
Host-Virus Interaction of ZIKA Virus in Modulating Disease 
Pathogenesis

Nanda Kishore Routhu1 and Siddappa N. Byrareddy1,2,*

1Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical 
Center, Omaha, NE 68198

2Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 
Omaha, NE 68198

Abstract

The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It 

primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to 

severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible 

individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, 

fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has 

been determined through its major surface envelope glycoprotein. It has been known that 

oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-

virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and 

aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-

pathogen-interactions to better understand ZIKV pathogenesis.
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Introduction

The Zika virus (ZIKV) is a major emerging pathogen (Jamil et al., 2016) that has recently 

caused sporadic but large epidemics world-wide. This includes countries in South and 

Southeast Asia, Oceania, the Americas, and Africa. ZIKV belongs to a member of the genus 

Flavivirus in the Flaviviridae family. These are single-stranded, positive sense RNA viruses 

typically transmitted by arthropod vectors (Malone et al., 2016). This genus also includes 

dengue virus (DENV) 1–4, West Nile virus (WNV) 1 and 2, Yellow Fever virus (YFV), and 

Japanese encephalitis virus (JEV) I–V (Lindenbach and Rice, 2003). The flaviviruses infect 

a wide range of hosts such as rodents, pigs, birds, non-human primates, and humans (Daep 

et al., 2014).
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ZIKV was first isolated from a rhesus monkey in Zika forest, Uganda in 1947 (Dick et al., 

1952). Thereafter it was isolated from the mosquito (Aedes africanus) in 1948 (Dick et al, 

1952), and humans in 1952 (Macnamara, 1954). ZIKV is mainly spread through Aedes 
aegypti and Aedes albopictus mosquitoes which comprise two major lineages: African and 

Asian (Ladner et al., 2016; Weaver et al., 2016). Due to the increase in ZIKV infections in 

recent years, in May 2015 the Pan American Health Organization issued an epidemiological 

alert about Zika virus infection. In February 2016, the World Health Organization stated 

“Zika virus is a public health emergency of international concern” due to extensive travel of 

infected humans across the world (Lupton, 2016) (Table 1).

Zika virus genome organization and polyprotein processing

ZIKV contains a single-stranded positive sense RNA genome that is approximately 10 kb in 

size with a single open reading frame (ORF). The ORF encodes a large polyprotein that is 

processed to produce the structural proteins (capsid [C], precursor membrane [prM], 

envelope [E]), and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and 

NS5) that assist in virus replication and in pathogenesis (Fig. 1). The non-structural proteins 

are important for entry, translation, replication, morphogenesis, and pathogenesis 

(Lindenbach and Rice, 2003; Olagnier et al., 2016; Sirohi et al., 2016). The ORF is flanked 

by highly conserved secondary structures at the 5′ and 3′ untranslated regions that help in 

translation and replication of the genome (Zhu et al., 2016). ZIKV replicates in the virus-

induced membranous vesicles that are derived from the endoplasmic reticulum (ER) and 

Golgi complex by exploiting membrane trafficking (Miller and Krijnse-Locker, 2008). After 

release of the genome into the cytoplasm, ZIKV replicates through a negative strand 

intermediate (Lindenbach and Rice, 2003). Due to its limited coding capacity, ZIKV largely 

depends on host machinery for virus replication, translation, and viral morphogenesis (Gale 

et al., 2000).

The non-structural protein NS1 is a 46 KDa glycoprotein containing 2–3 glycosylation sites 

and 12 conserved cysteine residues that can form disulphide bonds (Muller and Young, 

2013; Edeling et al., 2014). Mutations in glycosylation sites Asn130 and Asn207 drastically 

affect virus replication and virus production (Pryor et al., 1998; Crabtree et al., 2005). 

Although the NS1 protein has no hydrophobic transmembrane domain, it associates with the 

membrane through a glycosylphosphatidylinositol (GPI) anchor (Jacobs et al., 2000). It is 

located inside the cell and is also found in foci on the cell surface. Upon proteolytic 

separation from the envelope protein, it is secreted out of the cell (Alcon-LePoder et al., 

2005). Cell surface expression of NS1 could elicit a strong humoral immune response, 

which further aids in antibody-mediated killing of virus infected cells (Crook et al., 2014). 

The NS1 and NS4 non-structural proteins interact with each other and co-localize in the 

viral replicase complex to help negative strand synthesis during the viral genome replication 

(Lindenbach and Rice, 1999).

