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[Abstract] Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) is a 

powerful technology to profile genome-wide chromatin modification patterns and is increasingly being 

used to study the molecular mechanisms of brain diseases such as drug addiction. This protocol 

discusses the typical procedures involved in ChIP-seq data generation, bioinformatic analysis, and 

interpretation of results, using a chronic cocaine treatment study as a template. We describe an 

experimental design that induces significant chromatin modifications in mouse brain, and the use of 

ChIP-seq to derive novel information about the chromatin regulatory mechanisms involved. We 

describe the bioinformatic methods used to preprocess the sequencing data, generate global 

enrichment profiles for specific histone modifications, identify enriched genomic loci, find differential 

modification sites, and perform functional analyses. These ChIP-seq analyses provide many details 

into the chromatin changes that are induced in brain by chronic exposure to cocaine, and generates an 

invaluable source of information to understand the molecular mechanisms underlying drug addiction. 

Our protocol provides a standardized procedure for data analysis and can serve as a starting point for 

any other ChIP-seq projects. 

Keywords: Chromatin immunoprecipitation (ChIP), Next generation sequencing (NGS), ChIP-seq, 
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[Background] Chromatin modification has been implicated in the molecular mechanisms of drug 

addiction and may hold the key to understanding multiple aspects of addictive behaviors (Robison and 

Nestler, 2011). Chromatin Immuno-Precipitation (ChIP) followed by massively parallel sequencing 

(ChIP-seq) is the current state of the art technology to profile the chromatin landscape. The typical 

procedure of ChIP-seq involves: 1) using the antibody against a protein of interest to pull down the 

binding DNA, which has been fixed to the protein and broken into smaller fragments, 2) the 

immunoprecipitated DNA is then purified and constructed into a library for high throughput sequencing 

of short reads (usually 50-100 bp) from the ends of insert DNA fragments, 3) the short reads are 

aligned to the genome and put through data analysis. Compared with its predecessor – ChIP-chip, 

ChIP-seq has unparalleled advantages such as unbiased coverage of the entire genome, single base 

resolution, and significantly improved signal-to-noise ratio (Park, 2009). It has proven to be an 

invaluable tool to understand numerous types of chromatin modifications. 
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Brief overview of ChIP-seq experiment: Please see original research articles for greater experimental 

details (Renthal et al., 2009; Lee et al., 2006). Briefly, adult mice received a standard regimen of 

repeated cocaine (7 daily IP injections of cocaine [20 mg/kg] or saline) and were used 24 h after the last 

injection (Robison and Nestler, 2011). The nucleus accumbens, a major brain reward region, was 

obtained by punch dissection and used for ChIP-seq. Chromatin IP was performed as described 

previously (Renthal et al., 2009; Lee et al. 2006; http://jura.wi.mit.edu/young_public 

/hES_PRC/ChIP.html) with minor modifications, using two antibodies, anti-H3K4me3 (tri-methylation of 

Lys4 in histone H4) (Abcam #ab8580) and anti-H3K9me3 (Abcam #ab8898). Sequencing libraries for 

each experimental condition were generated in triplicate, and were then sequenced on an Illumina 

sequencer. 

Bioinformatic analysis: The sequencing data generated from libraries under treatment and 

corresponding control conditions will be used to identify the specific genomic regions that have 

undergone chromatin changes. We can then associate these regions with biological functions and 

select the regions of interest for further study. The basic procedure for this kind of bioinformatic analysis 

can be laid out as a pipeline of eight steps (Figure 1): 

1. Perform quality control analyses on the sequencing data files; 

2. Align the sequences to the genome; 

3. Remove PCR duplicates; 

4. Perform cross-correlation quality analysis; 

5. Generate coverage files to be loaded into a genome browser; 

6. Generate global coverage plots; 

7. Perform peak detection and annotation; 

8. Perform differential analysis and functional association. 

This protocol shall explain each of these steps in more detail, including some of the principles and 

rationale underlying the bioinformatics analyses, and provide the necessary commands for execution in 

a Unix-like command-line environment. 

http://www.bio-protocol.org/e2123
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Figure 1. Flowchart of the ChIP-seq analysis pipeline 

 
Equipment 
 

1. Personal computer or high performance computing cluster. All software mentioned here can be 

run under a Unix-like workstation, such as Linux and Mac. For Windows users, a terminal 

emulator, such as Cygwin (http://cygwin.com/), can be used.  

