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Abstract

Objective—In vivo imaging of the microcirculation and network-oriented modeling have 

emerged as powerful means of studying microvascular function and understanding its 

physiological significance. Network-oriented modeling may provide the means of summarizing 

vast amounts of data produced by high-throughput imaging techniques in terms of key, 

physiological indices. To estimate such indices with sufficient certainty, however, network-

oriented analysis must be robust to the inevitable presence of uncertainty due to measurement 

errors as well as model errors.

Methods—We propose the Bayesian probabilistic data analysis framework as a means of 

integrating experimental measurements and network model simulations into a combined and 

statistically coherent analysis. The framework naturally handles noisy measurements and provides 

posterior distributions of model parameters as well as physiological indices associated with 

uncertainty.

Results—We applied the analysis framework to experimental data from three rat mesentery 

networks and one mouse brain cortex network. We inferred distributions for more than five 

hundred unknown pressure and hematocrit boundary conditions. Model predictions were 
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consistent with previous analyses, and remained robust when measurements were omitted from 

model calibration.

Conclusion—Our Bayesian probabilistic approach may be suitable for optimizing data 

acquisition and for analyzing and reporting large datasets acquired as part of microvascular 

imaging studies.
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1 Introduction

The study of hemodynamics and solute transport within microvascular networks is typically 

based on experimental observations which are then subjected to theoretical modeling. This 

sequential approach has been crucial for our current understanding of the biophysical 

properties of the microcirculation and revealed phenomena which could not be gleaned from 

in vivo measurements alone [32].

Technological advances now permit high-throughput in vivo measurement of structural and 

functional network properties. These include high-resolution, three-dimensional imaging of 

microvascular networks, measurements of blood flow, RBC velocity and flux with high 

spatio-temporal resolution, and measurements of oxygen partial pressure in blood and tissue 

[14,15,30,33,35]. With this leap in spatio-temporal resolution comes a need to summarize 

vast data quantities in meaningful ways. Currently, data are typically reported as summary 

statistics across typical vessel types, e.g. average changes in capillary RBC flux or capillary 

diameter evoked by functional activation, but see [29]. While such analysis provides 

important information about the function of individual vessels, it falls short of addressing the 

net, biophysical effect of these changes [23,25,39], for example in terms of the change in 

nutrient availability for the tissue supplied by the microvasculature.

The complex topology and morphology of microvascular networks give rise to considerable 

heterogeneity, for example in terms of the distribution of blood [22,23], and inference 

regarding solute transport within these networks must therefore account for this 

heterogeneity [22]. Accordingly, network-oriented analysis seemingly resolves the 

discrepancies encountered when tracer uptake data are fitted to compartmental models 

which assume identical capillary extraction properties across all capillaries [23,28]. 

Network-oriented data analysis combines microvascular measurements and model 

simulations to predict blood flow and solute extraction at the scale of the experimental data 

at hand, and has been used to estimate intrinsic network quantities or parameters which 

cannot be inferred directly from the experimental measurements [22,23,25].

To simulate blood flow through microvascular networks, microscopy-based topological and 

morphological information (in the form of vascular graphs) is typically combined with 

physical laws governing blood flow, and empirical descriptions of rheological effects [25]. 

The interconnected nature of microvascular networks, however, presents a challenge 

[4,16,25]. Typical vascular graphs have a considerable number of open ends or boundary 
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nodes. The choice of pressure or flow and hematocrit values for these boundary nodes is 

critical, in that simulated flow patterns are very sensitive to such boundary conditions 

[16,25]. Pries and co-workers compared experimental measurements of blood flow velocity 

and hematocrit with model simulations and found that boundary conditions required manual 

adjustments to achieve satisfactory correspondence [25,26]. Recent approaches determine 

pressure boundary conditions by minimizing the difference between observed and modeled 

flow directions or velocity, or between literature and modeled pressures and vessel wall 

shear stresses [4,17,36].

The information which can be obtained by combining model simulations with experimental 

measurements in a network-oriented analysis is limited by the uncertainties which inevitably 

arise from measurement errors and uncertainties regarding vascular topology, morphology, 

and model structural and parameter uncertainty. In this study we present a Bayesian 

probabilistic approach to address this challenge. Bayesian probabilistic analysis provides a 

rigorous framework in which sources of uncertainty can be incorporated by their respective 

probability distributions. Accordingly, our aim was to demonstrate that this framework (i) 

combines microcirculatory experimental measurement, literature data, and model predictions 

in a statistically coherent way, (ii) handles noisy measurements, (iii) can be used to infer 

distributions for uncertain model quantities (we focus on boundary conditions in this report), 

and (iv) assigns uncertainties to model predictions.

The present work is to the best of our knowledge the first to integrate experimental 

measurements and network model simulations into a Bayesian analysis. We use 

experimental data from rat mesentery and mouse cerebral cortex to illustrate the 

performance of the analysis and show that the analysis approach (i) gives results consistent 

with previous analyses of a comprehensive data set with measurements of blood flow 

velocity and hematocrit available in all vessel segments, up to 546 segments and 40 

boundary nodes, and (ii) is robust to the omission of measurements available for model 

calibration. The utility of the framework is then demonstrated in the brain cortex data – a 

large network with 1878 segments and 295 boundary nodes and only a limited number of 

velocity measurements. Finally, we discuss our results and outline how the framework might 

guide the acquisition and interpretation of experimental microcirculation data.

Materials & Methods

Simulation model

We use a simulation model which was originally developed to describe blood flow in rat 

mesentery networks [21,25,26] and later also proven to apply to other tissue types, including 

the brain [7,16]. The simulation model is partly based on physical principles regarding flow-

pressure relationships and mass conservation at bifurcations, and partly on empirical 

descriptions of rheological effects. Accordingly, flow resistance is modeled with Poiseuille’s 

law, which describes flow resistance in terms of vessel length, vessel diameter, and fluid 

viscosity. The non-Newtonian nature of blood is incorporated by considering an apparent 

viscosity [5,20,21,26]. Apparent viscosity, in turn, is modeled according to an empirical 

relationship as a function hFL(d, hctD; θ) of vessel diameter d and vessel discharge 

hematocrit hctD (θ denotes parameters of the empirical function). Apparent viscosity 
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decreases with vessel diameter down to ~5 μm but then increases for lower diameters 

