
1Scientific Reports | 7: 1648  | DOI:10.1038/s41598-017-01931-w

www.nature.com/scientificreports

Precision Radiology: Predicting 
longevity using feature engineering 
and deep learning methods in a 
radiomics framework
Luke Oakden-Rayner1,2, Gustavo Carneiro3, Taryn Bessen1, Jacinto C. Nascimento4, Andrew P. 
Bradley5 & Lyle J. Palmer2

Precision medicine approaches rely on obtaining precise knowledge of the true state of health of an 
individual patient, which results from a combination of their genetic risks and environmental exposures. 
This approach is currently limited by the lack of effective and efficient non-invasive medical tests to 
define the full range of phenotypic variation associated with individual health. Such knowledge is 
critical for improved early intervention, for better treatment decisions, and for ameliorating the steadily 
worsening epidemic of chronic disease. We present proof-of-concept experiments to demonstrate how 
routinely acquired cross-sectional CT imaging may be used to predict patient longevity as a proxy for 
overall individual health and disease status using computer image analysis techniques. Despite the 
limitations of a modest dataset and the use of off-the-shelf machine learning methods, our results are 
comparable to previous ‘manual’ clinical methods for longevity prediction. This work demonstrates 
that radiomics techniques can be used to extract biomarkers relevant to one of the most widely used 
outcomes in epidemiological and clinical research – mortality, and that deep learning with convolutional 
neural networks can be usefully applied to radiomics research. Computer image analysis applied 
to routinely collected medical images offers substantial potential to enhance precision medicine 
initiatives.

Measuring phenotypic variation in precision medicine
Precision medicine has become a key focus of modern bioscience and medicine, and involves “prevention and 
treatment strategies that take individual variability into account”, through the use of “large-scale biologic data-
bases … powerful methods for characterizing patients … and computational tools for analysing large sets of 
data”1. The variation within individuals that enables the identification of patient subgroups for precision medicine 
strategies is termed the “phenotype”. The observable phenotype reflects both genomic variation and the accumu-
lated lifestyle and environmental exposures that impact biological function - the exposome2.

Precision medicine relies upon the availability of useful biomarkers, defined as “a characteristic that is objec-
tively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or phar-
macological responses to a therapeutic intervention”3. A ‘good’ biomarker has the following characteristics: it is 
sensitive, specific, predictive, robust, bridges clinical and preclinical health states, and is non-invasive4.

Genomics can produce good biomarkers useful for precision medicine5. There has been significant success in 
exploring human genetic variation in the field of genomics, where data-driven methods have highlighted the role 
of human genetic variation in disease diagnosis, prognosis, and treatment response6. However, for the chronic 
and age-related diseases which account for the majority of morbidity and mortality in developed nations7 and 
worldwide8, the majority (70–90%) of observable phenotypic variation is related to non-genetic determinants9. 
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It has become clear that physical biomarkers more proximal to the outcome of ultimate interest (usually clinical 
morbidity or mortality) are needed in addition to genomic markers. To date, such biomarkers have proven diffi-
cult to capture and analyse for precision medicine purposes.

Environmental exposures are difficult to quantify because they occur outside of the medical context, accu-
mulating and changing throughout life10. Environmental exposures such as diet and physical activity are also 
notoriously difficult to measure objectively or retrospectively11, 12. Rather than trying to measure environmental 
exposures directly, “it makes sense to employ a top-down approach based upon biomonitoring (e.g. blood sam-
pling) rather than a bottom-up approach that samples air, water, food, and so on”10. Current clinical and research 
methods of biomonitoring explore the phenotype (the combination of genetics and exposures) by assessing the 
patient’s clinical history, examination findings, and test results13. Aggregated, large-scale clinical data can be ana-
lysed to identify factors (biomarkers) that correspond to important variations in health in a similar way to that 
which already occurs in genomics14. Current national and international efforts seek to expand these databases to 
include other “-omic” information, such as proteomic and microbiomic data1, 15–21 (the high-throughput analysis 
of endogenous body proteins and commensal organisms respectively).

An important potential high dimensional source for phenotypic data and biomarkers are data collected for 
routine clinical purposes22. However, the types of the data commonly used for this application may not currently 
be well suited for precision medicine for several reasons. Unlike genomics, where the data is replicable, high 
quality, and objective, clinical information is sometimes incomplete, of variable accuracy, and highly complex14. 
Clinical data also rarely captures asymptomatic pathological variation; chronic diseases often develop slowly and 
silently over decades without any direct clinical measurement. That is, important biomarker variation is usually 
both unmeasured and latent before frank disease in diagnosed. Much of the important variation in health meas-
ures that precision medicine would wish to capture, particularly for prognostic purposes, is thus pre-clinical. 
Furthermore, collecting the extensive medical histories, examination findings, and test results needed for accurate 
clinical phenotyping can be both costly and time-consuming if such collection and aggregation in well-curated 
databases is outside of routine practice23, 24. Finally, the current use and interpretation of clinical tests may be 
non-optimal for describing human health because of our incomplete understanding of disease25, as we cannot 
design tests for processes we do not understand.

