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Abstract

The human brain can be modeled as multiple interrelated shapes (or a multishape), each for 

characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting 

the developing multishape is a very challenging task due to the contrasting nature of the 

developmental trajectories of the constituent shapes: smooth for the cortical surface and non-

smooth for white matter tracts due to changes such as bifurcation. We recently addressed this 

problem and proposed an approach for predicting the multishape developmental spatiotemporal 

trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, 

and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further 

improve the prediction of multishape evolution. First, for a more accurate cortical surface 

prediction, instead of simply relying on one neonatal atlas to guide the prediction of the 

multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas 

using the multidirectional varifold representation. This individualizes the atlas by locally 

maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby 

better representing the baseline testing cortical surface, which founds the multishape prediction 

process. Second, for temporally consistent fiber prediction, we propose to reliably estimate 

spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the 

variability and richness of the temporal development of fibers. Experimental results confirm that 

the proposed variants significantly improve the prediction performance of our original multishape 

prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. 

Our pioneering model will pave the way for learning how to predict the evolution of anatomical 

shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models 

that can help quantify and predict the severity of a brain disorder as it progresses will be of great 

aid in individualized treatment planning.
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1. Introduction

Multimodal MR imaging offers unprecedented insights into different facets of brain 

development. With the increasing availability of longitudinal postnatal brain imaging data, 

one can now track dramatic spatiotemporal changes in both white matter (Dubois et al., 

2014) and gray matter (Gilmore et al., 2007) during the first years of postnatal development. 

The trajectories of these changes are often characterized using spatiotemporal shape models. 

However, great challenges arise when the shapes of different structures exhibit contrasting 

developmental behaviors. For instance, the cortical surface can be modeled as a shape that 

undergoes a diffeomorphic (i.e., smooth and invertible) evolution, whereas white matter 

pathways undergo a non-diffeomorphic evolution as they elongate and bifurcate with growth 

due to active myelination (Deoni et al., 2011).

Devising a robust and accurate framework for predicting, based on neonatal data, the 

development of multiple interlinked shapes, such as cortical surfaces and white matter tracts, 

is of great clinical interest. This allows identification of aberrant developmental patterns in 

case-control settings. There is a growing body of evidence in the neuroscience literature 

indicating that the shapes of structures in the developing brain can be used as biomarkers for 

many neurodevelopmental disorders. For instance, hemispheric shape asymmetries appeared 

to be influenced by sexually dimorphic factors or by schizophrenia pathophysiology (Narr et 

al., 2007). In addition, the morphology of cortical gyri and sulci at birth is found to be 

predictive of the pathological functioning in certain developmental and neuropsychiatric 

disorders (Dubois et al., 2008). This motivates designing shape-based developmental 

prediction models to allow early diagnosis of neurodeveopmental and psychiatric illnesses 

that are rooted in early infancy (Lyall et al., 2014) as well as neurodevelopmental 

impairments in preterm infants (Kapellou et al., 2006).

Existing approaches to brain growth prediction are mainly focused on predicting the 

evolution of low-dimensional scalar data. For instance, Sadeghi et al. used nonlinear mixed-

effects modeling to infer individual developmental trajectories for the radial diffusivity of 

the posterior thalamic radiation (Sadeghi et al., 2013, 2014; Gerig et al., 2016). Extension of 

methods as such to high-dimensional data involving multiple shapes poses significant 

challenges, as pointed out in (Gerig et al., 2016). (Fishbaugh et al., 2013) proposed a 

geodesic shape regression model rooted in the theory of currents to predict back in time 

subcortical shapes at 6 months from shapes at between 9 and 24 months of age. This model 

was further extended to integrate image data to evolve image and shape following the slope 

of the initial momenta vectors (Fishbaugh et al., 2014). However, for image-shape 

prediction, this model requires measurements at least at two time points. Even more 

advanced approaches still required more than one time point for prediction such as the works 

of (Nie et al., 2010, 2012) where a mechanical cortical growth model was devised to 
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simulate the dynamics of cortical folding from longitudinal MRI data in the first postnatal 

year.

To address these problems, we introduced in (Rekik et al., 2015a,b,c) learning-based 

frameworks for predicting subject-specific spatiotemporal growth of the cortical surface 

solely from neonatal data acquired at a single time point. Although promising, these 

frameworks are focused only on predicting one shape (i.e., the cortical surface) and ignore 

other important shapes such as the white matter tracts. To the best of our knowledge, our 

work introduced in (Rekik et al., 2016b) is the first attempt to address this limitation by 

multishape modeling of both cortical surfaces derived from structural MRI and the white 

matter fibers derived from diffusion MRI. Building on (Rekik et al., 2015b,a,c), the 

proposed framework (Rekik et al., 2016a,b) employs a geodesic multidirectional varifold 

shape regression model to estimate a time-varying deformation velocity field that flows 

shapes diffeomorphically. In addition, the proposed framework harnesses fiber-to-surface 

connectivity for non-diffeomorphic modeling of the growth of white matter tracts. 

Specifically, our framework includes training and testing stages. In the training stage, for 

each infant, we learn from the training subjects (1) the geometric features of the cortical 

surface, (2) the dynamic features (i.e., evolution trajectories) of the baseline cortical surface, 

and (3) the fiber-to-surface connectivity features. In the testing stage, for the multishape of a 

testing neonatal subject, we select the best features that simultaneously predict the triangular 

faces on the cortical surface mesh and all the fibers traversing them at the 3, 6 and 9 months 

time points. Our framework affords several advantages. First, it does not require the 

computationally expensive process of registering thousands of fibers to establish tract-to-

tract correspondence for prediction, which is prohibitive using a conventional diffeomorphic 

multishape registration setting as in (Durrleman et al., 2014). Second, it guides fiber 

prediction using the diffeomorphic cortical surface deformation trajectory, which is less 

complex and can be estimated more accurately than that of fiber growth trajectory. More 

importantly, this enables us to account for fiber connectivity changes and the occurrence of 

new fibers, which can cause topological changes in the connections.

