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Abstract

Current methods for antibody structure prediction rely on sequence homology to known structures. 

Although this strategy often yields accurate predictions, models can be stereo-chemically strained. 

Here, we present a fully automated algorithm, called AbPredict, that disregards sequence 

homology, and instead uses a Monte Carlo search for low-energy conformations built from 

backbone segments and rigid-body orientations that appear in antibody molecular structures. We 

find cases where AbPredict selects accurate loop templates with sequence identity as low as 10%, 

whereas the template of highest sequence identity diverges substantially from the query’s 

conformation. Accordingly, in several cases reported in the recent Antibody Modeling Assessment 

benchmark, AbPredict models were more accurate than those from any participant, and the 

models’ stereo-chemical quality was consistently high. Furthermore, in two blind cases provided 

to us by crystallographers prior to structure determination, the method achieved <1.5 Ångstrom 

overall backbone accuracy. Accurate modeling of unstrained antibody structures will enable 

design and engineering of improved binders for biomedical research directly from sequence.
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Introduction

Antibodies are the main soluble component of the mammalian immune system.1 Most 

antibodies comprise two chains, light and heavy, each of which is generated by random 

recombination of variable (V) and junctional (J) genomic segments; the heavy chain is 

further diversified by recombination of diversity (D) segments. Each antibody variable 

domain comprises three hypervariable complementarity-determining regions (CDRs), which 

encode binding specificity, and a conserved framework, which provides structural stability. 

During affinity maturation, antibodies are further diversified through a random process of 

somatic hypermutation, which introduces mutations primarily at the CDRs. The antibody 

repertoire and affinity maturation process are powerful natural mechanisms for producing a 

versatile and nearly unlimited capacity for molecular recognition. Owing to their versatility 
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in molecular recognition and their compatibility with the mammalian immune system 

antibodies are ubiquitous in biomedical research and biotechnology.

Structure modeling is an important tool for antibody design and optimization. Several 

methods were therefore advanced to model structures directly from sequence.2 Current 

methods typically use a combination of sequence homology to existing antibody structures 

and energy-based conformation sampling. For example, RosettaAntibody3 parses the 

variable domain (Fv) amino acid sequence into its constituent CDRs and frameworks, and 

for each segment searches the Protein Data Bank (PDB) for the highest sequence-identity 

templates. These segments are combined to generate a starting model, and the 

conformationally variable CDR H3 is predicted ab initio. Finally, the resulting model is 

relaxed by side-chain packing and minimization. The MAPS method, by contrast, segments 

the antibody according to its germline gene segments [V gene and (D)J segments] instead of 

along the lines of the CDRs.4 Similar to homology-modeling based methods, the segments 

with the highest sequence identity to the target are then combined to create the final model. 

Other methods use expert rules to model H3,5 or a combination of sequence identity and 

stereo-chemical quality to select models.6 For recent reviews of antibody structure modeling 

see Refs. 7,8.

To provide an unbiased analysis of the strengths and weaknesses of modeling algorithms, 

two community-wide blinded Antibody Modeling Assessments (AMA-I and AMA-II) were 

conducted.7,8 The assessors of AMA-II determined that CDRs 1 and 2 were generally well 

predicted by existing methods, but CDR H3 and the rigid-body orientation (RBO) between 

the variable light and heavy chains were usually predicted poorly: on average, among the 

best predicted structures from each participating group in AMA-II 35% were tilted >3° 

relative to the experimental structure, and 75% had H3 carbonyl root mean square deviation 

(rmsd) >1.5 Å. The assessors further noted that some models exhibited substantial stereo-

chemical strain, including steric overlaps and backbone distortions. Modeling inaccuracy, 

stereo-chemical strain, and the use of expert rules and manual intervention limit the 

usefulness of modeling in design and simulation by non-experts.