To expand on this last point, in mathematics and computer science a method is said to be optimal if it per-
forms better than other methods at the desired task according to some criterion26. In mathematics, the solution 
space for an optimisation problem can usually be explored completely. For example, in a problem where the 
solution will be any integer number we could theoretically test every candidate solution, although this would be 
computationally inefficient. In medical testing we cannot explore every solution; we are limited to a set of bio-
markers we have already discovered and validated. This set of biomarkers is limited by the technical capabilities 
and knowledge of the day. As an example, a biomarker of myocardial infarction (MI) known as CK-MB was used 
for decades until a number of scientific and technical advances led to the development of the troponin assays27. 
Troponins were found to be superior for the assessment of MI, and have superseded the use of CK-MB testing in 
almost all settings27.

The suboptimality caused by incomplete biomarker knowledge and testing capacity is less problematic for 
high-throughput ‘-omic’ methods because these approaches are generally “hypothesis free” and do not rely on 
previously discovered biomarkers. These methods attempt to comprehensively explore an entire domain of bio-
markers. Genomics explores the entire genome in a hypothesis free way, nucleotide by nucleotide. Similarly, pro-
teomics explores the entire set of proteins that are created by the body. The best performing biomarker can be seen 
to be the optimal choice for that task within each domain. To return to the earlier example, comprehensive testing 
of endogenous proteins with proteomics techniques in the setting of MI could have demonstrated that troponins 
outperform CK-MB. Without proteomics this discovery required more than twenty years of research27. It is also 
plausible that further unknown latent protein biomarkers of MI may in turn outperform troponins: a proteomic 
analysis could also discover these new markers. Despite this advantage, phenotyping with ‘omic’ methods has 
been largely unsuccessful to date in producing new diagnostic, prognostic, or treatment response biomarkers 
and risk models28. These technologies appear unlikely to offer comprehensive diagnostic or prognostic biomarker 
discovery solutions for most chronic diseases because of their limited domains; proteomics will only be relevant 
if variation in health alters serum protein levels, microbiomics when there is an altered balance of commensal 
flora, and so on.

In summary, the promise of precision medicine relies upon the discovery and use of good biomarkers for 
health and disease. Currently available biomarkers have limitations and can be problematic for use in precision 
medicine applications. In particular, genomics and other ‘omic’ domains have not yet fully delivered on promises 
apropos diagnostic and prognostic markers29, and currently utilised clinical data is limited by quality, optimality, 
and application issues. In this context, it is critical to develop new methods to assess phenotype variation more 
objectively, accurately and comprehensively for precision medicine tasks. Since any observable physical phe-
notypic variation in human health must correlate to tissue changes at the cellular or subcellular level, an ideal 
precision medicine test would assess the key areas of the body or the whole body with microscopic resolution, 
quantify the tissue changes of clinical and pre-clinical disease, and identify optimal biomarkers of health vari-
ation. These biomarkers should be easily and cheaply obtained (ideally collected for routine clinical purposes), 
objective and reproducible. Such biomarkers will also be increasingly important for so-called “phenome-wide 
association studies”30.

With these goals in mind, we propose that images derived from routine radiological testing have been largely 
ignored in the context of precision medicine, and motivate the use of powerful new machine learning techniques 
applied to radiological images as the basis for novel and useful biomarker discovery.
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The role of medical imaging in precision medicine
Medical images are routinely collected and contain dense, objective information. Medical image analysis is there-
fore highly attractive for precision medicine phenotyping. Cross-sectional studies can comprehensively assess 
whole regions of the body during a single examination, a variety of human and machine detectable changes have 
been shown to quantify clinical and preclinical disease states31–33, and high-throughput image analysis techniques 
may be able to identify biomarkers which are closer to optimal for a given task. Recent advances in the field 
of medical image analysis have shown that machine-detectable image features can approximate the descriptive 
power of biopsy, microscopy and even DNA analysis for a number of pathologies34–36.

‘Radiomics’ as a field can be broadly defined as the use of high-throughput computational techniques to 
analyse the high-dimensional data of medical images34, 37, 38. There are two image analysis methods currently 
considered state of the art in their respective fields that are applicable in the radiomics domain: “traditional” 
image analysis with human-defined image features, and deep learning with feature learning. We note that the 
human-defined feature method is currently synonymous with the term “radiomics” in some of the relevant lit-
erature, however we suggest that a broader definition of the field is more useful than a narrow focus on a single 
method.