However, this first work on multishape prediction had a number of limitations, which we 

aim to address in this paper. First, our early approaches (Rekik et al., 2015b,a, 2016b) use a 

single-atlas approach where shape information from a single neonatal subject in the training 

dataset was used to obtain the shape predictions, failing to take into account possible spatial 

and topographic variability. To address this, we propose to use multiple atlases to estimate a 

spatially heterogenous atlas that best approximates the cortical shape of a testing subject. 

For this purpose, we use the multidirectional varifold shape similarity metric introduced in 

(Rekik et al., 2015c, 2016a). Second, in our work (Rekik et al., 2016b), the fiber-surface 

relationship was determined based only on the neonatal time point, hence does not enforce 

temporal consistency. To address this, we propose to estimate spatiotemporal connectivity 

features from neonatal connectivity features using low-rank tensor completion (Kressner et 

al., 2014) to further refine the fiber selection process. Experimental results indicate that the 

two strategies mentioned above significantly improve the prediction accuracy in comparison 

with our previous method (Rekik et al., 2016b).
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2. Fundamental works on longitudinal multishape prediction from a single 

measurement

In this section, we provide a comprehensive overview of the first works related to learning-

based shape prediction for the developing infant brain. These present the building blocks of 

the enhanced multishape prediction model devised in this paper. For easy reference and to 

enhance the readability, we summarized the major mathematical notations in Table 1.

2.1. Surface Prediction Using Geodesic Regression

We summarize here the key ingredients of the devised cortical surface shape development 

prediction framework in (Rekik et al., 2015b,a). These 5 will respectively address the 

following fundamental questions: (1) How to mathematically measure the shape of the 

cortical surface? (2) How to estimate the developmental trajectory of a baseline surface onto 

a set of subsequent observed surfaces? (3) What features we can learn from a set of training 

shapes and their corresponding deformation trajectories to guide the prediction of the 

evolution of a new baseline shape? (4) How to use these learned features to guide the 

cortical surface shape prediction?

2.1.1. Shape Representation—In (Rekik et al., 2015b), we quantify a shape via currents 

using a testing vector field ω ∈ W to linearly map the shape to a scalar in ℝ (Durrleman, 

2010). This compact representation is motivated by the Faraday’s law of induction, which 

states that the variation of any magnetic vector field W through a surface S induces a scalar-

valued current in the space of currents W* within a wire loop delimiting S. A collection of 

several current measurements through the loop allows the retrieval of the geometry of 

surface S. This mathematically translates as integrating a testing vector field ω along the 

loop ΩS with respect to the unit normal n of the surface: , where 

dλ(x) is the Lebesgue measure on the surface at location x.

To characterize a shape, we measure how the current changes with a varying ω, which 

belongs to a reproducing kernel Hilbert space (RKHS) W defined by Gaussian kernel 

. The reproducing kernel KW decays at rate σW which 

represents the scale above which geometric details of the shape are investigated. Currents 

allow generalizable representation of shapes of different dimensions (e.g., points, curves, 

surfaces, etc.) and enable shape matching without point-to-point correspondence. However, 

they fail when surfaces with opposing normals need to be added (Durrleman et al., 2014). To 

overcome this limitation, Charon and Trouvé (2013) adopted varifolds for shape 

representation, using non-oriented normal vectors  and an additional linear kernel ke 

defined in the tangent space to a Grassmanian manifold. A shape is then represented in the 

varifold space W* as a distribution of non-oriented tangent spaces to an embedding 

Grassmanian manifold. Mathematically, the varifold of shape S is defined as 

, where in this case  is a function of space position 

x ∈ ℝ3 and the nonoriented unit vector . This refined metric was used in the extended 
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work (Rekik et al., 2015a) for a more accurate shape representation in the prediction 

framework.

2.1.2. Geodesic Diffeomorphic Shape Regression—Next, to deform a baseline 

shape S0 observed at time t0 onto a set of observed shapes {S1, …, SN} observed at time 

points {t1, …, tN}, we use the large diffeomorphic deformation metric mapping (LDDMM) 

shape deformation framework developed in (Trouvé, 1998; Beg et al., 2005), where an 

ambient space is deformed together with the shapes embedded in it. This framework is well-

suited for modeling invertible and temporally smooth changes in anatomical shapes (Gerig 

et al., 2016) and was adopted to model the deformation of currents in (Durrleman, 2010; 

Rekik et al., 2015b) and varifolds in (Durrleman et al., 2014; Rekik et al., 2015a). The 

spatiotemporal deformation of a shape S0 is characterized by a diffeomorphism (i.e., smooth 

and invertible mapping) ϕt that flows along the geodesic (i.e., shortest deformation 

trajectory) in time t ∈ [0, 1] (Fig. 1). The sought diffeomorphism ϕt satisfies the following 

ordinary differential equation:

(1)

The time-varying velocity field vt belongs to the RKHS V defined by a Gaussian kernel KV, 

which decays at a rate σV. The deformation was fully determined by a set of initial 

deformation momenta  associated with an estimated set of control points 

. The optimal initial deformation momenta, control points, and positions of 

deformed vertices are estimated through minimizing the following energy functional:

(2)

The velocity at any position x ∈ ℝ3 is computed as the convolution of the estimated 

momenta {pk} with . The parameter γ defines the trade-off 

between the first term, which enforces smooth deformation by minimizing the total kinetic 

energy of the deformation, and the second term, which enforces closeness between the 

warped baseline shape . S0 and the observed shapes Sj at various time points tj. The 

objective functional E is minimized through gradient descent as described in (Durrleman et 

al., 2014). Based on (Durrleman et al., 2014; Rekik et al., 2016a), we assume that, for each 

subject, we have a reliable anatomical correspondences between cortical surfaces over time.