The NS2A is a 22 kDa hydrophobic protein and plays an important role in infectious viral 

particle production (Xie et al., 2013). Cleavage of NS2A upstream of the C-terminus by viral 

serine protease produces a smaller 20 kDa protein, which is essential in viral replication 

(Leung et al., 2008). The NS2A non-structural protein interacts with the NS3, NS5, and 
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Kunjin virus (KUN) 3′ Non-coding-region and co-localizes with the replication complex 

(Liu et al., 2002). These interactions are essential in managing the shift between RNA 

packaging and RNA replication in virus particle production (Mackenzie et al., 1998; Yu et 

al., 2013). The NS2B is a 14 kDa membrane-associated protein that mediates membrane 

interaction by its conserved central hydrophobic region (Bollati et al., 2009). These 

interactions increase the host cell membrane permeability (Chang et al., 1999). Furthermore, 

NS2B interacts with and acts like a cofactor for NS3 trypsin-like serine protease function 

(Luo et al., 2008).

NS3 is a multifunctional 70 kDa protein that has multiple enzymatic activities, such as 

trypsin-like serine protease activity, (Chambers et al., 1990; Brinkworth et al., 1999; Droll et 

al., 2000; Tautz et al., 2000; Yusof et al., 2000; Luo et al., 2008), Mg2+ inhibited and 

poly(A)-stimulated NTPase activity (Feito et al., 2008). In addition, it also has Mg2+ 

stimulated, poly(A)-inhibited RNA triphosphatase (RTPase) activity and ATP-driven RNA 

duplex unwinding activity at its C-terminus. Therefore, mutations in the putative NTP-

binding site (Lys199) destroy the NTPase and RTPase activities (Gebhard et al., 2012). The 

NS3 localizes to the membranes by interacting with the membrane-localizing 

transmembrane viral protein NS2B and helps in viral polyprotein processing and viral 

replication (Falgout et al., 1991; Markoff et al., 1997; Yu et al., 2013). The trypsin-like 

serine protease activity has been mapped to His53, Asp77, and Ser138 (catalytic triad) 

(Chambers et al., 1990; Gupta et al., 2015).

NS4A is a 16 kDa multifunctional, hydrophobic protein. It regulates membrane 

proliferation, localizes the replication complex to the membrane, aids in polyprotein 

processing, and is crucial for immune evasion (Mackenzie et al., 1998; Miller et al., 2007). 

The NS4A C-terminus interacts and translocates NS4B to the ER lumen (Miller et al., 2007). 

The NS4B is a 27 KDa transmembrane protein present at the replication site with double-

stranded RNA, an intermediate of viral replication and NS3 protein (Miller et al., 2007).

NS5 is a highly conserved 103 kDa protein and plays a crucial role in viral replication (Lu 

and Gong, 2013; Li et al., 2014; Klema et al., 2016). It has N-terminal RNA cap-processing 

activity (homology with the S-adenosyl-methionine (SAM)-dependent methyltransferases) 

(Klema et al., 2016), GTP-binding activity (Benarroch et al., 2004), and C-terminal RdRP 

activity (Malet et al., 2007; Zhang et al., 2008). The interaction of NS5 protein stimulates 

NS3 NTPase activity (Feito et al., 2008) and creates an importin binding site. As a result, 

this helps in nuclear localization (Vasudevan et al., 2001; Klema et al., 2016).

Zika virus cellular entry

Compared to other flaviviruses, little is known about the morphology, replication, and 

pathogenesis of ZIKV. Recently, the structure of the thermo-stable French Polynesian ZIKV 

strain H/PF/2013 was determined by cryoelectronmicroscopy. The overall structural 

architecture of ZIKV is similar to that of DENV and WNV, except for approximately 10 

amino acids. These ammino acids surround the Asn154 glycosylation site in each of the 180 

envelope glycoproteins that make up the icosahedral shell (Kostyuchenko et al., 2016; Sirohi 

et al., 2016). Sequence comparisons of the glycoprotein (E) of ZIKV with the other 
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members of the flaviviruses family indicating unusual degree of variability within the ZIKV 

strains and between the family (Fig. 2 and Table 2).

ZIKV is an enveloped, icosahedral virus approximately 40 nm in diameter. The capsid of 

ZIKV is made up of three structural proteins: the capsid protein, prM, and the envelope 

protein (Zhang et al., 2012; Kostyuchenko et al., 2016; Sirohi et al., 2016). The outer shell is 

composed of 180 copies of both the envelope (E) glycoprotein (53 kDa) and the membrane 

(M) protein (21 kDa), and is surrounded by a lipid envelope (Kostyuchenko et al., 2016). 