Traditional image analysis methods with human-defined features have been utilised in the radiology and 
informatics communities and have shown significant promise in finding useful biomarkers of health, particularly 
in cancer subclassification34–36. However, these techniques have never been applied more broadly to the phe-
notyping of overall health and latent disease. These methods attempt to identify and analyse a large number of 
candidate biomarkers at once. Candidate biomarkers are termed “image features”; mathematical descriptions of 
the visual properties of an image informed by decades of research in computer vision39. These human designed 
or “engineered” image features typically describe the low level visual information present in an image, such as 
the intensity/brightness and the texture of image regions. These methods are limited because they require expert 
input (e.g., a radiologist) to define high-level features. High level features are complex patterns in the images 
which are semantically relevant to the task. In the case of medical images, such features are those a human expert 
recognises in the practice of diagnostic radiology, for example the presence or absence of a lung cancer. In gen-
eral, these abstract concepts are almost impossible for a human expert to define mathematically, and so this is 
an unsolved problem. However, in some specific applications high-level features are amenable to mathematical 
definition, or can be constructed by combining multiple low level features. These form the image biomarkers 
we currently use today (e.g., counting the number of high density pixels in the wall of an artery to quantify the 
atherosclerotic plaque burden). Even when this is possible, the process is very time-consuming and limited by the 
knowledge of the expert. A further weakness of using human-defined features for to image analysis is the need to 
perform feature design, extraction, selection, and combination as discrete steps, where each step introduces new 
biases and complicates the analysis.

The current trajectory of methods in traditional, human engineered image analysis is broadly analogous to 
that of the history of human gene discovery. Quantitative scoring systems (such as coronary artery calcium scor-
ing) are similar to gene discovery attempts using candidate genes defined on the basis of prior biological knowl-
edge. The use of human-designed “agnostic” feature sets (e.g., generic intensity, shape and texture features) are 
similar to the early investigation of single nucleotide pleomorphisms (SNPs), where the sets of SNPs genotyped 
provided only partial coverage of the genome, i.e., were only a small subset of all possible SNPs and an even 
smaller subset of all possible genetic variants. With few exceptions, such early efforts in genetics did not dis-
cover robust, replicable genetic variants associated with chronic disease40. Rather, it has been the advent of whole 
genome association scans and next generation sequencing used in a hypothesis free paradigm that has enabled 
the discovery of thousands of novel genetic variants robustly associated with chronic diseases41. Analogous to 
this, novel biomarker discovery in radiomics now requires robust, hypothesis free approaches that analyze all of 
the available variation in an image. Deep learning appears to be an ideal tool to accomplish this goal.

Deep learning has developed from the computer science community and has rapidly overtaken more tra-
ditional methods in many computer vision tasks, such as image recognition and segmentation42. In fact, deep 
learning systems have approached or even surpassed human level capabilities for complex “real-world” tasks such 
as image recognition, speech recognition, natural language processing, complex game playing and more42. Deep 
learning automatically discovers visual features that are suited to a specific task through a process of optimisa-
tion, including both low-level and high-level features42. Deep learning can therefore offer an exciting solution 
to incomplete biomedical knowledge: these methods can discover new biomarkers without any human input, 
conceivably generating truly unexpected discoveries. Deep learning image features can be later visualised, provid-
ing human-understandable explanations for the deep learning models43. Currently, a weakness of deep learning 
methods is the limited validation of these methods in medical imaging, although recent exciting results have 
demonstrated similar performance to human experts in the assessment of diabetic retinopathy and dermatolog-
ical lesions44, 45. In particular, the application of these methods to assess the tissue changes of chronic disease has 
not been explored.

A comparison between clinical data, genomic data, and image analysis methods for biomarker discovery 
methods is presented in Table 1.

Investigating image analysis to assess health phenotypes
We present a preliminary ‘proof of principle’ study to assess the utility of medical imaging for health phenotyping. 
We investigate the analysis of routinely conducted CT chest imaging in adult patients (age >60) to predict longev-
ity. We chose longevity as our primary outcome as mortality represents an easily obtained and well-defined out-
come (in this case, 5 year mortality rate), and strongly correlates to the underlying presence of chronic disease46. 
The strong relationship between age, morbidity, and mortality motivates the selection of near-term mortality as 
a surrogate biomarker for overall health status. CT chest scans were chosen for several reasons. CT scans are the 
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most highly utilised cross-sectional medical imaging studies with an estimated 2.1 million CT scans performed in 
Australia in 200947 and 69 million CT scans performed in the USA in 200748. CT scans are also the least variable 
cross-sectional imaging modality due to the standardisation of pixel values and the defined relationship between 
the pixel values and the physical density of the tissue38. Finally the thorax contains tissues directly involved in 
much of the morbidity and mortality in older adults (i.e., the lungs, heart, great vessels, and other organs). Many 
of the existing quantitative imaging biomarker methods related to chronic disease and mortality utilise CT chest 
imaging31, 32.

Mortality prediction has been attempted previously using clinical data, including survey results and laboratory 
tests24, 49. While promising accuracy has been achieved with these methods, the tools have not seen widespread 
adoption24. There has been minimal work to integrate medical image data into systems to predict mortality.

We investigate both traditional image analysis with human-defined features and deep learning techniques 
(“convolutional neural networks”) for this task, as these techniques have different strengths and weaknesses. In 
particular the traditional image analysis methods have been previously validated as a method of describing subtle 
tissue changes, and deep learning offers the automatic and hypothesis free learning of complex and high-level 
image features.

We present the novel application of these methods to the prediction of longevity in older adult patients as 
evidence to motivate the application of radiomics techniques to medical images in order to produce biomarkers 
for precision medicine applications.