(Fåhræus-Lindqvist effect). The reduction in tube hematocrit relative to discharge hematocrit 

is modeled by an empirical relationship hF(d, hctD; θ) as a function of vessel diameter and 

discharge hematocrit (Fåhræus effect) [5,25]. RBC concentrations at bifurcation outflow 

branches are usually not equal to bulk flow rates (phase-separation effect), and this 

disproportionate distribution of RBC flow at bifurcations is modeled by an empirical 

function hPS(qm, qα, qβ, dm, dα, dβ; θ) where q denote segment blood flow, and subscripts 

m, α, and β denote mother vessel and daughter vessels respectively [18,21]. In addition to 

vessel morphology, topology, and the empirical descriptions of rheological effect, the model 

depends on a series of boundary conditions, ζ. Specifically, pressures, or equivalently blood 

flow rates, must be specified for all boundary nodes except one, and discharge hematocrit 

must be specified for all inflow nodes. An iterative procedure for flow simulation is 

required, since the rheological descriptions impose interdependence between blood flow and 

flow resistance. The simulation model predicts pressure, blood flow rate, hematocrit, and 

flow resistance for all vessel segments, and a series of subsequent parameters can be derived 

from these [22]. The simulation model is fully specified by vessel topology, morphology ϕ = 

(d, l), parameters of the empirical functions θ, and boundary conditions ζ. While topology 

and morphology are readily available from the vascular graph (although potentially 

confounded by uncertainties and measurement errors), the prescription of appropriate 

pressure and hematocrit boundary conditions is less straightforward. In the following we 

address how this challenge can be confronted by adopting a Bayesian probabilistic analysis 

strategy.

Bayesian probabilistic analysis

While microcirculatory measurements originate from a complicated microvascular system, 

the simulation model represents the underlying complex physiological phenomena in terms 

of relatively simple mathematical expressions. An example of such imposed simplicity is the 

empirical rheological functions that represent parametric fits to experimental data rather than 

explicit descriptions of the physics underlying the rheological phenomena. Such 

approximations inevitably introduce discrepancies between the observations and the model’s 

predictions from several error sources, including observation or measurement errors, model 

parameter errors, and model structural errors [26]. Therefore, a combined analysis of 

experimental measurements and model simulations requires adjustment of the model’s 

parameters to establish correspondence between the model’s predictions and the 

measurements, taking into account the presence of errors.

Let y be a vector of n observations of some microvascular quantities of interest, e.g. blood 

flow velocity, hematocrit, and blood flow direction, and let f(x) denote a vector of the 

simulation model’s predictions of the corresponding quantities, where x signifies the 

dependence on a series of (unknown) parameters, e.g. boundary conditions. The vector of 

errors or residuals ε = y − f(x) measures the mismatch between the observations and the 

model’s predictions and lumps together all sources of errors. A common strategy to achieve 

correspondence between model and observations, from an optimization perspective, is to 

obtain an estimate of the unknown parameters x̂ so that the sum of squared residuals is 

minimized (least-squares solution), or more generally, to use weighted- or generalized least-
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squares to allow for different weighting of individual measurements. From a statistical 

perspective, such least-squares solutions correspond to maximum likelihood solutions under 

Gaussian error models [2]. Least-squares estimation has indeed proven useful in a series of 

studies focused on combining microcirculatory measurements and literature knowledge with 

model simulations [4,6,25,36]. However, in the presence of incomplete and imperfect 

experimental data, this optimization problem may become underdetermined and further 

(strong) assumptions are required, e.g. to search for a solution that minimizes the Euclidean 

norm of the residuals [36], or to impose exact literature boundary conditions [6]. 

Furthermore, optimization leads to a single estimate of the best parameter values, and the 

uncertainties of the model’s predictions are therefore not directly available.

An alternative to parameter identification by optimization is to adopt a Bayesian analysis 

strategy. Bayesian analysis provides a rigorous framework for incorporating literature or 

prior knowledge (and their associated uncertainties) and observations into a combined 

analysis, it yields an estimate of the probability density function of x rather than a single 

point estimate x̂, and finally, it provides estimates of the uncertainties in the simulation 

model’s predictions. Bayesian analysis typically involves (i) inferences on a set of uncertain 

parameters, (ii) predictions based on in-sample and out-of-sample data, and (iii) model 

comparison, selection, and averaging [1,8].

Observations, model predictions, and model parameters are treated as random variables 

governed by probability distributions. These distributions are combined by use of probability 

rules to yield information on any quantity of interest. The Bayes’ theorem yields the 

posterior distribution of model parameters given the observations as a combination of the 

prior beliefs regarding model parameters and the probability density of the observations 

given parameter values

(1)

where p(x|y, m) is the posterior distribution of x, p(x|m) is the prior distribution of x, L(x|y, 
m) = p(y|x, m) is the likelihood function of x, and p(y|m) is Bayesian evidence for model m 
acting as a normalization constant. Here, m signifies assumptions regarding the structure of 

the simulation model as well as the structure of the probabilistic models. The Bayesian 

evidence is of particular interest in the context of model comparison, selection, and 

averaging, but is not necessarily required for posterior inference. The predictive distribution 

governing the model predictions can be found by integrating over the uncertain model 

parameters

(2)

The probabilistic description of the observed data and prior knowledge allows the modeler to 

incorporate assumptions regarding errors via the likelihood function and assumptions 
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regarding unknown model parameters and their uncertainties via the prior distribution and 

combine these in a statistically coherent way by Bayes’ theorem. The modeler faces 

practical challenges when applying Bayesian analysis, namely (i) the specification of the 

likelihood function and the prior distribution and (ii) inference of the posterior distribution 

of model parameters. These topics will be addressed in the following.

Likelihood functions

To formulate the likelihood function we partition observations into three observation types: 

yvel (blood flow velocity), yhct (discharge hematocrit), and ydir (blood flow direction), and 

partition model predictions correspondingly, with dimensions nvel, nhct, and ndir, 

respectively. We assume that the likelihood function decomposes as L(x|y, m) = Lvel(x|yvel, 

m) × Lhct (x|yhct, m) × Ldir (x|ydir, m). Blood flow velocity errors and hematocrit errors (εvel 

and εhct) are assumed to be Gaussian distributed, uncorrelated, and with identical error 

variances within each observation type (i.e. homoscedasticity within observation type)

(3)

To model the likelihood associated with blood flow direction we define a “success” to be the 

event of correspondence between observed and predicted flow direction, and model the 

likelihood associated with flow direction as a sequence of ndir independent Bernoulli trails, 

each with probability of success γ

(4)

where I(·) is the indicator function that returns one if the argument is true and zero 

elsewhere.

