Table 3.
Network characteristics and controllability results for the real-world networks considered in this paper.
| Network type | Name | Nodes | Edges | N r | N u | η | |
|---|---|---|---|---|---|---|---|
| Biology, transcr. | E. coli-transcr. | 1623 | 3620 | 1692 | 1466 | 1.13 | 1.16 |
| Yeast-transcr. | 664 | 1064 | 759 | 500 | 1.45 | 1.52 | |
| Biology, signal. | EGFR-signal | 329 | 852 | 123 | 67 | 1.84 | 1.84 |
| Toll-signal | 680 | 2204 | 249 | 147 | 1.65 | 1.69 | |
| Macrophage | 678 | 1582 | 300 | 185 | 1.60 | 1.62 | |
| Biology, metab. | Yeast-metab. | 780 | 4420 | 174 | 142 | 1.21 | 1.23 |
| E. coli-metab. | 757 | 6116 | 116 | 102 | 1.02 | 1.14 | |
| Power grid | North Europe | 236 | 320 | 85 | 43 | 1.95 | 1.98 |
| USPowerGrid | 4941 | 6591 | 3887 | 2166 | 1.72 | 1.79 | |
| French Power Grid | 1888 | 2531 | 1692 | 945 | 1.75 | 1.79 | |
| Transport | US Air lines | 332 | 2126 | 191 | 111 | 1.51 | 1.72 |
| US Air traffic | 1206 | 13106 | 511 | 420 | 1.15 | 1.21 | |
| Internet | Gnutella | 6301 | 20777 | 8047 | 4106 | 1.94 | 1.96 |
| AS-733 | 3015 | 10312 | 1928 | 1883 | 1.03 | 1.03 | |
| Food-web | Florida | 128 | 2106 | 35 | 30 | 1.10 | 1.17 |
| Michigan | 39 | 221 | 16 | 13 | 1.23 | 1.23 | |
| Mangdry | 97 | 1491 | 26 | 22 | 1.14 | 1.18 | |
| Everglades | 69 | 916 | 26 | 21 | 1.14 | 1.24 | |
| Trade | Similar export | 866 | 2532 | 100 | 84 | 1.19 | 1.19 |
| Wheat | 166 | 1789 | 59 | 35 | 1.60 | 1.69 | |
| Water dist. | EXNET | 1893 | 4832 | 167 | 113 | 1.47 | 1.48 |
| Richmond | 865 | 1870 | 110 | 65 | 1.57 | 1.69 |
See SI for data sources. Just as for Erdős–Rényi networks and directed scale-free networks, η is in many cases close to the lower bound (d + μ 0)/N u.