Recently, we proposed an antibody-design strategy, called AbDesign, that uses 

combinatorial backbone modeling.9 Early antibody-engineering studies suggested that 

CDRs could be grafted independently of one another and regardless of the framework.2 We 

found, however, that combining CDRs and frameworks arbitrarily resulted in models with 

high stereo-chemical strain, including voids and steric overlaps between the CDRs and the 

framework. Instead, AbDesign starts by segmenting all >1,300 antibodies in the PDB into 

two regions in both the light and heavy chains: a region that roughly corresponds to CDR3 

and another that encompasses much of the V gene, comprising the framework and CDRs 1 

and 2. The design calculations arbitrarily combine these backbone fragments and 

subsequently optimize the amino acid sequence for high stability and ligand affinity. The 

AbDesign strategy is therefore inspired by the natural antibody-generation process by 

genomic recombination.10 We found that designs produced using this strategy had superior 

stereo-chemical quality compared to those produced by grafting the CDRs independently of 

one another on a single framework. Here, we develop a method called AbPredict to model 

the structures of antibodies directly from their sequences by using a conformation-sampling 
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approach that extends AbDesign. For every target sequence, AbPredict searches for low-

energy combinations of backbone fragments from natural antibody structures. Unlike current 

prediction algorithms, all of which rely on sequence homology,3–6,11–14 AbPredict does 

not use expert rules or sequence homology to select conformations. We find that this 

approach results in models that are as accurate as, and in several cases more accurate, than 

prediction models submitted to AMA-II, and that stereo-chemical strain is uniformly low.

Materials and Methods

Torsion and rigid-body orientation databases

Conformation database construction followed AbDesign,9 which used the SabDab 

database15 to select antibodies from the PDB.16 We chose a template κ antibody (PDB 

entry: 2BRR) as a reference for all conformation and rigid-body calculations of κ light-chain 

antibodies, and a λ antibody (PDB entry: 2G75) for λ light-chain antibodies. To avoid bias 

in comparing to AMA-II participants, all antibodies deposited in the PDB after February 

2014 were excluded from the conformation databases. By contrast, conformation databases 

including recent structures were used for the two blind prediction cases. The conformation 

databases contained the following number of entries for κ antibodies: 961 Vh; 962 H3; 

1,169 Vl; and 1,223 L3. For the λ antibodies the databases contained 1,028 Vh, 1,039 H3, 

221 Vl, and 232 L3.

The previous implementation of antibody modeling in AbDesign only allowed limited rigid-

body minimization. Since this degree of freedom is important for prediction accuracy we 

extended modeling to include it. In accordance with the general strategy employed in 

AbDesign of sampling degrees of freedom according to their observed values in actual 

molecular structures, we constructed a rigid-body orientation (RBO) database that encodes 

the spatial relationships between light and heavy chains in antibody molecular structures. 

Visual inspection of a structural superimposition of light chains and heavy chains from 

diverse antibodies showed that the C-terminal disulfide-linked cysteines in each chain 

(Kabat numbering: L88 and H92) were highly conserved in structure, recommending the 

spatial relationship between these cysteines as a natural axis about which to define the RBO. 

Briefly, for each antibody structure we recorded in a database the Rosetta rotation-

translation matrix (implemented as the Rosetta Jump object17) relating the three backbone 

heavy atoms of these two cysteines. During structure-prediction simulations, this database is 

read into memory and entries from it can be efficiently imposed to change the RBO in the 

modeled antibody, thereby sampling RBOs that are observed in natural antibody structures. 

The RBO recording and imposition routines were implemented in the RosettaScripts18 

movers RBOut and RBIn, respectively. Furthermore, since κ and λ light chains exhibited 

different RBO distributions, we constructed a separate RBO database for each class.

Simulated-annealing Monte Carlo sampling of conformation degrees of freedom

The protocol (Fig. 1) is available in Supporting Information.
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Rosetta source code and availability

All runs used git version 6f79e55bdcb86e92269495-b363ecd745536914c5 of the Rosetta 

biomolecular modeling software, which is available to academics at http://

www.rosettacommons.org. The torsion databases and the RBO databases are distributed with 

the Rosetta release.

Running AbPredict and analyzing output

A Python wrapper manages cluster job runs on a load-sharing facility (LSF), and a suite of 

analysis tools generates energy landscapes against the RBO or the rmsd of backbone 

conformations. Both the python wrapper and the suite of analysis tools are available at 

https://github.com/chnorn/AbPredict.git together with the setup needed to reproduce the 

benchmark results. The MolProbity score for each model was calculated using a standalone 

tool provided with MolProbity (git entry: 920791-

day5a3e1672be808be385606c0c524c10da0).