Priors governing simulation model (boundary conditions)

We model the pressure boundary conditions and hematocrit boundary conditions by scaled 

shifted beta distributions

(5)

where α and β are shape hyper-parameters, a and b are hyper-parameters defining the 

bounds of feasible parameter spaces, and nx is the dimension of x. The use of beta 

distributions allows the parameters to be constrained to physiologically conceivable ranges 
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while also allowing the parameter distribution to have relatively flexible shapes depending 

on the particular choice of scale hyper-parameters.

Priors governing likelihood functions

The use of Gaussian distributions for blood flow velocity errors and hematocrit errors 

introduce associated noise components σi into the likelihood functions eq. 3 and hence also 

into the Bayes’ theorem eq. 1. However, the noise variances are unknown and therefore 

modeled as uncertain parameters. Prior distributions governing blood flow velocity errors 

and discharge hematocrit errors are modeled by scaled inverse chi-square distributions

(6)

with n0 and s0 being hyper-parameters. Combination of Gaussian error models with scaled 

inverse chi-square distributions for noise variance is convenient, since this not only leads to 

an analytical solution to the posterior of the noise variance, but also allows for integrating 

the noise variances out of the inference equations by analytical means [1,13].

The prior distribution of the probability of correctly predicting blood flow direction is 

modeled as a beta distribution

(7)

with α and β being hyper-parameters. This choice permits an analytical solution to the 

posterior of the probability of predicting correct flow direction.

Model inference

The objective of model inference is to infer the posterior distribution of model parameters 

p(x|y,m), (eq. 1). According to the Bayes’ theorem eq. 1 this posterior distribution is 

proportional to the product of the likelihood and the prior distribution, and it is 

straightforward to combine the likelihood and prior to form a mathematical expression for 

the posterior distribution. Similarly, evaluating the likelihood function and the prior 

distribution for a given parameter value x̃ is also straightforward (although potentially 

numerically expensive). However, an analytical expression for p(x|y,m) cannot be derived, 

partly because of the mathematical forms of the likelihood and the prior, and partly because 

x enters the likelihood function via the nonlinear simulation model f(x). Instead we use 

Markov chain Monte Carlo (MCMC) simulation [8]. MCMC generates a sequence of 

samples while exploring the parameter space. Samples are drawn such that they mimic 

samples from p(x|y,m), and can be used to represent the posterior distribution, to calculate 

moments with respect to it (e.g. mean and median), and to approximate intractable integrals 

by empirical averages in the context of prediction (eq. 2). A MCMC sampling iteration 

proceeds as follows: Let xt−1 denote the current state of a chain. A trial move to a proposal 
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state xp is generated. The flow simulation model is run with the proposed parameters and the 

un-normalized posterior density L(x|y, m)p(x|m) is evaluated, i.e. the simulation model’s 

predictions are compared to the observations via the likelihood function and the proposed 

parameters are compared to the prior distribution. The proposed state is then either accepted 

or rejected according to the Metropolis rule

(8)

A random value u is sampled uniformly on the interval [0, 1]. If u < u1, the proposed sample 

is accepted (xt = xp), otherwise the sample is rejected (xt = xt−1). This iterative procedure of 

generating, and then accepting or rejecting the proposed samples, is repeated until either a 

desired number of evolution steps is achieved, or the iterations are stopped according to 

appropriate convergence diagnostics.

We use the DREAM(ZS) algorithm [38,41,42] to generate proposal samples. DREAM(ZS) is 

a multiple-chain method that uses differential evolution adaptive Metropolis with sampling 

from an archive of past states for posterior exploration. Three chains are iterated in parallel, 

and proposal points are generated from a joint archive of past states that is periodically 

updated for each 100th iterations as the chains explore parameter space. DREAM(ZS) 

automatically adapts the scale and orientation of the proposal distribution, and constantly 

introduces new sampling directions in parameter space by self-adaptive randomized 

subspace sampling [38,41,42].

Convergence of the MCMC chains to the posterior distribution is judged by computing the 

Gelman-Rubin R̂ convergence diagnostic from the multiple chains iterated in parallel [9,42].

We use the samples to quantify two types of uncertainties - prediction uncertainty due to 

model parameter uncertainty, and total predictive uncertainty. Prediction uncertainty due to 

model parameter uncertainty is computed by propagating the individual samples through the 

flow simulation model, thereby providing a distribution over the simulation model’s 

predictions. Total predictive uncertainty is calculated by adding, to the simulation model’s 

predictions, noise contributions sampled from Gaussian distributions with zero means and 

variances sampled form the posterior distributions of noise variances [8].

Case study data sets

Mesentery data

The mesentery data originates from experimental observations of the mesenteric 

microvasculature in rats [25,26]. In these experiments, the vascular networks were observed 

using intravital microscopy. The diameter and length of each vessel segment (between 

bifurcations) and the topological connectivity were determined from photographs (Figure 

1A). Quantification of discharge hematocrit, blood flow direction, and blood flow velocity 

were based on video recordings. This resulted in measurements of discharge hematocrit and 

blood flow velocity/direction in all vessel segments. Here we include data from three 
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networks for which measurements of both hematocrit and velocity are available. Vessel 

segments were grouped into arterioles, capillaries, and venules by an algorithm classifying 

vessel type without requiring flow information [34]. Summary statistics regarding network 

morphology and physiology are available in Table 1.

The mesentery data was used in three analyses: (i) To investigate the extent to which the 

Bayesian analysis framework can infer distributions of the unknown network pressure and 

hematocrit boundary conditions, (ii) to construct informative prior distributions for pressure 

and hematocrit, and (iii) to investigate the extent to which the Bayesian analysis framework 

can reconstruct local as well as global network flow patterns, even when measurements are 

incomplete.

Brain cortex data

The brain cortex data originates from experimental observations of the cortical 

microvasculature in mice and stems from two separate experiments (but with identical 

mouse strain and anesthetic regime): First, measurements of network morphology and 

topology based on an angiogram from TPM imaging (Figure 1B) and accompanying 

measurements of blood flow velocity in venules based on OCT imaging [6,29], and second, 

measurements of arteriolar and venular centerline RBC speed based on TPM imaging [31]. 