Results
Exploratory analysis of human-defined feature methods.  A total of 15,957 CT image features from 
seven tissue segments were defined by an expert radiologist and extracted from each study. Univariate conditional 
logistic regression revealed 417 out of the 15,957 image features (2.6%) were associated (P < 0.05) with 5-year 
mortality. The distribution of association test results within each tissue segment is shown in Fig. 1.

The general under-representation of image features at the conventional threshold of significance is likely due 
to the co-dependence between the features extracted and is an inherent limitation of the human-defined feature 
methodology. That is, the number of independent features is significantly less than 15,957. We do identify pro-
portionally more significant features in the tissues (segments) that are most often associated with mortality risk 
in the literature – the heart (9.8% of heart features), the aorta (8.5% of aorta features) and the bone (10.6% of bone 
features). The bone tissue segment also demonstrated a high proportion of features informed by the previous 
biomarker literature (i.e., evidence-based features – see methods) that reached the threshold of significance (41% 
of total evidence-based bone features). The distribution of evidence-based and task-agnostic features is shown in 
Supplemental Figure 1.

Mortality risk phenotypes using human-defined features.  We created a predictive model using mul-
tivariable survival analysis (Cox regression). The model was informed by the top 5 covariates selected by mini-
mum redundancy-maximum relevance feature selection50. These covariates were standardised, and the resulting 
risk score was dichotomised at the mean to create high-risk and low-risk phenotypes. Table 2 shows the 5-year 
mortality rate for high and low risk phenotypes, and the related Kaplan-Meier curves are presented in Fig. 2. The 
difference between the survival curves for of the high and low risk phenotypes is highly significant (p < 0.00005). 
The distribution of the raw mortality phenotype scores among cases and controls are presented in a box and 
whisker plot in Supplemental Figure 2.

Machine learning 5-year mortality predictions.  Five-year mortality prediction was performed with 
deep learning, as well as a range of classifiers trained on the human-defined image features. Classification models 
tested included random forests, support vector machines and boosted tree algorithms. The random forest model 
performed the best of the human-defined feature classifiers. This was an expected result, as random forests are 
known to perform well in smaller data settings as they are fairly robust to noise51. We show the pooled ROC 
curves (combining 6 cross validations) for the testing sets of the deep learning and the best traditional models in 

Desirable feature

Phenotyping/biomarker discovery method

Clinical data Genomic data
Traditional 
image analysis

Deep learning 
image analysis

Broad phenotypic 
coverage No Assesses lifelong 

risk only Yes Yes

Accessible data Messy and 
complicated14

In development 
(e.g., PMI cohort)

Large centralised 
image archives

Large centralised 
image archives

Sensitive to 
preclinical tissue 
changes

No Assesses lifelong 
risk only Yes Not yet explored

Optimal biomarker 
discovery No Optimal genomic 

features
Optimal low 
level image 
features

Optimal low level 
and high level 
image features

Useful in chronic 
disease Yes Limited use 

(10–30% of risk)9 Not yet explored Not yet explored

Table 1.  Comparison of features of clinical data, genomic data, traditional feature engineering, and deep 
learning image analysis methods as potential phenotyping solutions for precision medicine.

http://1
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Fig. 3. In Table 3 we present the mean and the standard deviation of the AUC and accuracy results for the deep 
learning and the best traditional models. Comparison is also made with selected published clinical scores pre-
dicting 5 year mortality.

Using a t-test for paired samples there was no significant difference between the accuracy (p = 0.61) and AUC 
(p = 0.62) of the deep learning and best human-defined feature models. Both the deep learning model and the 

Figure 1.  Manhattan plot showing the distribution of covariates in each tissue segment. The dotted line 
identifies the threshold of significance (the −log10 of the p-value is plotted on the y-axis, covariates above this 
line have p-values < 0.05).

Risk phenotype n 5-year mortality rate

Low risk 25 8%

High risk 23 87%

Table 2.  Mortality rate for the dichotomised risk phenotype developed using human engineered image features 
extracted from CT chest scans. There was no censoring.

Figure 2.  Kaplan-Meier curves demonstrating 5-year survival for the high and low risk phenotypes developed 
using human engineered image features extracted from CT chest scans. There were two mortalities for the 
twenty five patients identified to be low risk, and twenty mortalities amongst the twenty three patients identified 
as high risk. The difference between curves is significant (p < 0.000005).
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best human-defined feature model demonstrated a significant improvement in accuracy compared to the null 
(i.e., accuracy = 0.5) (p = 0.03 using a one sample t-test for both methods) although neither method demon-
strated formal significance for the AUC measurement (p = 0.09 and p = 0.22 respectively).

Finally, qualitative visual assessment of the CT chest images was performed. The highest certainty average 
predictions of the deep learning and engineered feature models for survival and mortality outcomes were exam-
ined by a consultant radiologist for visual differences. This revealed many of the expected associations; patients 
predicted to survive longer than five years appeared visually healthier than those predicted to die within 5 years. 
In Fig. 4, we show representative images from the three chest CT scans with the highest certainty predictions for 
mortality and survival.