Data acquisition and analysis of benchmark results

All structures from AMA-II were obtained from http://www.3dabmod.com. Each participant 

provided three unranked models. As in AMA-II, we measured the RBO prediction accuracy 

as the difference in torsion angle between the light and heavy chains (tilt) as described in 

Ref. 19. For each metric (L1—3, H1—3, H3 stem, tilt, and total rmsd) reported in Figure 4 

we compared the most accurate model of the three predictions deposited by each participant 

in AMA-II. Similarly, three models were selected from AbPredict for comparison. The 

AbPredict models were selected without manual intervention by clustering the 5% lowest-

energy models using a radius of 1.0 Å across the CDRs with a hierarchical agglomerative 

clustering method,20 followed by selection of the lowest-energy models from each of the 

three most populated clusters.

Results

AbPredict: combinatorial backbone modeling in antibodies

Our previous implementation of combinatorial backbone design (AbDesign)9 starts with a 

pre-computation step, in which all antibodies in the PDB are segmented into their four 

constituent conformation fragments (corresponding roughly to Vl, Vh, and CDRs L3 and 

H3). During modeling, fragments are randomly combined, and Rosetta combinatorial 

sequence optimization is applied. In structure prediction we are also interested in modeling 

the RBO between the light and heavy chains, a degree of freedom that was not modeled in 

AbDesign. In keeping with the AbDesign strategy of sampling conformation degrees of 

freedom from known structures, we derive the rotation and translation degrees of freedom 

from all experimentally determined antibody structures and record them in a database for 

efficient lookup during modeling (Fig. 1).

Before AbPredict starts we determine whether the light chain belongs to the λ or κ class, 

and further determine the sequence length of each backbone conformation fragment (Vl, Vh, 

L3, and H3) (Fig. 1). During modeling, all backbone-sampling moves are restricted to 

conformations within the same sequence-length class. Unlike current prediction methods3–
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6,11–14, sequence homology to the target is not used to select or bias conformations and 

RBOs. At the start of the simulation, we select a random combination of backbone segments 

and a RBO, and thread the target sequence on this arbitrary backbone. We then conduct a 

simulated-annealing Monte Carlo search comprising 150 steps (Fig. 1), in each of which a 

move (conformation change in Vl, Vh, L3, H3, or the RBO) is randomly sampled from the 

pre-computed databases (see movie in Supporting Information). To reduce stereo-chemical 

strain, residues within 6 Å of the region affected by the move are optimized using 

combinatorial side-chain packing,21 and the segment’s backbone and side chains and the 

RBO are simultaneously minimized subject to harmonic backbone-coordinate restraints.9 

Following minimization, the new conformation is accepted if its energy passes the 

Metropolis criterion, and the temperature is gradually reduced to 0 during the simulation, 

saving at each step both the last-accepted and the lowest-energy model recorded up to that 

step; each trajectory outputs the lowest-energy model sampled during the trajectory. For 

each target sequence, 3,000 independent trajectories are computed to produce an energy 

landscape. The 5% top-energy models are then clustered according to carbonyl rmsd, and 

the lowest-energy representatives of the three most populated clusters are selected as the 

predicted structures. Each trajectory takes, on average, 1.5 hours on an Intel Xeon 2.4 GHz 

CPU. The protocol is fully automated requiring no manual intervention and no sequence 

alignment to template antibodies, and is therefore accessible to non-experts.

AbPredict discretizes antibody conformation space

Several antibody structure-prediction methods optimize homology models using energy 

minimization3,11–13. Although minimization eliminates stereo-chemical strain, resulting 

structures could fill voids, where waters typically bind, or introduce non-native contacts due 

to force-field inaccuracies. Combinatorial backbone modeling, by contrast, relies on a 

discrete set of backbone conformations that are actually observed in natural antibodies. 

Therefore, one advantage of AbPredict is that it reduces the risk of modeling non-native 

contacts. Furthermore, AbPredict energy landscapes show multiple distinct funnels rather 

than a continuum of different conformations as observed in unconstrained modeling (Fig. 2).