In these data, the diameter and length of all vessels, as well as their topological connectivity, 

were determined from the angiogram [29], and vessel segments were manually classified 

into arterioles, capillaries, and venules. Vessel diameters estimated from the angiogram may 

not reflect the entire luminal diameter, since the vasculature was imaged using fluorescently 

labelled dextran which labels free flowing plasma without staining the ESL [24,40]. Since 

the rheological descriptions used in the simulation model are calibrated using bright-field 

measurements that are more likely to reflect the entire luminal diameter, we performed a 

simple zeroth-order correction of the diameters to account for the potential underestimation 

of vessel diameters. Specifically, in the absence of comprehensive data to allow more 

detailed modeling, 1 μm was added to all segment diameters corresponding to an assumed 

width of ESL of 0.5 μm [24]. Due to limitations in resolution and readout rate of the OCT 

system, the OCT measurements were limited to large venules with diameter >13 μm. This 

resulted in 17 velocity measurements in seven ascending venules. To expand the amount of 

data available for calibration, we first defined flow direction in large descending arterioles 

and ascending venules and their first order branches in which the flow direction also could 

be defined with relatively high confidence based on network topology. We then added speed 

information by interpolating measurements of arteriolar and venular speeds [31] according 

to the diameters of the segments for which flow direction was known. This resulted in 280 

(literature) velocity “measurements” in 280 segments. The literature velocity measurements 

were pooled with the OCT velocity measurements leading to 297 velocity measurements in 

total. Average blood velocity was estimated from centerline velocities and OCT maximum 

velocities assuming a blunting index of 3.5 [31,37]. Summary statistics regarding network 

structure and measurement availability are available in Table 1.

The data set obtained in brain cortex was used to examine the scalability of the Bayesian 

framework to current state-of-the-art datasets with close to six hundred unknown boundary 

Rasmussen et al. Page 9

Microcirculation. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions, and to illustrate how the framework allows for the incorporation of measured 

data and literature data in a combined analysis in the absence of comprehensive 

experimental measurements.

Results

Mesentery data - Inferring distributions of boundary conditions

We first calibrated the simulation model within the Bayesian analysis framework against all 

available measurement data (one model for each network). We used relatively weak priors 

for boundary pressures and boundary hematocrit, since a large number of observations were 

available to constrain the parameters. Specifically, we set the hyper-parameters {α, β, a, b} 

of the priors governing boundary pressure (in mmHg) and boundary hematocrit to {1, 1, 4, 

130} and {1, 1, 0, 1} respectively. This amounts to uniform distributions over the intervals 

[4 mmHg, 130 mmHg] and [0, 1] respectively. The hyper-parameters {n0, s0} of the 

distributions governing blood flow velocity error and hematocrit error were both set to 

{0.001, 0.001}, corresponding to fairly “uninformative” priors. The hyper-parameter {α, β} 

of the distribution governing the probability of correct prediction of blood flow direction 

was set to {10, 1}, reflecting fairly strong prior belief in the accuracy of the measured flow 

directions.

The flow simulation model and Bayesian analysis was implemented as a computer program 

using C++. The MCMC simulation resulted in sequences of samples from the posterior 

distributions governing pressure and hematocrit at boundary nodes. Figure 2A shows the 

Gelman-Rubin R̂ convergence diagnostic versus the number of function evaluations (a 

function evaluation corresponds to running the flow simulation model with a given 

parameter settings). Convergence for all parameter chains in the three mesentery networks 

was reached after approximately 200,000 function evaluations whereas convergence for 99% 

of the parameters was reached after approximately 140,000 function evaluations. Running 3 

million function evaluations (corresponding to 1,000,000 MCMC iterations of each of the 

three parallel chains) took less than an hour for each network on a laptop with an Intel i7 2.6 

GHz processor.

The individual samples were propagated through the flow simulation model to yield model 

predictions. Figure 3(A–C) show segment-by-segment comparisons between measured and 

predicted values of blood flow velocity and hematocrit. We observed good agreement 

between predictions and measurements for velocity, whereas the agreement between 

measured and predicted hematocrit is more moderate. Boundary condition uncertainty 

results in relatively large uncertainties in hematocrit predictions, whereas corresponding 

uncertainties in velocity predictions are smaller. The uncertainties in blood flow velocity and 

hematocrit can further be propagated to reflect uncertainties in other quantities, and Figure 

3D illustrates how uncertainties in blood flow velocity and hematocrit propagate to 

uncertainties in red cell flow estimates.

Quantitative metrics comparing the experimental measurements to model predictions are 

reported in Figure 4 (top bar in each plot). The mean squared velocity error and mean 

squared hematocrit error were 0.52 and 0.027, respectively, and the average number of 
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wrong flow directions was 2.6. The noise contributions, corresponding to the random errors 

added to the model simulations to calculate total predictive uncertainty, were squared and 

averaged across the vessel segments. Across the MCMC samples these estimated errors were 

0.52 [0.48 0.61] and 0.027 [0.024 0.031] for velocity and hematocrit, respectively (medians 

and credible intervals). Predictive performance is consistent with previous analysis reporting 

a mean square deviation of measured flow velocities of approximately 0.6 and 

approximately five wrong flow directions [21]. Additionally, for network 3, we observed a 

median of two wrong flow directions compared to nine wrong flow directions in previous 

reports [17]. It should be noted that network flow patterns were inferred without any manual 

intervention and with very weak assumptions regarding boundary conditions.

The marginal posterior distributions for boundary pressure and boundary hematocrit for 

mesentery network 3 are shown in Figure 5A. We observed narrow posterior distributions 

for boundary pressures in arterioles and larger venules – see Figure 6A for spatial 

representation and node numbers. Of note, pressure is relatively low for node 2, and 

relatively high for nodes 31 and 33 (all of which are boundary nodes of capillary segments). 

These three nodes are located either near the main input or near the main output (node 1 and 

32 respectively). Therefore they primarily feed/drain localized parts of the network, and the 

inferred boundary pressures reflect the model’s attempt to match relatively high observed 

blood flow rates in these segments. Posterior distributions of boundary hematocrit fall into 

three categories; i) the main feeding arteriole (node 1) has a relatively narrow distribution, ii) 

the majority of nodes have more broad but still localized distributions, and iii) the posterior 

distributions of node 2, 3, 26, 32 and 36 resemble the prior distributions, since these are 

outlet nodes rendering the boundary hematocrit irrelevant. Note, however, that boundary 

nodes for which boundary hematocrit is irrelevant (outlets) cannot be specified prior to the 

analysis and hence excluded from the parameter inference, unless flow direction at such 

nodes are known with arbitrarily high confidence.