Discussion
The overall goal of precision medicine is to inform useful predictive models of health and disease. We have pre-
sented a novel application of medical image analysis as a proof of concept and to motivate the use of routinely col-
lected, high resolution radiologic images as sources of high quality data for precision medicine. We propose that 
the comprehensive assessment of tissues with cross-sectional imaging may better reflect the underlying micro-
scopic changes occurring in the body than current clinical and laboratory methods, and that the contemporary 
nature of patient imaging can explore the combination of genetic and environmental risks better than genome 
testing alone. Biomarkers derived from images such as those described in this paper have the additional advan-
tages of directly informing research with regards to important variation in critical organs and tissue, and of being 
more proximal to the ultimate outcome of interest - disease or health - than the features measured by some other 
technologies such as genomics (i.e., variation in DNA sequence).

We have shown the first proof of concept experiments for a system that is capable of predicting 5-year mortal-
ity in older (age >60 years) individuals who have undergone chest CT imaging. The results are promising, with 
prediction accuracy from routinely obtained chest CT images alone similar in our study for both the current 
state of the art ‘human engineered’ approach and for deep learning. The predictive accuracy we obtained was also 
broadly similar to previously published human engineered clinical risk scores24, 49. However, comparing our study 
design to previously published studies is challenging for several reasons. Our experiments are retrospective, with 
evenly distributed mortality and survival cases, and controlled for highly predictive covariates such as age and 
gender. The majority of published studies using clinical biomarkers have been prospective, and demonstrated 
mortality rates in their study populations between 5 and 30%. Furthermore, the choice of comparison studies was 

Figure 3.  Pooled ROC curves of the 6-fold cross validation experiment to predict 5 year mortality and survival 
outcomes from CT chest imaging, comparing the deep learning model and the human feature engineering/
random forest model.

Study Analytic model
AUC  
(mean ± std dev)

Accuracy 
(mean ± std dev)

Current study Deep Learning 0.677 ± 0.214 0.687 ± 0.153

Current study
Human 
engineered 
features

0.646 ± 0.255 0.646 ± 0.123

Schonberg et 
al.24 Clinical features 0.75* —

Ganna et al.49 Clinical features 0.79–0.80* —

Table 3.  Mean and standard deviation of the AUC and accuracy results of the 6-fold cross-validation 
experiment using the deep learning and human engineered feature models, compared to previously described 
clinical prognostic scores. *Clinical risk score results were reported as c-index rather than AUC, although in this 
context these terms are interchangeable.
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complicated by the lack of standardised experimental designs. Previous studies enrolled patients from different 
patient groups (e.g., screening adult population vs. hospital admissions vs. nursing home residents), and reported 
different follow-up times (between 1 year and 6 years). Each of these studies incorporated covariates such as age 
and sex in their models, which were shown to be highly predictive. These limitations hamper the comparison 
between prognostic indices in different studies24. In Table 3 we compare our model against the two studies that 
have the most similar follow-up periods, similar patient cohorts and the most predictive models, which we feel 
is the fairest and most conservative comparison we could present. As can be seen, our models provide broadly 
similar predictive accuracy.

Our classification results (c-index 0.68) using only a CT image also compare favourably to clinical prognos-
tic scores currently in widespread use, such as the Framingham risk model for lipid therapy decision support 
(c-index 0.63–0.83)52, the CHADS2 score for the use of warfarin therapy (c-index 0.68–0.72)53, and the TIMI 
score used to assist in invasive treatment choices in unstable angina (c-index 0.65)54. Note that in comparing these 
results, the terms AUC and c-index are interchangeable55.

Our proof-of-concept study is limited by the modest size of our dataset, particularly as the techniques 
employed are designed to be optimal with large volumes of data42, 56. This concern is at least somewhat mitigated 
by the convergence of our findings using both human-defined feature analysis and deep learning methods with 
automated feature learning. Furthermore, we note evidence of ‘face validity’ on qualitative image review – the 
strongly predicted mortality and survival cases demonstrate the expected patterns of disease when analysed by an 
expert radiologist. The modest size of our data set is currently unavoidable in this area of research. Segmentation 
of multiple anatomic structures requires high level medical expertise and takes a prohibitive amount of time, so 
a larger dataset was unfeasible in a preliminary study. Despite these limitations, to the best of our knowledge, our 
training dataset is the largest of its kind in the world.

The current limitations on sample size are expected to be alleviated in the near term. Automated segmenta-
tion methods are improving rapidly, particularly with the application of deep learning methods57. Furthermore 
our models are fairly robust to minor segmentation errors; the current state-of-the-art segmentation methods 
produce errors on the order of tens of pixels, which is less significant at the scale of whole organs compared to the 
more often attempted tumour and organ sub-region segmentation tasks. We are currently working with our data-
set to create automated deep learning segmentation models, with significant success (preliminary results demon-
strated in Supplemental Figure 3). We believe these early results show that the segmentation challenge is tractable, 
and we envision a time in the near future where radiomic analysis of whole tissues will be near instantaneous. 