The capsid protein is attached to the viral RNA genome. The envelope protein is a surface 

protein that is involved in viral attachment, fusion, penetration, hemagglutination, host 

range, and cell tropism.

The envelope protein contains three domains (I, II, III) and two transmembrane helices. 

Domain I contains a β-barrel central structure. Domain II comprises the fusion loop, the 

segment directly involved in the fusion of viral and cellular membranes during virus entry. 

Domain III is located on the surface of the viron. It has an immunoglobulin-like β-barrel 

structure that helps in cellular-binding (Modis et al., 2005). The Zika virus envelope protein 

EDI, EDII, and EDIII domains share 35%, 51%, and 29% amino acid identity with the 

DENV ED I-III domains, respectively (Stettler et al., 2016). Maturation of the virion 

requires cleavage of the membrane protein by the trans-Golgi network and cellular protein 

(furin) to pr and M protein. This is followed by the release of the newly formed viral 

particles from the cell (Zhang et al., 2012; Sirohi et al., 2016)

The ZIKV envelope protein has one N-linked glycosylation site (N154). Whereas, the 

DENV envelope protein contains two glycosylation sites (N67 and N153) that are involved 

in the interaction with attachment factors on the cell surface (Hacker et al., 2009; Dai et al., 

2016; Zhu et al., 2016) such as receptor tyrosine kinases like TYRO3 and AXL (Hamel et 

al., 2015; Dang et al., 2016; Hanners et al., 2016; Tang et al., 2016) (Fig. 3). In addition, 

other flaviviridae members (DENV and WNV) use dendritic cell-specific intercellular 

adhesion molecule 3-grabbing non integrin (DC-SIGN) (Tassaneetrithep et al., 2003; Wang 

et al., 2015), liver/lymph node-specific ICAM-3 grabbing non integrin (L-SIGN) (Perera-

Lecoin et al., 2014; Wang et al., 2015), proteins of the transmembrane immunoglobulin and 

mucin domain 1 (TIM1) (Jemielity et al., 2013), and claudin-1 (Che et al., 2013) for cell 

entry (Fig. 3). However, it is unclear whether ZIKV uses such cell-specific adhesion 

molecules and whether they play critical roles in virus budding and transmission, thereby 

warranting further studies.

Role of glycosylation in Zika virus-host interactions

Recently, Zhu et al (2016) analysed potential O-glycosylation and N-glycosylation sites in 

24 representative pre-epidemic and epidemic ZIKV using NetOGlyc 4.0 (http://

www.cbs.dtu.dk/services/NetOGlyc/) and NetNGlyc 1.0(http://www.cbs.dtu.dk/services/

NetNGlyc/) and found that the O-glycosylation and N-glycosylation sites are highly 

conserved (Zhu et al., 2016). Virus particles contain one strand of RNA genome, surrounded 

by a lipid bilayer and three distinct types of viral structural proteins (E, M/prM, and C). The 

glycoprotein E is responsible for targeting virus to host cell receptors, and it facilitates virus 
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entry. As such, it is a major target for antibodies (Dai et al., 2016; Kostyuchenko et al., 2016; 

Sirohi et al., 2016)(Fig. 4). However, ZIKV is able to mediate antibody escape due to highly 

variable amino acids (approximately 10) that surround the Asn154 glycosylation site in its 

envelope protein (Kostyuchenko et al., 2016; Sirohi et al., 2016). Sequence analysis (Fig. 2) 

and glycosylation site prediction (Table 3) studies indicate that DENV has two (Asn67 and 

Asn153) glycosylation motifs; whereas, ZIKV has one (Asn154) glycosylation site (Zhu et 

al., 2016). The connection between glycosylation, structure, tropism, immune recognition/

evasion mechanisms, and pathogenesis of ZIKV remains largely unknown and addressing 

these will aid in the rapid development of vaccines and therapeutics.