22,23 This discretization simplifies discrimination between near-native and far-from-native 

conformations; in effect, low-energy conformations comprise a small set of distinct 

alternatives rather than a continuum.

Strain-free, atomic-accuracy modeling in a benchmark

We benchmarked AbPredict’s performance on targets from AMA-II.8 From the original 

AMA-II benchmark of 11 antibodies, we eliminated two structures with poor 

crystallographic resolution (>2.5 Å; PDB entries: 4M6O and 4KUZ) that additionally form 

crystal-packing interactions through their CDR H3s. Additionally, we excluded an antibody 

with an unusually long CDR L3 (PDB entry: 4MA3), as there is only one structure in the 

PDB with this L3 length. We note that exclusion of these three structures does not bias the 

comparison between AbPredict and the participants in AMA-II as no participant 

successfully predicted the H3 of any of these structures (H3 rmsd >2.2 Å), and the 4MA3 L3 

(rmsd >3.3 Å).
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To remove bias in assessing prediction accuracy, we eliminated from our conformation 

databases all PDB entries deposited after the start of the benchmark study (February 2014), 

including the entries from the benchmark. Furthermore, to ensure fair comparison between 

other groups’ predictions and AbPredict’s we obtained the models submitted to AMA-II and 

applied to them the same assessment metrics as to AbPredict’s. Following the AMA-II 

assessors we analyzed the carbonyl rmsd for each of the six CDRs, the H3 stem positions 

(Kabat numbering H94 and H100A), which capture the portion of H3 that is either kinked or 

extended,24 the RBO between the light and heavy chains, the complete paratope comprising 

the six CDRs taken as a whole, and the models’ stereo-chemical quality according to their 

MolProbity score, which measures van der Waals clashes and backbone and side-chain 

conformation outliers.25,26 The three AbPredict models for each of the AMA-II entries are 

available in the online supplement.

All the methods surveyed in AMA-II perform well in predicting the conformationally 

restricted CDRs L1, L2, and H2 (average rmsd <1.0 Å), and AbPredict is similarly accurate 

(Fig. 3). H1 is also conformationally restricted, and except in one case (PDB entry: 4KQ3), 

for which no correct predictions were made in AMA-II, AbPredict performs as well as the 

other methods (rmsd <1.0 Å). CDR 3 is conformationally more diverse, but despite this 

potential source of uncertainty AbPredict achieves accurate predictions for L3, which in the 

worst case (PDB entry: 4M6M) shows 1.6 Å rmsd to the correct conformation. Furthermore, 

AbPredict achieves the most accurate predictions for the H3 stem positions. In principle, the 

solvent-exposed tip of H3 is where a knowledge-based method such as AbPredict might be 

inferior to others. Nevertheless, performance is on par with the other methods’, and three of 

the eight entries exhibit rmsd <1.5 Å with average rmsd for the lowest-energy models 

measuring 1.9 Å. The RBO between light and heavy chains is predicted with an average 

error of 2.2 ± 2.9°, similar to the average error of other methods (2.7 ± 2.5°). We note that 

accuracy in RBO correlates with H3 prediction accuracy: when two antibodies (PDB entries: 

4M61 and 4M6M) with poorly predicted H3 conformations are eliminated, the models’ 

average error improves to 0.7°.

The AMA-II assessors noted that models from several groups suffered from stereo-chemical 

strain, as judged by MolProbity.27 Unlike some other methods surveyed in AMA-II,3,5 

AbPredict selects models solely on their computed energy and not their MolProbity scores. 

Nevertheless, we find that predicted structures have uniformly low MolProbity scores, with 

an average composite score of 1.4 and a worst score of 1.9 (PDB entry: 4MAU), 

corresponding to the quality one may expect from crystal structures with resolution 1.9 Å.