Figure 4.  Images at the level of the proximal left anterior descending coronary artery, with the most strongly 
predicted mortality and survival cases selected by averaging the predictions from the deep learning and 
engineered feature models. The mortality cases (left side) demonstrate prominent visual changes of emphysema, 
cardiomegaly, vascular disease and osteopaenia. The survival cases (right side) appear visually less diseased and 
frail.

http://3
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When this is achieved, datasets can be as large as the available medical imaging archives. We are now extending 
this work to a much larger dataset (n > 12,000).

While the segmentations are necessary to apply the human designed feature techniques, the benefit is less clear 
for the deep learning approach. We provided the segmentation information to the deep learning system with the 
assumption that anatomical priors would be useful when automatically learning features related to mortality, 
particularly when dealing with a small dataset. This assumption will be explored in future work; it may be that 
segmentation masks are not required for well-trained deep learning models.

A further limitation of this work is the lack of statistical adjustment for diagnosed disease. We could not 
explore this due to our small sample size. This does not weaken our findings as our goal was to explore the use of 
radiomics methods to assess health, which is a combination of both diagnosed and undiagnosed pathology. While 
we cannot discriminate between the relative contributions of diagnosed and undiagnosed disease in this study, 
the ability to identify “healthy” and “unhealthy” patient subgroups remains an exciting and novel contribution.

We have presented multiple methods in this paper as there is no pre-existing gold standard method; the task 
of general health assessment and outcome prediction using medical imaging is currently under-explored. We 
have implemented several state-of-the-art radiomics methods; both human-designed feature analysis and deep 
learning approaches. Human-designed feature methods have been validated for a subset of medical image analy-
sis tasks in the radiology literature in recent years, and our implementation and adaptation of these methods will 
provide a useful baseline measure for future comparison. Deep learning methods hold much promise in medical 
image analysis, and as shown in our results even a naïve application of these methods to our complex and mul-
tifactorial predictive task appears to perform at least on par with the human-designed feature approach. This is 
all the more impressive considering the input data for the deep learning models was heavily down-sampled due 
to computational constraints. We believe that this finding is important for researchers and practitioners in the 
field of medical imaging, as it suggests that the human-designed imaging features which have been informed by 
decades of previous medical and computer science research may be no better than features learnt automatically 
from the data in an hypothesis free approach.

The possible synergy between these techniques and other methods is also attractive. We excluded highly pre-
dictive clinical covariates from our analysis to investigate the specific capabilities of medical imaging analysis, but 
a combination of our techniques with several readily available clinical covariates such as age, gender, and ethnicity 
is likely to yield significantly improved predictive capability. The published clinical mortality scores derived from 
radiologic image analysis not only suggest that these covariates significantly improve the performance of predic-
tive models, but also show they are among the most predictive clinical features24, 49. The possibility of combining 
our techniques with genomics analysis is also likely to yield further improvements, representing a more complete 
and quantitative assessment of phenotype (i.e., the observable results of genome and exposome).

Finally, the widespread use of high resolution medical imaging of the internal body in routine clinical practice 
suggests that our methods, once successfully tested in large scale datasets, could be translated with relative ease 
to clinical use as the only required inputs – the medical images - are already readily available and highly utilised. 
This is particularly noteworthy when compared to previous clinical predictive scores that require additional com-
plex data collection, such as targeted clinical histories, clinical examinations and multiple laboratory tests24, 49. 
With radiomics models, allowing for the potential need for automated segmentation approaches, accurate predic-
tions could be obtained with little additional marginal costs in finance or time. We also note that these methods 
are likely to be applicable to the prediction of other important medical outcomes (e.g., the prediction of treatment 
complications), and to other modalities of high resolution routine imaging (e.g., MRI).

Conclusion
Precision medicine aims to tailor treatment to specific patient sub-groups or individuals but has been held back 
by the lack of simple, accurate, and replicable quantitative methods to discover and utilize novel biomarkers 
needed to assess the full range of phenotypic variation. We present a conceptual framework for the use of radi-
omics techniques with clinically conducted cross-sectional scans to identify tissue-wide pathological changes 
(imaging biomarkers) that quantify the latent health of the patient. We also demonstrate that modern deep 
learning techniques can be used within a radiomics framework, and perform at least as well as more traditional, 
hand-engineered approaches. Our preliminary proof-of-principle findings are promising and offer a path towards 
an effective and efficient testing methodology that can accurately measure the widespread tissue changes pre-
dictive of chronic diseases. This testing could quantify preclinical disease, inform treatment choices, and guide 
research cohort selection.

Methods
Ethical statement.  Use of medical imaging and mortality data and the experimental protocol were approved 
by the Royal Adelaide Hospital Human Research Ethics Committee. All experiments were carried out in accord-
ance with relevant guidelines and regulations.

The study utilised only pre-existing medical data, therefore patient consent was not required by the ethics 
committee.

Study design and participants.  To evaluate the base predictive value of medical imaging using tradi-
tional human feature engineering image analysis and deep learning techniques we performed a retrospective 
case-control study, with matching used to control for non-imaging clinical and demographic variables that were 
expected to be highly predictive of five-year mortality.

