duncan multiple range test. The comparison of the distribution characteristics of com-
mon species between metabarcoding and traditional monitoring data were statistically analyzed by mantel test, 
9999 permutations73. The inferred biomass of zooplankton was roughly estimated by the density and body length 
(inferred biomass = density × bodylength3).

Data accessibility.  DNA sequences by NGS were uploaded to NCBI Sequence Read Archieve (SRA, 
SRR4241102) and to the dryad database (doi: http://datadryad.org/review?doi=doi:10.5061/dryad.979cq). The 
phylogenetic tree of represented sequences was deposited in Treebase (Study Accession URL: http://purl.org/
phylo/treebase/phylows/study/TB2:S20578). Sampling locations, morphological data, trophic level index of each 
sample have been provided as supplementary information. The barcode sequences of local database were submit-
ted to NCBI Genbank with the accession no. KY091149-KY091219.

http://S2
http://S3
http://datadryad.org/review?doi=doi:10.5061/dryad.979cq
http://purl.org/ phylo/treebase/phylows/study/TB2:S20578
http://purl.org/ phylo/treebase/phylows/study/TB2:S20578
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