2.1.3. Feature Extraction and Shape Prediction

Geometric and Dynamic Features: We first register all baseline shapes of the training 

subjects into a common space, where we estimate the spatiotemporal cortical surface growth 

trajectory for each training infant using the method in (Rekik et al., 2016a), thereby linking 

all subjects in space and time. Then, we extract geometric and dynamic features from the 
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training baseline shapes for the prediction of growth trajectories. The geometric features 

consist of the position x of each vertex whereas the dynamic features consist of the 

corresponding deformation geodesics ϕ(x, t), t ∈ [0, 1]. We collect these feature pairs (x, 

ϕ(x, t)) in a dynamic cloud . Hence, a point in the cloud determines the warped position 

ϕ(x, t) at any time point t of any baseline vertex at position x.

Longitudinal Atlases: Since the only available observation for prediction is the shape at the 

first acquisition timepoint, we hypothesized that by reconstructing the testing baseline shape 

using the training baseline shapes, one can easily predict its evolution trajectory since every 

training vertex in the cloud  is paired with its deformation trajectory. To this aim, we first 

use the training shapes in the common space to estimate a longitudinal set of shape atlases 

 for time points {ti}, with i ∈ {0, …, N}. Each vertex on an atlas 

computed as the mean position of the corresponding vertices on the aligned training shapes 

and its deformation trajectory as the average of their corresponding training trajectories. 

Given the shape  of a testing subject, the baseline atlas  is individualized to match 

better. This involves creating a virtual shape as we will discuss next.

Construction of Virtual Shape and Developmental Trajectories Retrieval: A virtual 

shape  is constructed by adapting the baseline atlas  to the baseline testing shape S0. It 

can be viewed as a reconstruction of the observed testing shape S0 using both atlas and 

training data. First, we initialize the virtual shape as the baseline atlas . Then, vertices in 

 are kept unchanged if they fall within an ε-proximity from the corresponding vertex in 

S0. On the other hand, vertices that are beyond ε-proximity from the baseline testing shape 

S0 are updated by locating the vertices in the cloud  that are within an ε-distance to the 

baseline vertex. Through averaging their positions, the vertex in the initial virtual shape is 

then moved to a closer proximity from the testing shape (Rekik et al., 2015b). This strategy 

was further refined in (Rekik et al., 2015a) by searching for the closest neighbors from the 

cloud with similar morphological properties as the vertex in S0. Specifically, we locally 

search for the m–closest neighbors from the cloud that share the same maximum principal 

curvature sign with the baseline testing vertex. Ultimately, for an unmoved vertex in the 

virtual shape, which means that this vertex belongs to the baseline atlas, one directly predicts 

its evolution trajectory by retrieving the corresponding atlas deformation trajectory. As for a 

moved vertex in the virtual shape, its evolution trajectory is estimated through averaging the 

dynamic trajectories of its m–selected neighbors from the cloud.

Remark: For prediction, we averaged the inferred diffeomorphic evolution trajectories from 

the estimated momenta. Since we use a very small local neighborhood, we assume that at a 

small local scale, the average of flow of diffeomorphisms is a diffeomorphism. However, 

this may not apply for large spatial neighborhoods. In our future work, we intend to directly 

average the momenta, and then infer the evolution trajectory for generalizability and 

soundness.

2.2. Extension to Multishapes

We now extend the previously described single-shape framework to deal with multishapes, 

as presented in (Rekik et al., 2016b). In our case, a multishape Mi observed at timepoint ti is 
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composed of cortical surface Si and a set of white matter tract streamlines . Of note, 

framework accounts for the non-diffeomorphic growth of the latter.

2.2.1. Surface and fiber tract measurement using respectively multidirectional 
and unidirectional varifold representations—As demonstrated in (Rekik et al., 

2015c, 2016a), multidirectional varifolds are a better representation for surfaces, resulting in 

more anatomically consistent shape registration and regression. Instead of only relying on 

the conventional normal directions on a surface to characterize its shape, the directions of 

principal curvatures are used as additional information. Within the same varifold space, we 

measure the S as two varifolds generated along two different directions: the unoriented 

normal direction and the unoriented principal curvature direction, which respectively 

induces the varifold representations of the S as  and . To estimate the deformation 

trajectories using multidirectional varifolds, we minimize the following energy term (Rekik 

et al., 2016a):

(3)

Both weights γκ and γn control the contribution of each direction for the multidirectional 

varifolds matching. As for fibers, measuring a fiber f as a varifold refers to the mathematical 

operation of integrating a testing field ωf along the fiber unoriented tangent vectors τ: f = ∫ 
ωf(x)tτ(x)dx.

2.2.2. Fiber-to-Surface Connectivity Features—For each triangular face ξ of the 

surface in the atlas , we determine from each training subject fibers that are connected to 

it after projection  (Fig. 2A). The fibers connected to ξ are denoted as  (Fig. 

2B).

We define a similarity between two triangular faces ξ and ξ′ with respectively 

 and  as:

(4)

The first term measures the overall shape representation difference between fibers connected 

to two triangular faces using the multidirectional varifold metric:

(5)

The second term quantifies the spatial closeness between the fiber termini positions
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(6)

where  and  are the two extremities of fiber fk. The third term computes the difference 

between the number of fibers:

(7)

where η is a tuning parameter.

2.2.3. Multishape Prediction Strategy—For surface prediction, we use the strategy 

described in Section 2.1. For fiber prediction, we first reconstruct using the training fibers a 

set of virtual fibers  that best resemble the baseline fibers  given by a testing subject. 