 

Software 
 

1. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

2. Bowtie2 (Langmead and Salzberg, 2012; 

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) 

3. Samtools (Li et al., 2009; http://samtools.sourceforge.net/) 

4. phantompeakqualtools (http://code.google.com/archive/p/phantompeakqualtools/) 

5. IGV and IGVtools (Robinson et al., 2011; http://software.broadinstitute.org/software/igv/) 

6. ngs.plot (Shen et al., 2014; http://github.com/shenlab-sinai/ngsplot) 

7. MACS (Zhang et al., 2008; http://github.com/taoliu/MACS) 

http://www.bio-protocol.org/e2123
http://cygwin.com/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
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8. diffReps (Shen et al., 2013; http://github.com/shenlab-sinai/diffreps) 

9. bedtools (Quinlan and Hall, 2010; http://bedtools.readthedocs.io/en/latest/) 

10. region-analysis (Shao et al., 2016; http://github.com/shenlab-sinai/region_analysis) 

11. ChIPseqRUs (Loh et al., 2016; https://github.com/shenlab-sinai/chip-seq_preprocess) 

12. David (Dennis et al., 2003; http://david.ncifcrf.gov/) 

13. IPA (http://www.ingenuity.com/) 

14. GREAT (McLean et al., 2010; http://bejerano.stanford.edu/great/public/html/) 

 

Procedure 
 

1. Perform quality control analyses on the sequencing data files 

We strongly recommend checking the quality of the ChIP-seq sequencing data before moving 

on to the next steps. FastQC is an excellent program we use which performs a series of quality 

control steps for a next generation sequencing (NGS) dataset. Some of the more important 

quality reports to take note of in the evaluation of sequencing quality include the ‘Per base 

sequence quality’, which should show consistently high quality values across the reads; the 

‘Per base sequence content’, which should show non-random distribution of the nucleotides at 

each base; and ‘Sequence duplication levels’, which should not be excessive. The FastQC 

documentation in the web link above provides some examples of reports of good and bad 

sequencing data may look like.  

 
fastqc -o path_to_output_directory -t number_of_threads_to_usesequence_file. 

fastq  

 

Note: In addition to command line execution, FastQC can also be run as an interactive 

graphical application. Also, definitions for command line parameters (e.g., ‘-o’, ‘-t’) for FastQC 

and all other programs used in this protocol can be found in their respective weblinks as 

provided in the ‘Software’ section above. 

2. Alignment of the sequences to the genome 

a. For each sample, we performed the alignment of the raw fastq sequence reads to the 

reference mouse genome using the Bowtie2 program. Bowtie2 generates alignment results 

in the Sequence Alignment/Map (SAM) format (Li et al., 2009), which contains alignment 

information including the short read ID, chromosome name, start position, strand, 

mismatch information, and the raw nucleotides of the read, among others. 

 
bowtie2 -p number_of_compute_cores_to_use -x path_to_mm9_genome_index -1 

sequence_file_forward_reads.fastq -2  sequence_file_reverse_reads.fastq -S 

alignment_file.sam 

 

http://www.bio-protocol.org/e2123
http://github.com/shenlab-sinai/diffreps
http://bedtools.readthedocs.io/en/latest/
http://github.com/shenlab-sinai/region_analysis
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http://david.ncifcrf.gov/
http://www.ingenuity.com/
http://bejerano.stanford.edu/great/public/html/
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Note: In cases of single-end sequencing alignments, remove ‘-2 

sequence_file_reverse_reads.fastq’ from the above command. 

b. From the SAM file generated, we need to extract only the reads that mapped uniquely to 

the genome. As multi-mapped reads are represented by Bowtie2 in the SAM file only by 

way of an ‘XS:i:value’ tag:value pair, we will use the Linux ‘grep’ command to extract all 

result lines that do not include ‘XS:i:’ in them. 

 
grep -v “XS:i:” alignment_file.sam > alignment_unique.sam 

 

c. The SAM format files are text files which typically end up very large and unwieldy for the 

tens of millions of reads aligned per sample. A companion to SAM, the Binary 

Alignment/Map (BAM) format (Li et al., 2009), contains the exact same information as in 

SAM, but enables efficient compression and storing of the alignment data, and also allows 

for efficient retrieval of the aligned reads. The BAM format is now widely accepted by most 

programs processing alignment data. Using the samtools program, we shall convert and 

sort the SAM file into the BAM format for use in subsequent steps.  