Participants were selected from the Royal Adelaide Hospital (RAH) radiology department archive. All demo-
graphic information used in the study was obtained via the DICOM metadata fields of the related imaging studies. 
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Mortality data was obtained via the RAH case-mix department, which receives mortality information for RAH 
patients from the South Australian Registrar of Births, Deaths and Marriages.

We enrolled 37 sequential decedents with mortality in 2014, who had undergone CT chest scans in the 5 years 
preceding death and were older than 60 years at the time of imaging. Participants were excluded based on the 
following criteria: acute visible disease identified on CT chest by an expert radiologist, metallic artefact on CT 
chest, and active cancer diagnosis (which would strongly bias survival time). A total of 13 cases were excluded, for 
a total of 24 cases included in the cohort.

24 controls were matched on age, gender, and source of imaging referral (emergency, inpatient or outpatient 
departments), for a total of 48 image studies included (24 who died within five years of imaging, and 24 who sur-
vived beyond five years). The same exclusion criteria were applied. This pair matched study design was utilised to 
explore the predictive ability of image analysis techniques in this setting without major confounding.

Image data.  Post contrast CT chest scans were obtained using three types of CT scanners (GE Picker PQ 
6000, Siemens AS plus, and Toshiba Aquilion 16) using standard CT protocols at the RAH. CT chest images were 
obtained in the late arterial phase, following a roughly 30 second delay after the administration of intravenous 
contrast.

Thick section (5 mm slice-thickness) DICOM images were annotated by a radiologist using semi-automated 
segmentation tools contained in the Vitrea software suite (Vital Images, Toshiba group), with separate binary 
mask annotations of the following tissues: muscle, body fat, aorta, vertebral column, epicardial fat, heart, and 
lungs.

Human defined-feature image analysis methods.  A total of 16,210 image features were defined to 
assess the segmented tissues and organs. These features were broadly divided into three groups: I) intensity based 
features, II) texture based features, and III) evidence based features. Intensity features relate to the first order sta-
tistics of the intensity histogram, quantifying the density of the tissue. The texture based features include the first 
and second order matrix statistics of the grey level co-occurrence (GLCM), grey level run length (GLRLM), grey 
level size zone (GLSZM), and multiple grey level size zone (MGLSZM) matrices. These features were computed 
over nine directions, at 45 degree intervals along each cardinal axis of the 3-D volume. The intensity and texture 
based features were extracted using the Radiomics package implemented in R (J. Carlson, https://cran.r-project.
org/web/packages/radiomics/).

The evidence-based features were engineered to reflect the pre-existing knowledge of imaging biomarkers in 
the radiology literature. Cardiac and aortic calcification was quantified using pixel value bins, as per the Agatston 
methodology31. Due to the presence of IV contrast in the images, results were excluded when the average density 
of the heart or aorta segment was higher than the lower bound of the calcification density bin (for example, when 
the aortic average density was 250 Hounsfield units (HU), we excluded “calcification” pixel values below 300 HU). 
This resulted in many missing data points in the calcification values, particularly at lower density levels.

The degree of pulmonary emphysema was quantified by the presence and extent of low attenuating areas 
(LAA%)32. Bone mineral density33 was quantified by first order statistical analysis of the intensity (density) of 
medullary bone, after the exclusion of cortical bone from the vertebral column segment using a density threshold. 
The slice area and overall volume of each tissue was calculated, reflecting the literature that the dimensions of 
various tissues (e.g., heart size) are predictive of mortality58.

The task agnostic features were adapted from previous work34 where the methods were applied to localised 
regions of medical scans, such as in the analysis of small tumours. This task is quite different from the analysis 
of large organs and tissues, and we expected that the variation in these features over space would be useful in the 
prediction of disease (for example, the craniocaudal distribution of low attenuation areas in emphysema). To 
account for these spatial variations the average of each feature was calculated across the whole tissue, as well as 
within spatial quartiles along each axis. A spatial weighted mean was also calculated for each feature.

The division of features between tissues was as follows: 2506 (aorta), 2506 (heart), 2236 (lungs), 2182 (epi-
cardial fat), 2182 (body fat), 2182 (muscle), 2416 (bone), where 1310 of the total 16,210 features represent 
evidence-based features. A total of 253 features were excluded for containing missing values, all of which were 
from the lower density bins of the cardiac and aortic calcification feature set. There were 15,957 remaining image 
features.

Statistical analysis and predictive models for human-defined features.  In order to analyse the 
large number of features extracted, standard statistical techniques used in high-dimensional data analysis (e.g., 
genomics) were applied. A logistic regression model was fitted to each feature separately, conditioned to account 
for the pair matched study design. The clinical relevance of each covariate was measured by the p-value, with a 
significance threshold (α) of <0.05 (i.e., −log(p) >3). The significance and distribution of image features were 
visualised with Manhattan plots.