To achieve this, we project  onto the baseline cortical surface S0 as well as onto the 

baseline atlas , hence estimating the subject-based and atlas-based connectivity features 

through fiber projections  and .

For fiber projection on the inner cortical surface, we adopted the same strategy for fiber 

projection used in (Nie et al., 2014; Li et al., 2015). If the fiber extremity lies outside the 

cortical surface, the connection point is identified through a local search along the fiber 

backwards. Otherwise, the fiber is extended towards the inner cortical surface. The searching 

process stops either when the fiber hits the surface, or exceeds a searching threshold 

(20mm). Any fiber that cannot reach the surface is considered as an outlier and removed 

from the fiber tracts data.

Based on the connectivity features and the virtual shape  described in Section 2.1.3, we 

update  so that it resembles . As previously stated, the construction of the virtual 

surface shape comprises moved and unmoved vertices in the baseline atlas. Hence, each 

triangular face ξ of the surface  is associated with vertices that are either moved or not 

moved during the construction of the virtual shape. For each face ξ associated with unmoved 
vertex μ, the baseline atlas  well approximates the testing cortical shape. Hence, we use it 

as a proxy for fiber projections, where each of its faces stores the set of its connecting fibers 

from all training subjects (Fig. 2). Therefore, through simply exploring the set the 

connecting fibers from all training subjects to face ξ in , we can retrieve the set of training 

fibers that exhibit similar connectivity features to the testing fibers connected to the testing 

face ξ. Of note, once a triangular face on the baseline surface is explored, it is marked so it 

won’t be visited twice.

For a testing triangular face ξ that is associated with a moved vertex μ, we reconstruct its 

connecting fibers through selecting the face with the most similar fiber-to-surface 

connectivity features among the training faces adjacent to m-closest vertices to μ in the 
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cloud . We then add the fibers of the selected training face to  and mark it. Ultimately, 

in both cases, for each selected training face with most similar fiber distribution to the 

testing face, we trace its diffeomorphic deformation using ϕ, while retrieving the set of its 

connecting fibers at different acquisition timepoints ti, thereby jointly estimating the 

multishape development . Algorithm 1 summarizes the key steps involved in 

multishape prediction based on geometric, dynamic and connectivity features.

3. Enhanced Framework for Prediction of Multishape Development

To further improve the prediction accuracy for cortical surfaces and fiber tracts, we propose 

two key variants.

3.1. Spatially Heterogeneous Construction of Virtual Shape Atlas

In constructing a virtual shape for prediction, we have used an empirical population-based 

mean atlas (Rekik et al., 2015b,a, 2016b). However, a population-based mean atlas generally 

captures only the ‘mean shape’ but not necessarily the details particular to the individual 

shapes of a testing subject. Alternatively, one can represent the testing shape by selecting the 

closest shape from among the training shapes (each considered as an atlas). We propose here 

to extend this idea by using multiple atlases to build a spatially heterogeneous atlas using the 

multidirectional varifold representation. This individualizes the atlas by locally maximizing 

its similarity to the testing baseline cortical shape for each cortical region, thereby resulting 

in a better representation.

The key idea is to compare the baseline testing surface locally with a distribution of atlases. 

For each anatomical cortical region of interest (ROI), we compute the pair-wise similarity 

between the testing ROI shape and an atlas ROI shape (Fig. 3). Generally, we define the 

similarity between two shapes S and S′ based on the inner-product (Rekik et al., 2016a):

(8)

To define the heterogenous atlas from multiple atlases, we perform a weighted averaging of 

all atlases for each ROI while using the multidirectional varifold similarity distance between 

the baseline shape and each of these atlas shapes as weight:

(9)

where μl is a vertex belonging to the l-th ROI, Nl denotes the number of labeled cortical 

regions,  denotes the j-th atlas, Ntr represents the number of training subjects (or atlases) 

and wj,l denotes the multidirectional varifold similarity between the testing shape S0 and the 
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atlas  in the l-th cortical ROI. Subsequently, the estimation of a series of spatiotemporal 
heterogeneous atlases is straightforward. We simply apply the same weighted averaging 

strategy to the corresponding atlases at each time point.

3.2. Temporally-Consistent Connectivity Features Using Low-Rank Tensor Completion

Fiber projection patterns can be highly variable across time points, as shown in Fig. 1. To 

address this issue and further refine the fiber selection criterion, we enforce temporal 

consistency of the connectivity distances dconnectivity computed across time points. Basically, 

we aim to obtain quite reliable estimates of the scalar fiber connectivity features (here fiber 

hits per face) at later timepoints from neonatal fiber connectivity features. This yields to 

defining the temporally consistent connectivity distance between a testing face ξ and a 

training face ξ′ (as in Fig. 2):

(10)

where Ñf(ti) denotes the estimated number of the fibers hitting the testing face ξ at timepoint 

ti and Nf(t0) is the number of ground-truth fibers hitting the testing face ξ at the baseline 

timepoint t0.  represents the observed number of fibers hitting the training face ξ′ at 

timepoint ti.

To estimate the missing scalar connectivity feature values {Ñf(ti)}, i ∈ [1, …, N], we 

formulate the problem as a low-rank tensor completion problem as illustrated in Fig. 4. 

Intuitively, one can assume that at a specific timepoint and a specific location, we can 

linearly represent the connectivity features of a testing subject using the connectivity 

features of other training subjects as developing brains share many similar growth profiles 

(Li et al., 2015; Nie et al., 2014). This can also be applied to neighboring vertices in the 

spatial or time domains, where their relationship can be thought of as ‘locally dependent’. 