As described above, the first ZIKV was isolated in the Zika forest in 1947. Later strains with 

Asian and African lineages did not cause significant numbers of human infections until 2007 

(Dick et al., 1952). The Yap Island epidemic in 2007 in Micronesia brought ZIKV into 

notice, along with the alarming increase from 2007 to 2016 in epidemics in New Caledonia, 

French Polynesia, Brazil, and South and Central America, and its association with the severe 

birth defects (microcephaly) and neurological diseases Guillain-Barré syndrome (GBS) 

(Haddow et al., 2012; Al-Qahtani et al., 2016; Nishiura et al., 2016). ZIKV attained many 

sequence and structural changes from 1947 to 2016, which increased virulence and became 

responsible for the many epidemics across the globe (Haddow et al., 2012; Zhu et al., 2016). 

These studies suggested that ZIKV pathogenicity has gradually evolved during inter-species 

transmission via the intra-cerebral route making a relatively non-pathogenic viral strain to a 

“pathogenic” strain. The ZIKV glycoprotein E is the major surface protein that makes initial 

contact with the cell-surface receptor to gain entry into the host cell. However, the 

glycoprotein E-linked glycan structure and composition have not yet been examined. 

Therefore, analysing the structure and composition of the glycans at each site across the 

family will aid in developing a signature that would further assists in elucidating emerging 

ZIKV pathogenesis and developing drug targets.

ZIKV infection is associated with rashes, headache, nausea, diarrhea and fever, including 

serious neuroimmunological diseases such as microcephaly in neonates and GBS in adults 

(Oehler et al., 2014; Araujo et al., 2016b; Cao-Lormeau et al., 2016; Watrin et al., 2016). 

The association between GBS is clearly revealed in French Polynesia in a case study 

between October 2013 and April 2014 (Kindhauser et al., 2016). The presence of Zika viral 

RNA and antigens in two congenitally infected new-borns’ placenta and brain tissues from 

Brazil strengthen the connection between Zika virus infections in infants (2015) (de Oliveira 

Poersch et al., 2005; Oehler et al., 2014; Sarno et al., 2016).

Several modes of ZIKV infection has been studied such as antibody-dependent enhancement 

of infection and receptor mediated entry (DC-SIGN, Tyro3, and AXL and TIM-1) to 

facilitate the virus entry to macrophages, monocytes, neuronal progenitor cells, and fetal 

cells (Hamel et al., 2015; Li et al., 2016b; Tang et al., 2016). However, the correlation 

between the increased number of ZIKV infections and microcephaly cases remains to be 

defined. Furthermore, the analysis of tissue samples for viral RNA and proteins during the 

different stages of gestation from expectant mothers with ZIKV infection indicate the virus 

can cross the placenta and cause chronic placentitis and microcalcifications (Noronha et al., 

2016). This observation was further supported by viral RNA and protein detection in 
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amniotic fluids, placental tissues, and fetal brain tissues (Martines et al., 2016; Mlakar et al., 

2016). Recent studies have demonstrated that the receptors (Tyro3, Axl, and TIM1) 

expressed on primary human placental cells, endothelial cells, fibroblast cells, amniotic 

epithelial cells, trophoblast progenitors, and macrophages (Hofbauer cells) facilitate ZIKV 

(PRVABC59 and MR766) maternal-fetal transmission (Bayer et al., 2016; Noronha et al., 

2016; Tabata et al., 2016). The ZIKV infects the primary human placental macrophages and 

placental cytotrophoblasts, thereby induces the production of type I interferon (IFN) IFN-α, 

pro-inflammatory cytokines IL-6, chemokine MCP-1, and antiviral genes such as RIG-I, 

MDA5, and LGP2 (Quicke et al., 2016). During infection, ZIKV stimulates cell death, 

induces type I interferon (IFN) response and pro-inflammatory cytokines that disrupt the 

placental barrier leading to neurological disorders such as microcephaly (Miner et al., 2016). 

However, another study shows that trophoblast-derived type III IFN encodes resistance to 

ZIKV infections in barrier cells of the placenta and primary human trophoblasts (PHTs). 

The IFNλ1 protects placental cells and non-placental cells from ZIKV infection (Bayer et 

al., 2016). The ZIKVBR infected mice, human cortical progenitor cells, and brain organoids 

presented microcephaly related symptoms, like cell death, disrupted cortical layers, and 

reduced proliferative zones (Wu et al., 2016). Furthermore, it has been demonstrated that 

Asian ZIKV strain SZ01 has shown that ZIKV replicate efficiently in mouse neural 

precursor cells (NPCs). Next, SZ01 replication was associated with differential expression of 

genes related to the cell-cycle, immune responses and apoptosis (Li et al., 2016a).