25,26 By contrast, those AMA-II methods that did not use MolProbity in selection, 

submitted models with MolProbity average scores of 1.5–3.3 (Fig. 4). We conclude that in 

all of the structural and stereo-chemical parameters used to assess antibody structure-

prediction algorithms, AbPredict performs as well as, and in some cases (L1, H1, H2, and 

H3 stem), better than other methods. Our analysis suggests that this fully automated 

algorithm captures some aspects of expert-knowledge implemented in supervised methods.
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Search for lowest-energy structure improves accuracy compared to homology modeling

The strategy adopted by all participants in the AMA-II benchmark relies on homology 

modeling, with some groups employing homology modeling followed by ab initio prediction 

of CDR H33,11–13. AbPredict, by contrast, searches for the lowest-energy conformation of 

the target sequence, ignoring sequence homology as a selection criterion. For several AMA-

II entries AbPredict shows higher accuracy than any other method (Fig. 3). To investigate the 

underlying reason for higher accuracy we analyzed the highest sequence-identity template 

(which is presumably the default for homology-based modeling), AbPredict’s chosen 

template, and the template of lowest rmsd to the experimentally determined structure (Fig. 

5). For instance, AMA-II entry 4KMT shows 100% sequence identity to PDB entry 3QOT in 

H3, but the H3 backbone conformations exhibit 2.7 Å rmsd [Fig. 5(A)]. Modeling the H3 

backbone conformation from 3QOT on the background of the 4KMT structure reveals 

significant backbone side-chain clashes between the modeled H3 and the 4KMT Vh. In this 

case, AbPredict achieves higher prediction accuracy than any participant in AMA-II by 

selecting 3O2W as template, even though 3O2W’s H3 only shares one identical amino acid 

with 4KMT’s out of 11; the rmsd for 3O2W relative to 4KMT is only 0.9 Å [Fig. 5(A)]. Of 

the eight AMA-II benchmark targets we find four other examples, where the highest 

sequence-identity template shows H3 rmsd >1.5 Å and where a template with lower rmsd 

exists (PDB entries: 4M43, 4MAU, 4M6M, and 4KQ4). In these cases, we find that the 

average H3 rmsd can decrease from 2.8 Å to 1.1 Å if the lowest-rmsd templates were 

selected, and AbPredict selects templates with 1.6 Å average rmsd. Our observation that low 

sequence identity structures could provide superior templates for modeling extends to 

segments other than H3 as shown for H2 [Fig. 5(B)].

High-accuracy, fully blind predictions

Encouraged by AbPredict’s performance on the AMA-II benchmark, we obtained from 

other research groups the sequences of two antibodies targeting unrelated proteins that were 

in the process of structure determination; we treated these sequences as blind-prediction 

cases. In these cases, we used the complete conformation databases based on known 

antibody structures available at the beginning of 2015 (prior to these antibodies’ structure 

determination), and predicted the structures using the same strategy as above. For Antibody 

A all predictions outside CDR H3 have rmsd <1.5 Å to the correct structure (Fig. 6). 

Antibody A has an H3 of length 13 residues, which is as long as the longest H3 in the AMA-

II benchmark. Nevertheless, the lowest-energy model achieves 1.6 Å rmsd in H3; the 

deviation between the predicted and observed rigid-body angle is 1.7°, and the rmsd over the 

entire paratope ranges from 0.8 to 1.1 Å in all three predictions. In antibody B, all CDRs of 

the lowest-energy model are below 1.5 Å and the rigid-body angle is 1.3° off-target. 

Throughout much of the paratope, we observe that even side-chain conformations are 

predicted accurately (Fig. 6). These fully-blind results reinforce the benchmark results 

above, that AbPredict can be used in an unsupervised and fully automated way to obtain 

high-accuracy model structures.
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Discussion

Existing antibody structure-prediction algorithms use sequence homology to select templates 

for threading. This report demonstrates, however, that high sequence similarity could 

misguide modeling, particularly in the conformationally heterogeneous CDRs H2 and H3. 

An alternative to homology modeling is ab initio structure prediction, where the 

conformation is predicted from scratch based on a search for low-energy conformations.3 

Ab initio modeling, however, is complicated in loop regions owing to the large conformation 

space open to regions lacking secondary structure and due to energy-function inaccuracies, 

and often results in flat energy landscapes and poor discrimination between near and far-

from-native conformations.22,23 Combinatorial backbone modeling is similar to homology 

modeling in using template structures from the PDB, but it only uses energy to select 

models. Since combinatorial backbone modeling chooses fragments from a limited set of 

conformations that are actually observed in nature it does not force non-native contacts due 

to energy-function inaccuracies, and yields discretized energy landscapes that improve 

discrimination between native and non-native backbone conformations.