To summarize, Figure 4 and 5 illustrate, that the Bayesian inference framework successfully 

(i) yields distributions governing unknown pressure and hematocrit boundary conditions 

based on information from the experimental measurements and prior beliefs regarding the 

boundary conditions and (ii) provided predictions consistent with previous analyses of the 

mesentery data set [17,21,26].

Mesentery data - Constructing informative prior distributions

Mid-segment pressure and segment hematocrit versus diameter are shown in Figure 7; 

model simulations are shown for mid-segment pressure and experimental measurements as 

well as model simulations for hematocrit. We observe considerable heterogeneity in mid-

segment pressure for a given segment diameter for both arterioles and capillaries, whereas 

venous pressures are more homogeneous. Pressures in arterioles(venules) increase(decrease) 

with their diameter. Note that the slight increase in capillary mid-segment pressure with 

diameter is supported by only relatively few observations. Hematocrit is relatively 

heterogeneous within segment classes and increase with diameter for all segment classes.

Based on these observations, we derived empirical relationships that describe both pressure 

and hematocrit as a function of segment diameter in order to construct informative prior 
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distributions. Pressure behaved differently as a function of diameter across segment classes, 

and three separate fits were therefore adopted to describe pressure for the three segment 

types. Conversely, hematocrit shows more similar behavior across segment class, and a 

single fit to data pooled across segment classes was used. These empirical fits served as the 

mean values governing the informative prior distributions. The corresponding variances of 

the prior distributions were estimated from the residuals (deviation between empirical model 

fits and observations). These means and variances define the shape hyper-parameters of the 

informative prior distributions which govern boundary conditions.

Mesentery data - Model inference in scenarios with limited data availability

We defined subsets of network segments in order to mimic experimental scenarios in which 

experimental measurements of physiological variables (blood flow velocity, flow direction, 

and hematocrit) are only partially available. Three vessel groups were defined; arterioles 

with diameter >15 μm, venules with diameter >15 μm, and capillaries (Figure 6B,C). Based 

on this partition, we generated ten data sets with various amounts of experimental 

information available. For information about these data sets, refer to Figure 4, left column. 

Calibration of the simulation model was based on observation data available within each of 

the ten data sets. Model predictive performance was evaluated by comparing model 

predictions to all observations, thereby considering calibration/in-sample performance as 

well as validation/out-of-sample performance. To constrain the model in the absence of 

comprehensive observation data in all segments, we used the informative prior distributions 

derived from the initial analysis as priors for the boundary conditions. Hyper-parameters of 

distributions governing blood flow velocity error, hematocrit error, and the probability of 

correct prediction of blood flow direction were set as in the initial calibration analysis.

Quantitative metrics comparing measurements and model predictions are reported in Figure 

4. The use of an informative prior was associated with a negligible performance loss in 

comparison to the use of a weak prior on the data set with all observation available for 

calibration (first two bars in individual plots). Notably, model performance with respect to 

predicted velocity and flow direction was generally preserved although hematocrit 

measurements were lacking, although this of course lead to reduced performance with 

respect to hematocrit predictions. In addition, the simulation model maintains the capability 

of predicting velocity even when observations in segment subgroups were disregarded from 

the calibration stage. Note that increases in error for the disregarded subgroups do not 

necessarily imply decreased model performance as such, since these errors represent 

validation/out-of-sample errors rather than calibration/in-sample errors. Model simulations 

maintain good performance also in data sets where blood flow velocities in main feeding and 

draining vessels are disregarded in the calibration stage.

Marginal posterior distributions for boundary pressure and boundary hematocrit in network 

3 are shown for four of the scenarios in Figure 5 (left column shows measurements available 

for model calibration). There is strong consistency between the inferred pressure 

distributions when inference is based on broad priors (Figure 5A) and more informative 

priors (Figure 5B). Note that there is sufficient evidence in the measurements to allow the 

posterior distributions to diverge from the prior distribution (nodes 1, 2, 3, 31, 33, and 36 in 
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particular). Similarly, there is strong consistency between posterior distributions governing 

hematocrit for the broad and informative prior (Figure 5A,B right column). If velocity 

measurements in arterioles were disregarded in calibration, then the posterior distributions of 

boundary pressures for arterioles (nodes 1 and 3) approach the prior distributions (Figure 

5C,D). For capillary boundary nodes (nodes 2, 31, 33, and 36), availability of capillary flow 

velocities in the calibration step leads to a departure from the prior distributions for pressure 

(Figure 5A,B,C). Note that hematocrit is decreased for node 31, probably in an attempt by 

the model to reproduce the relatively high observed blood flow velocity observed in the 

vicinity of node 31. Figure 5D shows posterior distributions inferred when only 

measurements of venous velocities and specification of arteriolar flow direction are available 

for model calibration. Most posterior distributions of boundary pressures and hematocrit 

largely resemble the prior distributions, whereas pressures of large venules are characterized 

by quite localized posterior distributions. Overall, Figure 5 shows that the modeling 

framework can adapt to limited calibration data availability when it includes the informative 

prior.

Combining analysis of experimental measurements with model simulations can potentially 

yield more information than one can glean from raw measurement data. To illustrate such 

additional information, we derived A-V blood transit time distributions (Figure 8). Overall, 

the averages and standard deviation of A-V transit times agree with previous reports [22]. 

Furthermore we observe a diversity of the distributions across networks (separate columns). 

The overall transit times tend to increase as observations are disregarded; however the 

diversity across networks is preserved when disregarding observations available for model 

calibration (Figure 8B,C).

Brain cortex data – Large vascular network and limited measurement availability

Using the Bayesian framework, our simulation model was calibrated to network data from 

the brain cortex (Figure 9A), with only a limited number of measurements available for 

calibration (Figure 9B) and close to six hundred unknown pressure and hematocrit boundary 

conditions (Figure 9C).

Figure 2B shows the Gelman-Rubin R̂ convergence diagnostic versus the number of function 

evaluations. Convergence for all parameter chains was reached after approximately 

1,200,000 function evaluations, whereas convergence for 99% of the parameters was reached 

after approximately 500,000 function evaluations. Three million function evaluations took 

about 13 hours.

The combined analysis of model simulations and experimental measurements yields 

predictions of pressure, flow, and hematocrit throughout the network (Figure 9D,E,F). Note 

that the Bayesian analysis leads to distributions over these quantities while the plots 

summarize these distributions by showing their mean only.