 

samtools view  -Sb alignment_unique.sam > alignment_unique.bam 

 

samtools sort alignment_unique.bam alignment_sorted 
 

3. Removing PCR duplicates 

a. The presence of potentially redundant short reads, caused by PCR amplification, 

represents an intrinsic limitation of second generation sequencing technology. Because 

PCR preferentially amplifies DNA fragments with certain nucleotide compositions, it makes 

some genomic locations overrepresented in a ChIP-seq library. While it may be argued that 

this overrepresentation bias applies equally to treatment and control conditions and can 

therefore be normalized, it perturbs the distribution of the underlying data and may inflate 

statistical significance. Take a hypothetical example (Table 1), where the actual number of 

fragments in library A and B are 1 and 3, respectively. If we simply multiply this number by 

10 then we will have 10 fragments in library A and 30 in library B. Both cases give us the 

same fold change of 3.0 but dramatically different p-values if assessed by a Chi-square 

test.  
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Table 1. A hypothetical example to demonstrate the danger of inflating statistical 
significance without removing redundancy. The P-values are generated from the 

Chi-square test. 

Library 
Original 10x Amplified 

Count Fold 
change P-value Count Fold change P-value 

A 1 
3.0 0.32 

10 
3.0 1.6e-3 

B 3 30 
 

b. To remove the PCR duplicates, we utilize the fact that, during the preparation of a ChIP-seq 

library, a sonicator breaks the whole genome almost uniformly so that most fragments 

come from unique positions (because a mammalian genome is ~2-3 billion bp long). This 

process may remove ‘innocent’ fragments that truly come from the same position and 

strand. But this happens less commonly in comparison with PCR duplication, and, as a 

general rule in statistical inference, it is always better to be conservative than to make false 

claims. Therefore, we have made removal of PCR duplicates a part of our ChIP-seq 

processing pipeline (Loh et al., 2016).  

 
samtools rmdup -s alignment_sorted.bam alignment_rmdup.bam 

 

Note: In cases of paired-end alignments, use the -S option in place of the -s option. 

Special note: When micrococcal nuclease is used in place of sonication during 

fragmentation step in ChIP preparation, the redundancy removing procedure should not be 

applied. This is because the strong preference for micrococcal nuclease to cut a DNA 

sequence at particular positions (with specific nucleotide compositions) can lead to a lot of 

genuine duplicated fragments. We are not aware of any available approach to specifically 

remove PCR-based duplication in such a library. 

4. Perform cross-correlation quality analysis 

The analysis of strand cross-correlation can be used as a ChIP-seq quality metric (Kharchenko 

et al., 2008; Landt et al., 2012). The principle behind this analysis is that high-quality ChIP-seq 

experiments are expected to generate clusters of mapped reads on the forward and reverse 

strands, with the ChIP binding site centered between them. By increasingly shifting the reads in 

the direction of the strand they map to and then calculating the between-strand Pearson 

correlation of read depth at all positions, the plot of cross-correlation coefficient against 

strand-shift usually yields two peaks, one corresponding to the read length (the so-called 

‘phantom’ peak) and the other to the average fragment length of the library. The absolute and 

relative heights of these peaks are then used to calculate two quality metrics, the normalized 

strand coefficient (NSC) and the relative strand correlation (RSC). The Encode Consortium 

ChIP-seq guidelines state that high quality ChIP-seq datasets typically have NSC > 1.1 and 

RSC > 1, and recommend the generation of additional replicates when NSC < 1.05 and RSC < 

http://www.bio-protocol.org/e2123
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0.8 (Landt et al., 2012). Here, we use the run_SPP_nodups.R script of the phantompeakqual 

tools package to calculate the NSC and RSC values. An example of the NSC and RSC metrics 

and cross-correlation plot generated by the script is shown in Figure 2. 

 
run_spp_nodups.R -savp -c=alignment_rmdup.bam -out=phantompeak_output.txt 

 

Notes: 

a. We recommend assessing the NSC and RSC values with some caution. They tend to be 

more informative for chromatin marks and transcription factors with punctuated peaks than 

broad peaks. If your sequencing target is a chromatin mark with broad pattern peaks, such 

as the H3K9me2, the NSC and RSC values may fall below the Encode suggested criteria. 