Hence, at each vertex μ of the testing cortical surface, we define a tensor  of size 

Nk×Nt×Ns, where Nk denotes the k—ring neighboring faces to vertex μ, Nt represents the 

number of acquisition timepoints (including the first observation), and Ns the number of 

subjects (including the testing one). Next, we define a masking tensor  of the same size, 

where we assign 0 values to unknown connectivity features to estimate for the testing subject 

at later timepoints and 1 for the known testing and training connectivity features (Fig. 4–B). 

To complete the missing values of the tensor product , we use the recently developed 

low-rank tensor completion method (Kressner et al., 2014), where tensors are embedded 

onto a smooth manifold  with a multilinear rank r. After properly projecting the 

incomplete tensor on the manifold of low-rank tensors , it is completed through 

minimizing the Riemannian gradient of the following objective function:

(11)
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with  denoting the completed tensor and PΩ representing the projection on a sampling set 

Ω.

• Mean-guided low-rank tensor completion. To further boost up the 

performance of the conventional framework proposed in (Kressner et al., 2014) 

and since our data (i.e. connectivity features) may be noisy, we propose in this 

work to use a confidence map that retains the temporally-consistent connectivity 

features across multiple timepoints (Li et al., 2015; Nie et al., 2014). In our case, 

we simply estimate the confidence map through computing, at each vertex on the 

spatiotemporal heterogeneous atlas, the mean of the training feature connectivity 

maps over time. Then, for testing faces with high values in the confidence map 

where the connectivity pattern seem to be temporally least variable, we use 

tensor completion. Otherwise, we directly assign the mean values in the 

confidence map to the missing values in the tensor . Practically, we update 

such that it takes zeros at the ‘confident’ missing values, whereas the ‘noisy’ 

ones are replaced with the mean values in the original complete tensor Tμ, then 

we solve Eq. 11 as detailed in (Kressner et al., 2014).

• Averaging overlapping predicted connectivity features. Ultimately, after 

solving the tensor completion problem at each vertex of a testing shape, we 

predict the missing connectivity feature value at the center face of the k−ring 

neighborhood to each vertex μ of the baseline surface S0 as illustrated in Fig. 4. 

However, noting that a face will be included in different local neighborhoods, we 

estimate its final connectivity feature value through locally averaging its 

predicted values within different neighbouring tensors.

4. Results

4.1. Dataset and parameter setting

We use leave-one-out cross-validation to evaluate the proposed framework using data of 10 

left and right cortical hemispheres from 5 infants, each with longitudinal diffusion and 

structural MR images acquired at around birth, 3, 6, and 9 months of age. For varifold 

surface and fiber representation, we set σW = 5 for the shape kernel KW, σV = 30 for the 

deformation kernel KV, and γn = γκ = 0.001 for the energy E as explained in (Rekik et al., 

2015a, 2016a). Streamline tractography (Stieltjes et al., 2001) was used to estimate the fibers 

inside each cortical surface at each timepoint. For atlas individualization, we fixed the 

parameter ε as the mean distance between S0 and  minus its standard deviation, and chose 

m = 25 as the number of the closest neighbors to use for local morphing. For tensor 

completion, we performed a grid search to fix the multilinear rank r = [4, 3, 2], for 

respectively the spatial neighborhood dependency the temporal neighborhood dependency 

and the training samples dependency. For the face neighborhood ring, we selected k = 3, 

which involves 31 neighbors. A face in the mean connectivity cortical map is considered as 

belonging to a ‘confident region’, if its connectivity value is higher than the average of the 

non-zero mean connectivity coritcal values minus their standard deviation. For the face-to-

face distance using fiber properties, η = 0.01.
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Image processing—All MR images at all the acquisition timepoints were preprocessed 

using a standard framework developed in (Dai et al., 2013; Li et al., 2014) including (1) the 

removal of the skull (Shi et al., 2012), followed by the removal of the cerebellum and brain 

stem by registering an atlas to each subject (Shen and Davatzikos, 2002; Wu et al., 2006); 

(2) intensity inhomogeneity correction using N3 method (Sled et al., 1998); (3) rigid 

alignment of each image to the age-specific infant brain atlas (Shi et al., 2011); (4) 

longitudinal infant tissue segmentation of infant brain MR images into white matter (WM), 

gray matter (GM), and cerebrospinal fluid (CSF): since MR images around 6 months of age 

are very challenging to segment, we first adopted a state-of-the-art learning-based method 

(Wang et al., 2011, 2014; Zhang et al., 2015) that leverages random forests and multimodal 

appearance features and context features from T1w, Tw2 and FA images, to generate the 

preliminary segmentation results for each image. To improve accuracy and longitudinal 

consistency, we further refined the segmentation results using a 4D level-set method (Wang 

et al., 2013); and (5) filling the cortex insides and splitting the brain into left and right 

hemispheres.

Cortical surface reconstruction—For each segmented image, we reconstructed the 

inner cortical surface for each hemisphere using a deformable surface method (Li et al., 

2012). In particular, we corrected the topological defects in the WM and tesselated the 

cortical surface as a triangular mesh to guarantee a spherical topology for each hemisphere 

as proposed in (Li et al., 2012, 2014). Ultimately, each cortical hemisphere was parcellated 

using the robust framework developed in (Li et al., 2014).

Diffusion tensor imaging processing and tractography—The imaging parameters 

for diffusion weighted images (with 60 axial slices) are as follows: TR/TE = 7680/82ms, 

matrix size = 128 × 96, 42 noncollinear diffusion gradients, and diffusion weighting b = 

1000s/mm2. We used FSL tools for eddy current and distortion correction for DWI 

sequence. Then, we constructed diffusion tensors by a weighted least squares estimation 

method and computed the fractional anisotropy (FA) map. Next, for each subject, we 

affinely aligned structural T2 image with b0 image based on mutual information. The 

generated transformation matrix applied to cortical surfaces to transfer them onto the DTI 

space as in (Li et al., 2015). At last, within the mask of each hemisphere, we performed 

deterministic streamline tractography (Yap et al., 2011) on each DTI image in its native 

space with a minimal seed point FA of 0.2, minimal FA value of 0.1, a maximal turning 

angle of 45°, and minimal fiber length of 25mm. We used low FA threshold to ensure that 

unmyelinated white matter fibers could be reasonably extracted in infant brains.