Figure 10 compares the simulation model’s prediction of velocity in arterioles and venules 

(Figure 9B) to experimental measurements as a function of diameter. Model predictions 

qualitatively agree with measurements and show decreased velocity with diameter. 

Additionally, there is quantitative agreement between the model’s predictions and actual 
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measurements, while the uncertainty related to the model’s predictions shows a relative good 

coverage of measurement points.

Finally, Figure 11 shows A-V blood transit time distributions. Similar to the mesentery 

networks, we observe a considerable heterogeneity in blood, RBC, and plasma A-V transit 

times.

In summary, the analysis of the brain cortex data illustrates that (i) the analysis framework 

works well on state-of-the-art data sets which contain hundreds of unknown pressure and 

hematocrit boundary conditions, (ii) the analysis framework allows calibration of simulation 

models against a data base containing both actual measurement data and also literature data, 

and (iii) the analysis framework extends the amount of information directly available from 

experimental measurements (Figure 9D,E,F, 10,11 versus Figure 9B).

Discussion

In this study we propose the Bayesian probabilistic data analysis framework as a means of 

integrating experimental measurements and network model simulations into a combined and 

statistically coherent analysis.

Modeling sources of uncertainties

Measurements and model predictions are associated with uncertainties and errors, including 

observation or measurement errors, model parameter errors, and errors concerning the model 

structure. A Bayesian probabilistic analysis approach allows for a formal incorporation of 

these uncertainties into a combined analysis. Recent analysis approaches combine 

observations and simulations by directly incorporating observations into simulation models 

as “hard constraints” in the system of governing equations [4,6,17]. While being relatively 

simple and easy to implement, this strategy also has inherent limitations. First, from a 

statistical point of view, the hard constraint approach introduces the assumption that 

measurements reflect the underlying physiological variable without any error or uncertainty. 

Second, hard constraints may lead to violations of flow/mass conservation in cases where 

measurements, with some degree of measurement error, are available for all segments 

connected at a bifurcation, or multiple measurements are available for the same segment. 

Error analysis revealed a significant presence of measurement error [26], rendering the 

assumption about arbitrary high measurement confidence questionable. The probabilistic 

analysis framework relaxes assumptions with regard to the accuracy of measurements and 

naturally incorporates the presence of uncertainty via the likelihood function. We have 

assumed the residuals to be Gaussian, uncorrelated and homoscedastic. This simplistic 

assumption is unlikely to fully describe the apparent complicated spatio-temporal correlation 

structure characterizing microcirculatory flow patterns. While being comprehensive from an 

experimental point of view, the mesentery data set can be argued to be limited from a data 

analytic point of view. A single observation of blood flow velocity and hematocrit is 

available for each segment, and hence the available data can be considered as a single 

(multidimensional) realization of the underlying biological system. Based on this, the noise 

model, which was applied in in this study, was deemed appropriate. It should be noted that 

residual analysis is an important element of the evaluation and further development of 
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probabilistic models. Generalized error models that allow for non-Gaussian, correlated, and 

heteroscedastic errors can be developed based on future analyses.

Parameter inference and model identifiability

Bayesian inference yields distributions of parameters governed by uncertainties. Based on 

all available data and broad prior distributions, the analysis framework provided well-

localized posterior distributions of boundary pressures and boundary hematocrit (Figure 

5A). Hence, the complete data sets contained sufficient information to constrain the 

boundary conditions. In addition, informative prior distributions were constructed based on 

the initial analysis results, and a high degree of similarity was observed between inferred 

boundary conditions using broad- and the more informative priors respectively. Importantly, 

the informative priors were sufficiently broad to allow posterior distributions to diverge from 

the prior distributions when data contained information supporting this (Figure 5B,C,D). 

Conversely, the absence of experimental information resulted in posterior distributions 

resembling prior distributions (Figure 5B,C,D). It should be noted that a strict Bayesian 

analysis requires the prior to be defined before observations are considered. Construction of 

the informative prior distributions governing boundary pressures and hematocrit based on 

the initial analysis therefore imposes some degree of circularity to the analysis. An 

alternative strategy would be to repeatedly hold out one data set, estimate informative priors 

from the two other data sets, and apply this prior to the held out data set. However, 

circularity is already present to some extent since the viscosity model was developed based 

on the mesentery data [21,26]. To simplify, we based the informative prior on all three 

mesentery data sets. We speculate, that the impact of these circularities may not be overly 

severe, partly because relatively few global parameters were estimated, and partly because 

the informative priors were constructed to be relatively broad (Figure 5B,C,D and Figure 7).

Other approaches to constrain boundary conditions include the use of literature values for 

boundary conditions [6], ensuring identifiability by searching for a “minimum-norm 

solution” [36], and constraining boundary conditions by minimizing the deviance between 

simulated segment pressures and shear stresses and literature values [4]. Exact literature 

boundary conditions could easily be incorporated into the probabilistic analysis framework 

by defining corresponding boundary prior distributions as Dirac delta functions located at 

the exact literature values. Likewise, the minimization of the deviance between model 

predictions and literature target values could be incorporated by considering the literature 

target values as data observations which enter the analysis through the likelihood function, 

while choosing broad non-informative priors for the boundary conditions. Hence, the 

proposed analysis framework is quite flexible with regard to incorporating concepts 

underlying existing analysis procedures.

In the present study we have focused on modeling the uncertainty associated with pressure 

and hematocrit boundary conditions. However, parameters governing the rheological models 

as well as the simulation model’s inputs (vessel lengths and diameters) are also associated 

with uncertainty. Pries et. al [26] adopted a noise perturbation analysis to decompose the 

total deviation between experimental measurements and model simulations into 

contributions from errors related to (i) model inputs, (ii) parameters of the phase separation 
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model, (iii) the structure of the viscosity model, and (iv) measurement errors. Within the 

Bayesian analysis framework, parameters such as those of the rheological models could also 

be ascribed with uncertainties. The rheological models include more than twenty parameters, 

and a sensible strategy could be to identify critical and identifiable parameters and then 

model uncertainty governing such parameters.

Model predictions

The probabilistic analysis resulted in posterior distributions of model predictions. 