Zika virus association with the neurological abnormalities

ZIKV infections are linked to the GBS and newborn microcephaly (Oehler et al., 2014; 

Araujo et al., 2016a; Cugola et al., 2016). GBS is a rare neurological syndrome caused by 

immune system failures wherein the immune system targets myelinating Schwann cells of 

the peripheral nervous system and leads to a rapid-onset of muscle weakness (Hughes and 

Cornblath, 2005). Microcephaly is caused by embryonic and fetal developmental failures 

that lead to reduced cerebral cortex size. The normal development of the cerebral cortex 

requires an adequate proliferation, differentiation, and migration of neural stem cells. Failure 

in any of these processes can result in microcephaly (Jackson et al., 2002). Recent reports 

imply that these neurological abnormalities are also observed in congenital infections 

(Wakerley and Yuki, 2013). Increase in the number of GBS cases during French Polynesia 

outbreak and newborn microcephaly cases during Brazil outbreak were observed (Oehler et 

al., 2014; Araujo et al., 2016a; Cugola et al., 2016). In addition to GBS and microcephaly, 

infected persons also experienced paralysis of four limbs (tetraparesis) in adults (Broutet et 

al., 2016). Severe ocular abnormalities were observed in infants with microcephaly 

(Vasconcelos-Santos et al., 2016). ZIKV positive antibodies have been found in patients with 

tetraparesis, and the presence of ZIKV RNA has been reported in the brain and tissues of a 

neonate who died of microcephaly (Araujo et al., 2016a).

The exact mechanism behind ZIKV induced neurological disorders is not clearly known. 

However, several recent studies have aimed at understanding the link between ZIKV 

infections and microcephaly (Bayer et al., 2016; Bayless et al., 2016; Brault et al., 2016; 

Broutet et al., 2016). A recent comprehensive study involving ZIKV (Pf13 strain), DENV-4, 

and WNV strongly supports the neurotropic nature of ZIKV; wherein, the embryonic brain 

Routhu and Byrareddy Page 6

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells were able to support virus replication, but not closely related DENV-4 replication 

(Brault et al., 2016) in mice. Cranial neural crest cells (CNCCs) are very crucial in 

development of facial bones of the skull and play important role in the formation of bones, 

cartilage, and nerves. ZIKV, but not DENV, efficiently infect CNCCs, promote increased 

production of neurodevelopmental cytokines such as Vascular endothelial growth factor 

(VEGF) and leukemia inhibitory factor (LIF) that initiate premature neuronal differentiation 

(Bayless et al., 2016). At the molecular level, ZIKV NS4A and NS4B inhibit the Akt-mTOR 

pathway in infected human fetal neural stem cells (fNSCs) leading to dysregulation of 

autophagy pathways and faulty neurogenesis (Liang et al., 2016). However, the closely 

related DENV NS4A and NS4B do not demonstrate the same effect on neurogenesis (Liang 

et al., 2016).

Due to high recombination frequencies, ZIKV has potentially evolved faster and attained the 

ability to exploit multiple cell surface receptors and cellular factors to facilitate infection in a 

variety of cells types, including AXL-independent entry into cortical progenitor cells, 

neuronal progenitor cells, and cerebral organoids in mice and some human ex vivo studies 

(Hamel et al., 2015; Garcez et al., 2016; Shao et al., 2016; Wells et al., 2016). Also, mice 

pups delivered from SJL and C57BL/6 mice infected intravenously with a ZIKV Brazil 

(ZIKVBR) isolate, exhibited delay in whole-body growth and intrauterine restrictions, 

compared to control mice pups (Cugola et al., 2016). In addition, significant viral RNA and 

proteins were detected in the brain (Cugola et al., 2016). The extensive microglial activation, 

massive neuronal death, axonal rarefaction, and blood-brain barrier (BBB) leakage indicate 

the ability of the virus to cross placenta and cause congenital malformation (Shao et al., 

2016). Correspondingly, a quantitative study using three-dimensional forebrain organoids 

demonstrates that ZIKV infections decrease the neuronal cell-layer volumes by increasing 

cell-death and decreasing cell proliferation (Qian et al., 2016). This correlates with cortical 

defects associated with reduced human cortical progenitor cell numbers and cortical 

thickness due to alteration in the expression of genes involved in immune response, cell-

cycle, autophagy and apoptosis (Cugola et al., 2016; Qian et al., 2016; Tang et al., 2016).