4.2. Evaluation metrics

For surface evaluation, we use both Dice index, which quantifies the face-to-face cortical 

overlap between two surfaces S and S′ as the ratio  (Li et al., 2009), and the 

symmetric Euclidean distance. A(·) denotes the area of the surface, and the ∩ operator takes 

the intersection of the two surfaces. Of note, A(S) is computed by summing up each vertex’s 

area, which we define as the average area of all faces that contain this vertex. For fiber 

prediction evaluation, we introduce three metrics: (1) Global mismatch (%). This represents 
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the percentage of faces with attached fibers while the corresponding predicted faces had no 

fibers and vice versa. (2) Fiber mismatch per face. This metric represents the average 

number of mismatched fibers per face across surface faces that are hit by either predicted or 

ground truth fibers or both. (3) Mean whole-brain varifold difference. For a pair of faces 

both with traversing fibers, we use the unidirectional varifold metric to measure a face-wise 

discrepancy between the ground truth and predicted fibers F and  connected to two 

surfaces S and : , with Nξ denoting the number of faces in 

S, and ξi a face in S.

4.3. Multishape prediction results and evaluation of variants

Despite the small size of our dataset and its large variability in cortical shape and fiber tracts, 

our framework led to very promising results as will be further detailed. Fig. 5 shows a good 

overall overlap between ground truth and predicted multishape for a representative testing 

subject at 3, 6 and 9 months.

Evaluation of the heterogeneous atlas variant for cortical shape prediction—
To assess the advantage of the proposed spatially heterogeneous atlas reconstruction over 

using conventional atlas reconstruction methods, we evaluated the cortical surface prediction 

accuracy in terms of mean Dice index and mean symmetric Euclidean distance between the 

ground truth shape and the predicted shape at later acquisition timepoints in the following 

cases: (a) selecting the best representative baseline atlas from the training subjects that is 

most geometrically similar to the baseline testing shape using the symmetric Euclidean 

distance, (b) selecting the best representative baseline atlas from the training subjects that is 

most morphologically similar to the baseline testing shape using the multidirectional 

varifold metric, and (c) estimating the spatially heterogeneous atlas while using as a 

similarity metric the symmetric Euclidean distance. As noted in Tables 2 and 3, the proposed 

approach significantly (p < 0.05) outperformed the baseline method (using one atlas and 

Euclidean distance as a metric) at all missing timepoints. This shows that the 

multidirectional varifold distance better individualizes the atlas to make it more locally 

similar in morphology to the testing cortical surface than the conventional symmetric 

Euclidean distance. When compared with the proposed varifold one-atlas and the Euclidean 

heterogeneous atlas, we notice a slight improvement in prediction accuracy.

Additionally, we locally evaluated the accuracy of our prediction method in 35 anatomical 

cortical regions averaged across left and right hemispheres (Fig. 6), which showed a 

spatially-varying prediction accuracy that generally decreased with time. These regionally 

non-uniform error maps are most likely caused by the spatial inter-subject variabilities in 

terms of cortical folding and development. Nonetheless, our prediction accuracy still fitted 

into a promising range of prediction values for each evaluation metric. For the cortical 

surface, when using the Dice index to evaluate the anatomical alignment between the 

ground-truth and the predicted surfaces, the prediction mainly dropped in certain cortical 

areas such as the bank of the superior temporal sulcal and the middle temporal gyrus. As for 

the Euclidean symmetric distance, it also increased in the middle temporal gyrus as well as 

the buried highly folded insula cortex. Notably, the mean prediction error gradually 
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increases as the shape to predict becomes very distant in time from the baseline surface. 

Additionally, the proposed mutlidirectional varifold-based heterogeneous atlas outperformed 

the baseline Euclidean one-atlas in the majority of cortical regions, particularly in the 

posterior cingulate cortex, the precentral gyrus, the insula cortex and the medial orbito-

frontal cortex.

Evaluation of the temporally-consistent fiber selection criterion using mean-
guided tensor completion—The proposed mean-guided tensor completion strategy gave 

reliable improvement over the baseline method (Kressner et al., 2014) as shown in Table 4. 

We also display in Table 5 the fiber prediction accuracy using the three proposed evaluation 

metrics. The proposed temporal consistency constraint for face selection in the fiber 

prediction strategy helped improve the fiber prediction results for all evaluation metrics and 

at all missing timepoints when compared to the original strategy proposed in ((Rekik et al., 

2016b)) –except for the global fiber mismatch at 9 months.

On a local level, we plot in Figures 7 and 8 the fiber mismatch per face as well as the global 

mismatch for each ROI between the ground truth and the predicted fiber tracts. The 

proposed variant outperformed the baseline method (Rekik et al., 2016b) in 88.57% of the 

ROIs at 3 months, 85.71% at 6 months, and 68.57% at 9 months in terms of the average fiber 

mismatch per face. We also notice a similar global trend in mean fiber mismatch per face 

distribution across the three prediction timepoints. For instance, we notice that the mismatch 

error peaks in the insula cortex (which is a highly folded large region deeply buried in the 

cortical surface) and the temporal pole (which is a very small cortical region) in Figure 7. As 

for the global fiber mismatch, it decreases the prediction error in respectively 88.57% of the 

cortical regions at 3 months, 85.71% at 6 months, and 68.57% at 9 months. Interestingly, in 

addition to the rostral anterior cingulate cortex and the posterior cingulate cortex, the global 

fiber mismatch error peaks in the same cortical regions as for the mean fiber mismatch per 

face (i.e, the insula cortex and the temporal pole) (Figure 8). A closer look at Figure 8 also 

reveals more consistent error distribution patterns at 6 and 9 months compared with 3 

months. This may be explained by the similar fiber surface connectivity patterns between 6 

and 9 months compared to an earlier developmental timepoint (3 months).