A variety of feature selection methods were tested to inform a simplified risk score. These included principal 
component analysis (PCA)59, L1-constrained regularisation (the Lasso)60, selection methods based on univari-
ate model significance, and minimum redundancy-maximum relevance (mRMR)50. The use of mRMR with 5 
selected features was felt to best balance coverage of features from multiple tissues with the risk of overfitting our 
data. These continuous features were standardised with z-scoring, then summed to form our simplified risk score. 
This phenotypic score was dichotomised at the median to create “high risk” and “low risk” phenotypic groups. 
We present raw mortality rates for each phenotype and Kaplan-Meier curves to demonstrate the discriminative 
ability of the score.

https://cran.r-project.org/web/packages/radiomics/
https://cran.r-project.org/web/packages/radiomics/
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The exploration of the feature distributions and the mortality risk score survival models were both performed 
on the entire dataset (training and testing data), as neither process involved model selection or hyperparameter 
tuning.

Mortality classification was performed to assess the predictive capacity of the engineered features using a vari-
ety of standard classifiers including linear and non-linear support vector machines, random forests, and various 
boosted tree methods. Model selection was performed via cross-validation within the training data.

Due to computational constraints, only the random forest classifier was applied to the full set of 15,957 engi-
neered image features. For the other classification methods, two feature selection approaches were implemented 
with Lasso regression and principal components analysis. Selection with the Lasso within each fold identified 
between 4 and 20 features. PCA identified 16 principal components accounting for 95% of the variation in the 
data.

The most performant model was the random forest classifier without feature selection (i.e., with all of the 
human-crafted features as the input), with 150 trees and 16 variables randomly sampled at each split.

Deep learning methodology.  A convolutional neural network (ConvNet) was designed to predict 
all-cause mortality. While the architecture of this network was informed by current standard practices in the 
field, several alterations were required to deal with the unique aspects of CT image data.

The basic ConvNet architecture was determined by model selection using the training data. We explored a 
range of combinations of layer depth, layer size, and various combinations of non-linearities. The selected model 
(see Fig. 5) used in this work had three convolutional layers with 50 filters in the first layer and 100 filters in the 
second to fourth layers, where the filters had size 5 × 5 × 2. There were max pooling operations after the first and 
second convolutional layers, with a pooling size of 2 × 2 × 2. The first convolutional layer had rectified linear units 
(ReLU)61. After the third convolutional layer there was a fully connected layer containing 6,000 nodes, and the 
output layer had two nodes with softmax activation. For training, dropout of 0.35 was applied in all layers62. The 
learning rate started at 0.0005, from epochs 1 to 10, which was then continuously reduced until it reached 0.00001 
from epoch 60 to 120. We optimised with RMS prop63 with ρ = 0.9.

We determined the optimal architecture for this deep learning model empirically, testing numerous variants. 
In particular we note that changing the depth of the network reduced performance, and the size of the fully con-
nected layer was positively associated with prediction accuracy. We did not increase our model depth beyond 
6,000 hidden units due to computational constraints.

Cross-sectional medical image volumes are much larger than the images that are usually analysed with 
ConvNets. To reduce the complexity of the problem, the large CT volumes (512 × 512 pixels, with 50–70 slices 
per case depending on the length of the patients’ lungs) were downsampled to 64 × 64 × 11 volumes using bicubic 
interpolation. 3d convolutions were implemented to manage the volumetric nature of the data, in keeping with 
the general practice in computer vision research of matching the dimensions of the convolutions to the data. The 
addition of the seven binary segmentation masks as channel inputs in the model was intended to promote the 
learning of anatomy based models for the prediction task: the distribution of tissues which contain predictive but 
very different features. For instance, the features that predict mortality in the lungs are assumed to be different 
from the predictive features in the vertebral bodies. With the segmentation maps the dimensions of the input ten-
sor for each case were 64 × 64 × 11 × 8, where the final dimension is not spatial but is incorporated as a “channel” 
for each pixel (similar to RGB channels in colour photographs).

The feature engineering and deep learning analysis pipelines are demonstrated in Fig. 6.

Classification experiments.  We assess the predictive performance of the feature engineering and deep 
learning methodologies based on a 6-fold cross-validation experiment, where we form six training sets, each con-
taining 40 cases, and six testing sets, each with eight cases with no overlapping between training and testing sets 
in each fold. The classification performance is measured using the receiver operating characteristic (ROC) curve 
and area under the ROC curve (AUC)64 using the classifier confidence on the 5-year mortality classification, as 
well as the mean accuracy across the 6 experiments.

Visual analysis.  Qualitative visual comparison was made between the cases correctly identified as mortal-
ity or survival cases by the deep learning and feature engineering models. The strongest predictions averaging 
the results of the two models were identified and reviewed by a consultant radiologist. This was performed to 

Figure 5.  Schematic of the deep learning architecture for the mortality classification task.
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demonstrate “face validity”, that the model predictions can identify similar patterns and patients as the assessment 
of a clinical expert.

Data availability.  The datasets generated during and/or analysed during the current study are not publicly 
available due to the clinical and confidential nature of the material but can be made available from the corre-
sponding author on reasonable request.
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