Zika virus-host immune system interactions

A contemporary circulating PRVABC59, a ZIKV strain isolated from Puerto Rico in the 

Western Hemisphere during the 2015 outbreak, was characterized for its cytopathic effects 

(cell rounding, pyknosis, and caspase 3 activation) in primary human neural progenitors 

(hNPs), THP-1, Huh7.5, BHK-J, and Vero E6 cells (Hanners et al., 2016). An antibody-

based array to detect 102 human inflammatory cytokines in ZIKV-infected hNPs and THP-1 

cells showed that multiple cytokines and growth factors were secreted by hNPs cells. 

However, there was no significant difference in secreted proinflammatory cytokines TNFα, 

CCL2, and the neuroprotective chemokine CX3CL1 between ZIKV-infected and mock-

infected cultures. Thus, confirming that ZIKV can replicate in hNPs without inducing the 

production of neuroinflammatory or neuroprotective cytokines (Hanners et al., 2016).

Infection of DENV results in a characteristic phenomenon known as a ‘cytokine storm’; 

wherein, the infected cells produce high levels of circulating pro-inflammatory cytokines, 

such as IFN-α, IFN-γ, tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-2, 
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IL-6, IL-8, IL-10, CCL2, CCL3, CCL4, CCL5, CXCL-8, CXCL-10, CXCL-11, macrophage 

migration inhibitory factor, and vascular endothelial growth factor (Mangada and Rothman, 

2005; Palmer et al., 2005; Amaral et al., 2011). However, such symptoms are not observed 

in ZIKV-infected individuals even though there is a high degree of similarities in the viral 

proteins. The multiplex cytokine serum analyses (MCSA) of acute and convalescent phase 

of ZIKV infections indicate that the elevation of chemokines was more noticeable than 

elevation of cytokines (Tappe et al., 2015). In acute phase, substantial increases in 

concentration of IL-1β, IL-2, IL-4, IL-6, IL-9, IL-10, IL-13, IL-17, interferon-γ-induced 

protein 10 (IP-10), normal T cell expressed and secreted (RANTES), macrophage 

inflammatory protein 1 alpha (MIP-1α), and VEGF are observed as compared to normal 

controls (Tappe et al., 2015). In the convalescent phase, noticeable increase in IL-1β, IL-6, 

IL-8, IL-10, IL-13, IP-10, RANTES, MIP-1α, MIP-1β, VEGF, fibroblast growth factor 

(FGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) levels compared to 

MCSA of uninfected persons (Tappe et al., 2015). A circulating strain, PF-13 was isolated 

during the French Polynesia outbreak in 2013/2014. It is closely related to strains isolated 

from Cambodia in 2010 and Yap State in 2007, and it infects permissive cells like human 

dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells (Musso et al., 

2014a; Hamel et al., 2015).

The pathogen recognition receptors (PRR), such as toll-like receptor 3 (TLR-3), retinoic 

acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5) bind 

to pathogen associated molecular patterns (PAMP) (Hamel et al., 2015). This leads to 

restriction of the pathogen through the stimulation of a cascade of signalling events resulting 

in the activation of the antiviral pathway. The antiviral pathway is comprised of IRF-7-

dependent antiviral gene expression that includes: the interferon-stimulated genes OAS2, 

ISG15, and MX1; type I IFNs; and the inflammatory chemokines CXCL10, CCL5, and 

CXCL11 (Chen et al., 2013; Hamel et al., 2015). The interferon system is known to play a 

key role DNEV and WNV infections (Umareddy et al., 2008; Munoz-Jordan, 2009; 

Nasirudeen et al., 2011; Bayer et al., 2016). Similarly, A129 immunocompromised mice 

lacking the type I interferon receptor and AG129 mice lacking types I and II IFN receptors 

infected with the Asian lineage FSS13025 strain exhibited severe neurological symptoms 

and death. In wild-type immunocompetent mice, this was not observed. In spite of all this, 

these neurological infections have not been reported in infected rhesus macaques (Dudley et 

al., 2016). Taken together, this data suggests that the interferon system plays a crucial role in 

controlling ZIKV pathogenesis (Aliota et al., 2016; Rossi et al., 2016). Interestingly, the 

antigen presenting system and interferon system is not developed to control these infections 

and associated diseases in the neonates (Jaspan et al., 2006). Furthermore, pre-treatment of 

primary skin fibroblasts with human recombinant type I and type II interferon, such as IFN-

α, IFN-β, or IFN-γ strongly restrict ZIKV infections in a dose-dependent manner 

supporting the importance of the interferon system in controlling ZIKV infection and 

pathogenesis (Navarro-Sanchez et al., 2005; Hamel et al., 2015).