Considering velocity prediction (Figure 3), there is a relatively high degree of 

correspondence between the measured and predicted velocities. With regard to hematocrit, 

there is considerable scatter in the plot of measured hematocrit versus predicted hematocrit 

(Figure 3), in agreement with previous analyses [25,26]. The presence of errors due to 

parameter uncertainties and model structural errors (e.g. in the model of phase separation at 

bifurcations) will result in an accumulation of errors throughout the network [25]. This 

accumulation of errors appears to have greater impact on hematocrit predictions than on 

velocity predictions. Whereas the model’s ability to reproduce spatially localized hematocrit 

measurements is moderate, the model has been shown to be capable of producing global 

hematocrit statistics (e.g. distributions, means, and variances) with good correspondence 

between hematocrit measurements and predictions [26].

The analysis framework maintained relatively good correspondence between measured and 

predicted velocities and flow directions as observations were disregarded from the 

calibration stage (Figure 4,9). It should be cautioned, however, that the model evaluation 

metrics (mean squared error, correlation coefficient, and correct flow direction prediction 

rate) largely reflect calibration or in-sample metrics, rather than validation or out-of-sample 

errors metrics. Consequently, the exact numerical values of the reported metrics may be 

characterized by some degree of over-optimism. However, this concern is not only related to 

our present analysis but applies to many existing studies. Future model evaluation can be 

conducted within well-established re-sampling frameworks.

Inferring latent network properties

The presence of heterogeneity in topological, structural, and hemodynamic parameters 

complicates the analysis of experimental measurements acquired at isolated spatial 

locations, because of the difficulty in generalizing from single measurements to overall or 

global functional properties of the microvasculature [22,23,28,39]. Whereas the typical 

vessel analysis approach is inherently limited to metrics that can be derived directly form the 

measurements, the network-oriented approach naturally appreciates the presence of 

heterogeneities. The probabilistic analysis approach naturally renders modeled uncertainties 

to be reflected also in derived latent parameters or indices, where uncertainties increase as 

fewer observations were available for model calibration. As an example, Figure 8 and 11 

illustrate transit time distributions obtained from the analysis combining experimental 

measurements with model simulations. Overall, the averages and standard deviation of A-V 

transit times for the mesentery data set agree with previous reports [22]. Diversity in transit 

time distributions was observed across the three mesentery networks, and this diversity was 

preserved as experimental measurements were disregarded from model calibration. For the 
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A-V transit times in mouse brain cortex we observe some discrepancy when comparing with 

estimates based on a plasma tracer technique that reported average transit time of about 0.5s 

to 1.2 s [11]. This may be explained by differences in assumptions underlying the two 

estimation techniques, including the structure and parameter values of the rheological 

descriptions used the simulation model. Future comprehensive measurements, in arterioles, 

capillaries, and venules of the mouse cortex, are needed to ascertain whether recalibration of 

the rheological descriptions to brain cortex is required.

Applicability of the analysis framework

In this study we show that Bayesian probabilistic data analysis framework provides a means 

to integrate experimental measurements and model simulations into a combined and 

statistically coherent framework. We wish to highlight some practical advantages of using 

this analysis framework in an experimental setting:

• The probabilistic analysis provides an alternative approach for parameter 

estimation in the analysis of network flows and provides not only point estimates 

of optimal parameters but also allows for quantification of model parameter 

uncertainty. This is an important feature in microvascular modeling since model 

inputs and parameters (e.g. pressure and hematocrit boundary conditions) are 

typically not directly observable but at the same time have profound impact on 

the simulation model’s performance [26]. Furthermore, this parameter 

uncertainty can be propagated through the simulation model to quantify 

uncertainty related to the model’s predictions.

• Although being computationally expensive compared to existing analysis 

methodologies [4,6,26,36] the Bayesian analysis coupled with MCMC sampling 

requires a rather reasonable runtime on a standard computer, i.e. the analysis will 

not be a significant bottleneck in the microcirculatory data acquisition and 

processing chain. Exploration of high-dimensional parameter spaces by MCMC 

is challenging [41]. In the present study we successfully applied the modeling 

framework to networks with up to 1878 vessel segments and 295 boundary nodes 

corresponding to nearly a 600-dimensional parameter space. Even in simulations 

considering large scale networks with >10,000 segments and thousands of 

boundary segments it is recognized, that relative choices regarding boundary 

conditions influence the simulated blood flows [10,16]. Future empirical work 

will establish whether the present modeling framework remains powerful in such 

large scale networks.

• The analysis of the mesentery data set demonstrated that the Bayesian 

probabilistic analysis approach support parameter identifiability in scenarios with 

limited measurement availability. Recent microvascular measurement techniques 

produce extensive amounts of measurements, albeit typically an incomplete 

representation of the complete microvascular flow patterns. Combining 

measurements with model simulations in a network-oriented analysis allows for 

reconstruction of the complete network flow pattern and also allows the modeler 

to derive latent network parameters or physiological indices, e.g. transit time 

distributions as illustrated here. Such “global” indices serve as inputs to recent 
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macroscopic models that aim to make claims about oxygenation at the “tissue 

level” [12,27]. The probabilistic analysis readily identifies such indices, and 

provides estimates of their uncertainty intervals.

• While we assumed rheological model parameters to be fixed in this study, these 

parameters could also be associated with uncertainty. For studies of blood flow, 

e.g. in inflammation, aging, or other conditions modeled in the experimental 

animals being studied by high-throughput imaging, a probabilistic network-

oriented analysis would potentially reveal the simulation model’s inability to 

explain measurement data and the model’s attempt to adjust rheological model 

parameters in order to comply with the measurements. Based on such analysis, 

inadequate aspects of the model could be identified, the model could be refined, 

and this iterative cycle could potentially provide novel insights into the rheology 

of blood in microvascular systems.

In conclusion, the analysis framework presented here will support the development and use 

of network-oriented analyses of microcirculatory measurements.

Perspectives

Combination of measurements acquired from microcirculatory networks using high-

throughput imaging techniques and network-oriented modeling provide means of 

summarizing vast amounts of data in terms of key, physiological indices. To estimate such 

indices with sufficient certainty, however, network-oriented analysis must be robust to the 

inevitable presence of uncertainty due to measurement errors as well as model inadequacies. 