On the other hand, we have found some input control samples to have very high NSC and 

RSC values.  

b. The ‘phantom’ peak is a phenomenon caused by biased mappability of the genome. When 

a genomic region has good mappability, so does its reverse complement. Therefore, both 

strands of the genomic region will get an equal amount of aligned reads. Because the read 

depth is calculated based on the 5’ ends of the aligned reads, a strand-shift of the read 

length will yield a local maximum – the ‘phantom’ peak. 

 

 
Figure 2. Plot of cross-correlation coefficient as a function of strand-shift for an example 
H3K27ac ChIP-seq sample, generated by the run_SPP_nodups.R script. The blue dotted 

line shows the location of the phantom peak (i.e., read length) and the red dotted lines show the 

http://www.bio-protocol.org/e2123
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best and the second-best guesses (the two numbers in parentheses) of the fragment length. 

The fragment length estimates are identified as local maxima. 

 

5. Generation of coverage files to be loaded into a genome browser 

The effective visualization of a ChIP-seq sample provides valuable information to a bench 

biologist (Figure 3). Through the use of a genome browser, an investigator can easily see 

which genomic regions are enriched by ChIP. In Figure 3, the y-axis gives the number of short 

reads aligned to that location, which can also be normalized by library size for comparing two 

or more ChIP-seq samples. This can be done by generating a so-called coverage file for each 

ChIP-seq sample. Many options are available in choosing a genome browser. Most genome 

browsers support its own file format that best suits its implementation, but often also supports 

some other common formats. The UCSC genome browser (Kent et al., 2002) is one of the 

earliest genome browsers and probably still the most comprehensive one. It is a web-based 

application and usually requires a user to upload the coverage files to a remote server. As 

sequencing technology advances rapidly, so does the size of coverage files generated from 

ChIP-seq samples. Therefore, it has become very inconvenient to upload those large files to a 

remote server. We therefore recommend using a genome browser that can work on a local 

machine. A very good choice is the IGV genome browser which is a Java-based cross-platform 

application. It supports a binary format called TDF and provides a utility program (igvtools) for 

users to generate a TDF file from a BAM format alignment file or several other commonly used 

formats.  

 
igvtools count alignment_rmdup.bam alignment_rmdup.tdf mm9 

 

 
Figure 3. Coverage plot of a histone mark, H3K9me3, after repeated cocaine or saline 
conditions shown in the IGV genome browser (Robinson et al., 2011). Y-axis represents the 

normalized coverage of DNA fragments enriched by the antibody against H3K9me3. This is a 

peak of ~9 Kb long located on chromosome 8, which shows reduced binding after chronic 

cocaine treatment in mouse nucleus accumbens (NAc) (Maze et al., 2011). 
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6. Generation of global coverage plots 

A global coverage plot that shows the averaged coverage over all instances of annotated 

genomic features, such as transcription start sites (TSS), is often extremely helpful in 

determining enrichment, assessing IP efficiency, or correlating with gene groups. An example is 

shown in Figure 4, which demonstrates that the enrichment of H3K4me3 correlates positively 

with gene expression levels. The generation of such a plot is straightforward. The basic 

principle is first to calculate the genomic coverage vector for a ChIP-seq sample. One then 

retrieves the genomic coordinates for the selected genomic feature from an annotation 

database. With the genomic coordinates, the coverage values are then extracted and averaged. 

We have developed an open source software package called ngs.plot, based on the statistical 

package R, that would generate these global coverage plots. The command shown below 

executes a basic ngs.plot analysis with the four mandatory arguments required. Additional 

customizations of the analysis and plotting can be performed with additional arguments 

(https://github.com/shenlab-sinai/ngsplot/wiki weblink). ngs.plot is also available as an add-on 

to Galaxy (Goecks et al., 2010), a popular web-based genomic analysis framework. 

 
ngs.plot.r -G mm9 -R tss -C alignment_rmdup.bam --O outputfile_prefix 
 

Note: All the above-mentioned steps 1-6 can be considered as pre-processing steps that would be 

needed to be applied to all samples. While the individual command lines to run each step have 

been provided here, we have also developed an open source automated pipeline (Loh et al., 2016) 

(Available at http://github.com/shenlab-sinai/chip-seq_preprocess/) that would automatically run all 

these steps on all samples. The pipeline also features parallel processing and automatic resume of 

interrupted jobs. Please refer to the URL above for instructions on how to install and use the 

pipeline, which would not be covered here.  