Cross-reactivity of other flavivirus antibodies with ZIKV

It has been shown that DENV and ZIKV are antigenically related with the severity of ZIKV 

infection significantly increased when antibodies against DENV are present and vice versa 
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(Lanciotti et al., 2008; Dejnirattisai et al., 2016; Priyamvada et al., 2016; Zhu et al., 2016). 

The DENV has four human serotypes, DENV-1, DENV-2, DENV-3, and DENV-4, which 

share 65% of genome homology (Holmes, 1998; Mustafa et al., 2015). Each of the serotypes 

of DENV produce unique humoral immune responses in infected hosts (Holmes, 1998). 

Infection of humans with a single serotype is typically self-resolving; but when the same 

individual is infected with a different DENV serotype, it results in higher levels of 

infectivity. Antibodies generated against the first serotype can bind to other serotypes 

resulting in enhanced antibody-Fc receptor-mediated entry into the macrophages (Peiris and 

Porterfield, 1979; Boonnak et al., 2010; Chotiwan et al., 2014; Dejnirattisai et al., 2016). 

Serum collected from four people who had recovered from DENV showed significant 

enhancement of ZIKV infection indicating that the DENV neutralizing sera can enhance 

ZIKV infections in an antibody-Fc receptor dependent pathway. In presence of anti-Fc 

receptor antibody, the infectivity of ZIKV was significantly reduced (Priyamvada et al., 

2016). Similarly, the cross-reactivity of acute and convalescent serum of nine Thai DENV-

infected individuals to ZIKV was tested and showed cross-reactivity in the binding as well 

as in the neutralization of ZIKV (Priyamvada et al., 2016). This is further supported by 

findings that demonstrated DENV-specific monoclonal antibodies (mAbs) bound to both 

whole ZIKV virions and ZIKV lysate (Priyamvada et al., 2016). Only a subset of these 

antibodies could neutralize ZIKV infection, but all the nine sera and 47 mAbs specific to 

DENV enhanced in vitro ZIKV infection of Fc gamma receptor (FcγR)-bearing cells.

A set of 119 monoclonal antibody-producing B-cells were isolated from the four patients 

(two had ZIKV-infection and two had serological records of DENV infection) from 

contemporary epidemics. Due to the high degree of structural similarities between the EDI 

and EDII loops, 67% (31of 46) of the monoclonal antibodies were cross-reactive with each 

other and exhibited low neutralizing activity with antibody-mediated enhancement of Fc-

receptors (Stettler et al., 2016). However, 90% (27 of 30) of the EDIII-specific monoclonal 

antibodies isolated from ZIKV or DENV donors were specific for either ZIKV or DENV 

envelope proteins and exhibited high neutralizing ability (Stettler et al., 2016). Serological 

examination of German travellers who developed signs of dengue showed ZIKV-specific 

neutralizing antibodies, as well as anti-ZIKV-IgM and -IgG antibodies (Tappe et al., 2014). 

However, pre-existing immunity does not confer resistance to other flaviviruses (Murphy 

and Whitehead, 2011). The ZIKV-immunized rhesus monkeys developed partial resistance 

to challenge with YFV (Henderson et al., 1970). Neutralizing antibodies developed after 

ZIKV and YFV infection has shown haemagglutination inhibition that could also partially 

protect mice from subsequent lethal ZIKV infection (Monath et al., 1973; Musso and 

Gubler, 2016). It has been shown that 47% (8 of 17 mAbs) of DENV EDE2-specific mAbs 

and 81% (27 of 33) of DENV EDE1-specific mAbs could cross-react with ZIKV 

(Dejnirattisai et al., 2016).

Concluding remarks and future perspectives

The global spread of ZIKV infections and pathological mechanisms behind the emergence 

of Zika virus are not clearly known. The factors influencing the rate of Zika infections 

include, but are not limited to, viral envelope protein glycosylation and its parallel 

connection with the evolution in the receptors utilization for cellular entry. Glycosylation 
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plays an important role in both virus entry into host cells and in modulating the host-

response (innate and adaptive immune response) towards ZIKV virus. Understanding the 

unique Zika viral and host factors that determine the tissue tropism and thereby disease 

severity could delineate the mechanism of Zika viral infections. Therefore, elucidating the 

ZIKV-host interactions could possibly aid in the development of diagnostic tools and 

effective therapeutics to prevent Zika viral infections and associated diseases in future 

outbreaks.
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Figure 1. 
Schematic representation of Flaviviruses genome organization, and polyprotein processing. 