Conclusion

AbPredict selects models strictly according to energy and does not use sequence alignments 

or expert rules. This simplifies automation, opening the way for adoption by non-experts. 

The resulting models’ high accuracy and low stereo-chemical strain suggest that they can be 

used as templates for design calculations.28 Combinatorial backbone modeling, moreover, 

can be extended to other modular folds of high conformational diversity, such as TIM barrels 

and β-propellers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
AbPredict: A method for combinatorial backbone modeling of antibodies. (A) Database 

preparation: The antibody variable domain (Fv) is segmented into regions comprising CDRs 

L3 and H3 (magenta and orange, respectively), and regions comprising much of the V 

segments, Vh (blue) and Vl (green), including CDRs 1 and 2.9 In a pre-computation step the 

backbone torsion angles of each segment as well as the RBO between light and heavy chains 

(gray) are stored in five databases for efficient lookup during modeling simulations. (B & C) 

Schematic description of a structure prediction trajectory: starting from the input sequence 

an arbitrary combination of backbone and rigid-body degrees of freedom is chosen from the 

databases and 150 simulated-annealing Monte Carlo (SA-MC) steps are conducted to 

identify low-energy conformations. (D) 3,000 independent trajectories are run to produce an 

energy landscape, where every point is the lowest-energy structure from an individual 

modeling trajectory and carbonyl root mean square deviation (rmsd) is measured to the 

experimentally determined structure.
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Figure 2. 
Combinatorial-backbone modeling in AbPredict explores the energy landscape discretely. 

Unlike ab initio methods,3,11–13 combinatorial backbone modeling as implemented in 

AbPredict only explores combinations of conformations, which are observed in natural 

structures; since these conformations fall into clusters,2 the resulting energy landscape in 

AbPredict is more discrete than seen in ab initio methods. The rigid-body orientation 

between light and heavy chains (RBO) is a more continuous degree of freedom, and 

accordingly the energy landscape for RBO is less discrete than that of the backbone 

conformations. Carbonyl rmsd or RBO deviation from the experimental antibody structure is 

measured on the x axis, and energy (in Rosetta energy units) on the y axis. The lowest-

energy model of the most, the second most, and the third most populated clusters are 

automatically selected (see Methods) and are marked by blue, yellow, and red, respectively.
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Figure 3. 
Prediction accuracy in AbPredict relative to AMA-II participants. Methods: joa,5 jef,3 ccg,6 

acc,13 sch,12 mmt,11 pig.14 Carbonyl rmsd is measured in Ångstrom and tilt in degrees.
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Figure 4. 
AbPredict models are stereo-chemically relaxed. Methods: joa,5 jef,3 ccg,6 acc,13 sch,12 

mmt,11 pig,14 Jef and joa use MolProbity scores to select models, whereas the other 

methods, including AbPredict (blue), do not. The targets category (orange) represents the 

MolProbity scores of the experimental benchmark target structures deposited in the PDB. 

Error bars represent the standard deviation from the mean.
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Figure 5. 
Examples of accurate low-energy predictions that use templates of low sequence identity. 

High sequence identity in loop regions does not guarantee high structural similarity, and 

even identical (A) or highly similar (B) sequences diverge in structure. In these examples 

AbPredict selects templates that have lower rmsd to the target, despite their low sequence 

identity. Orange: experimental structure; magenta: highest sequence-identity template; blue: 

AbPredict model.
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Figure 6. 
High-accuracy blind predictions. The lowest rmsd of three predicted structures (orange) for 

two antibodies that were experimentally elucidated (blue) after modeling. Models and 

experimental structures overlap with (A) 1.2 Å carbonyl rmsd and (B) 1.0 Å carbonyl rmsd. 

Selected, high-accuracy side-chain conformations on L3 and H3 are shown as sticks. 

Sequences and solved structures were kindly provided by Aliza Katz and Ron Diskin (A), 

and Iris Grossman and Deborah Fass (B) prior to publication.
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