5. Discussion

We presented the first heterogeneous atlas-based multishape prediction framework with 

temporally-consistent fiber selection strategy that predicts both the diffeomorphic dynamic 

cortical surface and non-diffeomorphic fiber tracts growth in infants during the first 9 

months of postnatal development, solely from the baseline multishape at birth. We used the 

diffeomeorphic multidirectional varifold-based cortical surface shape regression model to 

learn both geometric and dynamic features of cortical surface shape growth for shape 

prediction at later timepoints. In addition, we used multiprojections from fibers of training 

subjects onto the heterogeneous atlas to extract the fiber-to-face connectivity features to 

guide fiber prediction. Although the infant multishape is both challenging on the cortical 

surface level with its highly convoluted foldings and dynamic growth and on the diffusion 

fiber tracts level with their dramatic change in topology due to myelination (Verma et al., 

2005), the proposed framework showed promising prediction results, particularly when 
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compared with the baseline method proposed in (Rekik et al., 2016b). Furthermore, we note 

that our results showed that heterogeneous atlases, estimated from many samples of the 

population, are better at predicting the developmental trajectory of a testing multishape, in 

comparison to using a single most similar training subject (i.e., one-atlas). This indicates that 

infant brains at birth are more likely to follow the individualized population trajectory (i.e, 

heterogeneous atlas), rather than following the trajectory of the most similar subject in 

multishape (a single atlas).

We would like to note that the proposed multishape learning framework is generic and can 

also be applied to any longitudinal multishape estimated from structural and diffusion data.

However, there are several limitations to this study that would lead to a much better 

performance of the proposed multishape prediction framework when conveniently 

addressed. First, as pointed out in (Reveley et al., 2015), subject-specific long-range 

tractography over a hemisphere poses severe challenges. Even a more challenging task 

would be to develop a non-diffeomorphic longitudinally consistent brain tractography 

algorithm as a preprocessing step, which may contribute into improving the fiber selection 

strategy (Figure 5). To the best of our knowledge, such method has not been tailored yet to 

handle with high accuracy developing 3D fiber tracts. Also, there is a decrease in 

tractography accuracy when the fibers approach the cortical surface. Second, using a larger 

longitudinal infant dataset with both structural and diffusion data would generate a better 

heterogeneous atlases as more atlases will capture a larger spectrum of shape variation. This 

also will engender a denser pool of training connectivity features for better feature selection. 

Besides, we did not examine the sensitivity of a few parameters, such the number of the 

closest vertices m and the face neighborhood ring size k, because of the small training 

sample size. So we just estimated them empirically using inner leave-one-out cross-

validation on the training set. With a much larger training sample size, we can better 

examine these parameters in our method and estimate their impacts on the prediction 

accuracy. Third, there is a large variability in fiber hits on the cortical surface that may be 

better captured when increasing the number of samples as well as the number of acquisition 

timepoints. This would also improve the low-rank tensor completion problem through 

balancing the dimensions of the tensor. Fourth, as there is no conventional method to 

average developing fiber tracts across different timepoints, we used fiber projections on the 

cortex to somehow establish spatiotemporal correspondence between fibers. This strategy 

can be further improved through projecting not only the fiber termini on the surface but 

other fiber properties (such as the shape and length). This can be envisioned as multi-layer 

coloring of the atlas with different complementary scalar fields to guide the multishape 

prediction process. Fifth, many samples were excluded since they had missing diffusion 

MRI data at some timepoints or corrupted data. Addressing the problem of unbalanced 

multishape data and a varying number of acquisition timepoints, which was highlighted as 

one of the challenging issues in longitudinal data in (Gerig et al., 2016), would propel the 

generalizability of our method. Last, the proposed model is only able to predict fiber tracts 

that hit the cortical surface.

For the model parameters ε-proximility and m-closest neighbors, these were proposed to 

select from the cloud the most locally similar individual cortical shapes for prediction. This 
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is in line with the concept of ‘atlas individualization’, where in the neuroscience literature it 

was noted that the human brain have some ‘shared’ similar traits across subjects (population-

based or atlas-based), but also ‘individual’ traits (individual-based) (Wang et al., 2015). We 

adopt a similar way of reasoning where we first initialize the cortical surface using the 

population average (or atlas), then locally individualize it through selection of the most 

similar individual points from the cloud to our subject. The underlying assumption of this 

local morphing strategy is that the most similar shapes will most likely have similar 

developmental trajectories. This hypothesis has been tested in our preliminary work on 

cortical shape prediction on 24 cortical surfaces (Rekik et al., 2015a,b). We would also like 

to point out that for the second variant, one could have used other regression/mapping 

methods to estimate the missing connectivity features such as the regression random forest 

(Meng et al., 2016). However, we believe that there are more parameters to tune for the 

regression random forest such as the number of trees and the tree depth. Additionally, other 

shape models can be used to build the developmental trajectories of multishapes in the 

training stage such as the non-linear mixed-effects modeling reviewed in (Gerig et al., 2016).