The genome of flaviviruses contains single open reading frame, flanked by 5′-and 3′-UTRs. 

The ORF translated into a polyprotein is cleaved into three structural proteins -C, prM and E 

(blue color) and seven non-structural proteins NS1, NS2A, NS2B, NS3, NS4A, NS4B, and 

NS5 (orange color).
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Figure 2. 
Multiple sequence alignment of glycoprotein E of Flaviviruses. The multiple sequence 

alignment of flaviviruses glycoprotein E sequences from Zika virus (MR766, PRVABC59, 

CDC259359, and FLR), WNV (lineage 1 and 2), and Dengue (Serotype 1, 2, 3 and 4) were 

analyzed. and The common residues between sequences were represented as dot and was 

analysed using bioEdit tool.
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Figure 3. 
Flavivirus receptors and their domain organization. Figure represents various receptor(s) 

expressed on the cell such as TIM (T-cell immunoglobulin and mucin domain), TAM 

(TYRO3, and AXL), and C-type lectin (DC-SIGN) that are known to interact with the Zika 

virus and other flaviviruses and to facilitate their entry. The domain organization of each 

receptor(s) such as transmembrane domain (TM), kinase domain (KD), Ig domain, 

Fibronectin type 3 domains (FNIIID), carbohydrate recognition domain (CRD), triad of 

acidic aminoacids (TAA), tetramerization domain (TD), and dileucine motif (DM) are 

represented in the figure with color and a particular shape.
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Figure 4. 
Interaction between glycans (glycoprotein E) and receptor (DC-SIGN). Representation of 

the host-virus interactions through DC-SIGN tetramer on cell surface and N-linked glycans 

on glycoprotein of flavivirus are shown.
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Table 1

Key events in Zika virus disease. Table representing crucial events that are taken place from the Zika virus 

(ZIKV) identification to the therapeutics development.

Year Incident References

1947 Identified in the Zika forest of Uganda in a rhesus monkey. (Dick, Kitchen et al. 1952)

1948 Isolated from infected Aedes africanus, in the Zika forest. (Dick 1952)

1952 Serum analysis revealed presence of neutralizing antibodies in infected individuals in East 
Africa. (Smithburn 1952)

1964 A researcher infected with Zika, presented mild illness. (Macnamara 1954)

2007 Zika first large human infection outbreak in the Pacific Island of Yap. Three quarters of yap 
residents got infected with Zika virus during the outbreak. (Duffy, Chen et al. 2009)

2008 First documented case of sexual transmission. (Foy, Kobylinski et al. 2011)

2012 Phylogenetic analysis indicating the geographic expansion of African MR766 to Asian 
lineage EC Yap (Yap State, Micronesia, 2007). (Haddow, Schuh et al. 2012)

2014

Outbreaks on Easter Island, French Polynesia (FP), the Cook Islands, and New Caledonia. (Cao-Lormeau and Musso 2014; Musso 
2015)

1,505 asymptomatic blood samples were analyzed during FP outbreak and 42 donors have 
shown Zika virus infection. (Musso, Nhan et al. 2014; Musso, 

Roche et al. 2015)
Zika virus can be transmitted sexually and through blood transfusions.

2015

Many places including Brazil, Cabo Verde, Colombia, Suriname, EI Salvador, French 
Polynesia, Mexico, Paraguay and Panama reported the Zika viral infections.

(Kindhauser, Allen et al. 2016)Brazil’s National Reference Laboratory confirmed that Zika virus is circulating in the 
country and is correlating with the increase in neurological disorders (Guillain-Barre 

syndrome and microcephaly).

2016

Brazil reports 3,893 suspected microcephaly cases, and 1,708 cases of Guillain-Barre 
syndrome cases, including 49 deaths. (Kindhauser, Allen et al. 2016)

The Vector Control Advisory Group recommend two new tools to control the Zika virus 
transmitting Aedes mosquitoes. (WHO 2016)

Revised Zika Strategic Response Plan launched by WHO/PAHO and partners, with major 
importance given to preventing Zika disease and managing Zika associated medical 

complications.
(WHO 2016)

WHO generates a Target Product Profile for Zika vaccines to use in emergency conditions 
against congenital Zika syndrome and more than 55 diagnostic kits have been developed. (Hombach, Friede et al. 2016)
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