 

http://www.bio-protocol.org/e2123
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Figure 4. Global TSS plot for a histone mark, H3K4me3, in mouse NAc under saline 
condition correlating with gene expression levels. H3K4me3 is known as a transcriptional 

activation mark and shows a strong positive correlation with gene expression levels. Here, four 

gene groups – High, Medium 1, Medium 2, and Low are defined by normalized RNA-seq read 

counts. The four gene groups are ranked by their expression levels from high to low and each 

group contains 1,000 genes randomly selected from the genome. 

 

7. Peak detection and annotation 

Determining binding enrichments for a ChIP-seq library with rigorous statistical evaluation 

(peak calling) is often extremely useful. Global statistics can be obtained on the peaks to 

determine their distribution (Figure 5). One can also select top-ranked peaks for follow up, or 

correlate the peak list with functional annotations or gene expression. Peak calling for 

ChIP-seq has been a heavily researched area in the past few years, with dozens of software 

tools developed to date (for reviews see [Szalkowski and Schmid, 2010; Pepke et al., 2009; 

Wilbanks and Facciotti, 2010]). The basic principle of any peak calling program can be 

summarized as follows: 1) the whole genome is binned into small intervals of fixed size, such 

as 200 bp; 2) the number of short reads in each bin is used to build a null distribution to 

describe non-binding regions, typically using Poisson or Negative Binomial (NB) distributions; 3) 

a sliding window is used to scan the whole genome and identify regions that exceed 

pre-determined statistical cutoffs. As we examine this procedure, we can see that the most 

important part of peak calling is in the building of the null distribution that describes a ChIP-seq 

background. This is a non-trivial task because the short read counts of a ChIP-seq library do 

not follow a unified random process. The complexity is caused by many factors, but some of 

the most important ones are: uneven packaging of the chromatin into nucleosomes, PCR bias, 

http://www.bio-protocol.org/e2123
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and sequencing imperfection (Chen et al., 2012). Modeling these effects by DNA sequences 

alone is an extremely complicated task, if it is even possible. Therefore, it is always 

recommended to couple several IP libraries with an input library with the same preparation 

procedure. One can then easily compare the normalized read counts from the IP and input 

libraries and determine the enrichment of IP. A very popular peak calling program is MACS, 

which can be used with or without inputs. MACS utilizes a local Poisson distribution to model 

the background of a ChIP-seq sample. When working without input, it uses regional counts 

from IP as background. This is prone to inaccuracy because there is no way to separate the 

short reads coming from IP and non-specific binding. When an input is available, MACS 

compares IP with input to identify enrichment with better sensitivity and specificity than IP 

alone.  

 
macs2 callpeak -t alignment_rmdup.bam -c input.bam -f BAM -g mm -n 

outputfile_prefix --bw 150 -q 0.05 
 

 
Figure 5. Peak distribution of two histone marks, (A) H3K4me3 and (B) H3K9me3, across 
the whole genome using existing annotation of gene features. H3K4me3 is a ‘genic’ mark 

with most of its peaks located around TSSs or on gene bodies. In contrast, H3K9me3 is a 

‘non-genic’ mark with most of its peaks located in intergenic regions (Maze et al., 2011). 

http://www.bio-protocol.org/e2123
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8. Differential analysis and functional association 

a. As we are interested in the characterization of drug-induced chromatin modifications, it is of 

high interest to compare the two IP libraries of treatment and control and identify 

differences in binding, or in other words, differential sites. This can be done by comparing 

the two peak lists from treatment and control and making presence/absence calls. However, 

we have found this approach to be ineffective for our data because the drug-induced 

chromatin changes in brain are often relatively small, presumably due to the heterogeneity 

of the tissue compared, for example, to cell culture systems. Typically, one may observe a 

peak to be present in both drug-treated and control conditions, but some of the peaks do 

show significant differences in magnitude (Figure 6A). In addition, there are situations 

where a peak is not significantly more enriched in one condition than in the comparison 

condition but still classified as different because an arbitrary cutoff is chosen (Figure 6B). A 

refinement of this approach is to identify peaks in both conditions and make quantitative 

assessment on their binding enrichments (Liang and Keles, 2012). This is a significant 

improvement to the first approach and can usually generate much more reliable differential 

sites than the former. The approach should work well for transcription factor-like histone 

marks. However, for some histone marks, this can still be suboptimal. For example, marks 

like H3K9me3 typically produce peaks as long as several Kb, while differences can be 