We propose the Bayesian probabilistic approach as a means for optimizing data acquisition 

and for analyzing and reporting large datasets acquired as part of microvascular imaging 

studies.
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Abbreviations

Art arteriolar

Cap capillary

Dir direction

ESL endothelial surface layer

MCMC Markov chain Monte Carlo
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OCT optical coherence tomography

RBC red blood cell

TPM two photon microscopy

Ven venular
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Figure 1. 
Representations of microvascular networks. (A) Mesenteric network from rat, photomontage 

assembled from individual photographs [19], and (B) brain network from mouse cortex, 

surface based representation of angiogram acquired with two-photon microscopy using 

fluorescently labelled dextran.
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Figure 2. 
Evolution of the Gelman-Rubin R̂ convergence statistics versus the number of function 

evaluations (three chains iterated in parallel each with 1,000,000 MCMC iterations leading 

to a total of 3,000,000 function evaluations). Black curves represent individual parameters, 

and the dashed horizontal line indicates a convergence threshold of 1.2. (A) Three mesentery 

networks, 196 parameters. (B) Brain cortex network, 590 parameters.
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Figure 3. 
Scatterplots comparing (A) measured and predicted blood flow velocity, (B) blood flow 

velocity on log scale to enhance visual judgement of low velocity data, (C) measured and 

predicted hematocrit, and (D) measured and predicted red cell flow for the three mesentery 

networks (n=1321 segments). Red cell flow was calculated as the product between blood 

flow velocity, hematocrit, and vessel cross sectional area. Black dots mark median model 

predictions, red and gray bars mark prediction uncertainty due to model parameter 

uncertainty and total predictive uncertainty respectively (95% credible intervals). Model 

predictions correspond to the calibration setup with all measurements available for 

calibration and “non-informative” broad priors.
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Figure 4. 
Quantitative evaluation of the predictive performance in a series of calibration setups for the 

mesentery data set. Tick boxes (left column) indicate data available for model calibration. 

Metrics reported in the bottom row are decomposed into contributions from arterioles, 

capillaries, and venules. Error bars correspond to the standard deviation of the mean 

computed across the three networks. Note different scales in the plots.
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Figure 5. 
Posterior distributions for boundary pressures (center column) and boundary hematocrit 

(right column) for four calibration setups in the mesentery network 3. Tick boxes (left 

column) indicate data available for model calibration. Colored “violins” represent marginal 

posterior distributions for individual parameters, black dots are medians, and black outlines 

represent prior distributions. Node numbers correspond to node numbers in Figure 6.
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Figure 6. 
Visualization of the spatial structure for mesentery network 3. (A) All 546 vessel segments 

colored according to vessel type classification; arterioles are red, capillaries are green, and 

venules are blue. Boundary nodes are labeled with numbers ordered clockwise from the 

main feeding arteriole (only uneven numbers shown). (B) Variant of complete network with 

capillaries highlighted. (C) Variant of complete network with arterioles and venules with 

diameters greater than 15 μm highlighted. Segment diameters are doubled to enhance 

visibility.
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Figure 7. 
Distributions of (A) mid-segment pressure and (B) segment hematocrit in the three 

mesentery networks. Arteriolar segments are red, capillary segments are green, and venular 

segments are blue. Scatter points correspond to median model predictions for segment 

pressure (n=1321 segments), and median hematocrit based on both predictions and 

measurements (n=2642) (measurements marked with white dots). Model predictions 

correspond to the calibration setup with all measurements available for calibration and “non-

informative” priors. Solid lines are local polynomial regression fits of the data [3]. These fits 

were used as mean values of the “informative” priors, and the dashed lines mark 95 

percentiles of the prior distributions.
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Figure 8. 
Frequency distributions of arteriovenous (A-V) transit times for the mesentery data, for 

blood, RBC, and plasma, subscript B, C, and P respectively. Individual networks are ordered 

in columns, and three different calibration setups are ordered in rows, tick boxes indicate 

data available for model calibration. Intervals with 1 s width and 1 s steps were used to 

estimate the distributions. Markers denote median predictions and error bars mark 95% 

credible intervals representing model parameter uncertainty. Avg and SD summarize the 

distributions by average and standard deviation, and numbers in brackets denote 95% 

credible intervals. All quantities are flow weighted.
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Figure 9. 
Brain network from mouse cortex. (A) Segments colored according to vessel classification. 

(B) Colored segments indicate segments for which velocity data was available for model 

calibration. Velocity data origins partially from literature data and partially from Doppler 

OCT measurements. (C) Colored segments indicate boundary segments for which unknown 

boundary pressures and hematocrit were inferred. Markov chain Monte Carlo simulation 

was used to infer distributions of the unknown boundary conditions, and model predictions 

are obtained by propagating the individual samples through the flow simulation model. Plots 

in the bottom row summarize model predictions by showing mean model predictions of (D) 
flow, (E) hematocrit, and (F) flow.
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Figure 10. 
Blood flow velocity versus diameter. (A) Arteriolar segments and (B) venular segments, note 

different scales on the velocity axes. Black squares mark empirical measurements of blood 

flow velocities (literature data from another experiment but same mouse strain and 

anesthetic regime) [31] and the dashed magenta lines are local polynomial regression fits of 

the literature data [3]. Cyan triangles mark 17 Doppler OCT velocity measurements 

available in ascending venules. Black dots mark median model predictions, red and gray 

bars mark prediction uncertainty due to model parameter uncertainty and total predictive 

uncertainty respectively (95% credible intervals).

Rasmussen et al. Page 31

Microcirculation. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Frequency distribution of arteriovenous (A-V) transit times for the brain cortex data, for 

blood, RBC, and plasma, subscript B, C, and P respectively. Data representation 

corresponding to Figure 8.
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Table 1

Geometrical properties and measurement availability for the four microvascular networks. Measurement 

availability: mesentery networks - velocity and hematocrit are available in all mesentery segments, brain 

network - 17 OCT velocity measurements and 236 literature values available in venules and 44 literature 

values in arterioles.

Network Mesentery 1 Mesentery 2 Mesentery 3 Brain 1

Number of nodes (boundary nodes) 288 (40) 270 (22) 388 (36) 1436 (295)

Number of segments (art/cap/ven) 392 (79/225/88) 383 (35/258/90) 546 (48/319/179) 1878 (49/1580/249)

Total segment volume (art/cap/ven) nL 25 (9/4/12) 21 2/6/13 44 (3/5/35) 4.3 (0.7/2.2/1.5)

Total segment length (art/cap/ven) mm 133 (34/71/29) 110 (10/72/29) 159 (16/93/50) 124 (4/108/11)

Average segment velocity (art/cap/ven) 1.6 (2.9/1.3/1.3) 0.9 (1.9/0.8/0.8) 1.4 (4.3/1.2/1.1) 1.3 (3.2/-/1.0)

Average segment hematocrit (art/cap/ven) 0.3 (0.3/0.3/0.3) 0.4 (0.4/0.4/0.4) 0.4 (0.4/0.4/0.4) -
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