observed well within a peak (Figure 6C). Comparing two peaks can be ineffective in 

identifying this kind of changes. To deal with the above challenges, we have developed our 

own program – diffReps to detect differential chromatin modification regions between two 

conditions with high definition. diffReps employs a sliding window approach to identify all 

regions that show significant changes. With a tunable window size, it allows one to look for 

either large blocks or small regions of chromatin modifications. diffReps also takes into 

account the biological variations within each condition and provides a few statistical tests to 

choose from for assessing the differences. When biological replicates are available, we 

recommend the use of NB test which models the over-dispersion (large variation) of 

discrete counting data within a group. NB test is usually much more sensitive than t-test in 

detecting differential sites for ChIP-seq data. It also avoids the problem of making false 

positives on small count data. When there is only one sample in each group, one can 

choose either Pearson Chi-square or G-test for differential analysis. The following example 

shows a diffReps run to detect differential sites by comparing two experimental conditions 

where each condition contains three BED files. Input samples for each condition are also 

available and used. We use a window size of 200 bp to obtain a high-resolution profiling of 

the chromatin modification landscape and NB test to assess statistical significance. 

 
diffReps.pl --tr T1.bed T2.bed T3.bed --co C1.bed C2.bed C3.bed --btr 

T_input.bed --bco C_input.bed --re diffsite.txt --gname mm9 --me nb --wi 200 

--st 20 

http://www.bio-protocol.org/e2123
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Note: diffReps requires input files to be in the BED format 

(https://genome.ucsc.edu/FAQ/FAQformat#format1), which can be converted from the 

BAM format using the bedtools package (Quinlan and Hall, 2010) using the command:  

 
bedtools bamtobed -i inputfile.bam > outputfile.bed 

 

 
Figure 6. Challenges in detecting differential sites from ChIP-seq data by comparing two 
conditions. A. Two peaks are both above significance cutoff but show differences in binding. B. 

One peak is above cutoff and the other peak is below cutoff but they are not significantly 

different. C. There is a region with significant difference within a peak but may not be detected 

when the whole peak is considered. 

 

b. The final step in our analysis is the functional annotation for a peak list or differential site list. 

This has traditionally been done by first annotating each genomic region to the closest 

gene and then testing the enrichment of functional terms among this Goecks gene group. 

To annotate each called peak or differential site according to the type of genomic feature on 

which they are located, the region_analysis program is used. The region_analysis program 

http://www.bio-protocol.org/e2123
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is able to annotate any text file where the first three columns are chromosome, start and 

end positions respectively. 

 
region_analysis.py -i input_file -g mm9 -d refseq –r 

 

c. Gene enrichment analysis of the gene lists annotated to peaks or differential sites can be 

accomplished with various open source or commercially available tools. A very popular 

open source tool is DAVID, while a commercially available alternative is Ingenuity Pathway 

Analysis (IPA). Additionally, another development in functional interpretation of peaks is to 

overlap them with gene regulatory regions which can either be proximal regions at TSS or 

distal regions as far as 1 Mb away. This approach is useful because, with the advent of 

ChIP-seq, we are now able to profile genomic regions that are not restricted to promoters. 

Potential genomic regions that may contain regulatory information include distant 

enhancers as well as gene bodies. This functionality greatly enhances our ability to reveal 

the previously unknown functions of a histone mark or a DNA binding protein. A 

representative tool in this category is called ‘Genomic Regions Enrichment of Annotations 

Tool’ (GREAT). GREAT simply requires the input of a BED file which can be easily obtained 

from peak calling or diffReps outputs. These analysis tools are mainly web-based and 

interested readers are referred to their websites for more information.  

9. Anticipated results 

The ChIP-seq protocol outlined here is an extremely powerful and comprehensive technique 

for characterizing chromatin modification landscapes for histone marks in brain. The ChIP-seq 

data not only allows us to look at traditional regulatory regions – promoters, but also enables us 

to investigate remote regulatory sites, such as enhancers and exons. With this enhanced 

capability, we have now entered a new era to study disease-related chromatin modification 

changes with unprecedented detail. 

 

Data analysis 
 

For some concrete examples of using the above analytic procedures on a dataset of seven histone 

modification marks and RNA-seq to study cocaine-induced epigenomic and transcriptomic 

changes in mouse brain, readers are referred to our previous study (Feng et al., 2014). 
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