A subsequent implication of developing such predictive models may include in future 

applications the prediction of brain anatomical networks in early human brain development 

(Fan et al., 2011; Brown et al., 2014) and even children and adoslecents (Khundrakpam et 

al., 2016). Ultimately, this model can serve as a stepping stone to develop more ‘holistic’ 

brain development prediction models that include cognition such in (Erus et al., 2015) and 

functional connectivity such in (Smyser et al., 2016). One could also use this model to learn 

and predict developmental trajectories of extremely preterm infants (Padilla et al., 2015; 

Rimol et al., 2016). Furthermore, noting the heritability of the brain neuroanatomical shape 

(Ge et al., 2015), we can further include genetic features to guide the multishape 

development predictive model. Additionally, recent studies have shown that the shape of 

subcortical brain regions and cortical folding patterns provide information not available in 

volumetric measurements that is predictive of disease status, onset and progression in 

schizophrenia, autism, bipolar disorder, Alzheimer’s disease, and other mental disorders. 

There is also increasing evidence that genetic variants may have influences on brain 

morphology that can be captured by shape measurements (Ge et al., 2015; Rekik et al., 

2016b). For instance, the development and aging of cortical thickness was shown to 

correspond to genetic organization patterns in (Fjell et al., 2015). Hence, learning to 

accurately predict longitudinal changes in brain multishapes would be of great clinical 

interest and will exhibit a nascent ability to learn more challenging shape evolution models, 

such as functional shapes (Charlier et al., 2014). Last, in our prediction framework, we 

assumed that the evolution of multishape at a vertex (or in an ROI) is independent of that at 

a remote vertex (or in other ROIs). However, this may not be the case in many 

developmental brain disorders, where patients do not display an impairment of focal growth 

but rather multi-regional impairment through cortico-cortical networks. Thus, integrating a 

longitudinal regional connectivity covariance into the proposed multishape evolution 

prediction framework may improve the prediction performance, particularly for clinically 

implicated infants.
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6. Conclusions

Very few models exist on predicting shape development, especially in infants. This is a 

recently emerging field with high-level meaningful implications in medicine and healthcare. 

We presented in this work the first generalization of the developing shape prediction model 

to multishape, which include cortical surfaces and diffusion fiber tracts. The proposed 

multishape prediction framework can be further tailored to examine and predict 

development, ageing, disease/disorder progression, recovery after treatment or a therapeutic 

intervention, without the need to further acquire subject-specific longitudinal imaging (using 

a single measurement in time). Eventually, we envision to build models that not only capture 

and predict time-varying anatomy but also time-varying function and cognition.
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Figure 1. Training for multishape prediction
(Top row) Estimate the baseline evolution trajectory of cortical surface, characterized by 

diffeomorphism ϕ. (Middle row) Whole-brain deterministic tractography to estimate fiber 

tracts {Fi} at each acquisition time point. The red box highlights the non-diffeomorphic 

nature of fiber growth. (Bottom row) Fiber projection  onto longitudinal atlases .
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Figure 2. Key ingredients for prediction of non-diffeomorphic fiber development
(A) Projections of fibers from training subjects {1, …, Ns} onto an atlas . The atlas stores 

for each face the set of fibers that are connected to it. (B) Using the proposed fiber-to-

surface selection criterion to identify the triangular face ξ′ that is most similar to the 

triangular face ξ in the surface mesh of the training subject among the faces of surfaces of 

the training subjects.
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Figure 3. Spatially heterogeneous atlas estimation using multidirectional varifold similarity 
metric
For each cortical region of interest (ROI), we perform a weighted averaging of vertices’s 

positions in different atlases (each training subject is regarded as an atlas). The weight 

assigned to each atlas is computed as the multidirectional varifold similarity value between 

the testing ROI and the atlas ROI.
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Figure 4. Mean-guided low-rank tensor completion
(A) The top row illustrates the variability in fiber projection patterns on neonatal cortical 

atlas from four training subjects. (B) Illustration of the incomplete tensor centered at a fixed 

face on the cortical surface.
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Figure 5. Proposed multishape prediction for a representative subject
The red multishape represents the ground truth while the one in green represents the 

predicted multishape. The dashed blue box locates a region where the lack of spatiotemporal 

consistency in fiber tractography across different timepoints is obvious, which makes the 

prediction task more challenging since it is based on the training spatiotemporal tracts. We 

notice a very good prediction of the cortical shape and an overall satisfactory prediction of 

the diffusion fibers.

Rekik et al. Page 25

Neuroimage. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Prediction accuracy evaluation in 35 anatomical ROIs using the baseline Euclidean 
one-atlas and the proposed mutltidirectional varifold-based heterogeneous atlas estimation 
averaged across both right and left hemispheres
(Top) Mean Dice index between the ground truth and the predicted surfaces, averaged in 

each of the 35 anatomical ROIs, across 10 hemispheres from 5 infants. (Bottom) Mean 

vertex-wise surface distance error between the ground truth and the predicted surfaces, 

averaged in each of the 35 ROIs, across 10 hemispheres from 5 infants. The arrow points to 

a few of the anatomical regions where the proposed method visibly outperformed the 

baseline method.

Rekik et al. Page 26

Neuroimage. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Mean fiber mismatch per face across 10 hemispheres in 35 cortical regions of interest 
(ROIs)
We plot the proposed mean fiber prediction mismatch per face against the baseline fiber 

prediction strategy introduced in (Rekik et al., 2016b). The proposed method, which 

integrated the estimated spatiotemporal connectivity features using the mean-guided low-

tank tensor completion method into the fiber selection criteria, decreased the fiber mismatch 

(or at least had a similar mismatch) in 88.57% of the ROIs at 3 months, 85.71% at 6 months, 

and 68.57% at 9 months.
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Figure 8. Mean fiber global mismatch across 10 hemispheres in 35 cortical regions of interest 
(ROIs)
We plot the proposed mean fiber prediction mismatch per face against the baseline fiber 

prediction strategy introduced in (Rekik et al., 2016b). The proposed method, which 

integrated the estimated spatiotemporal connectivity features using the mean-guided low-

tank tensor completion method into the fiber selection criteria, decreased the fiber mismatch 

(or at least had a similar global mismatch) in 80% of the ROIs at 3 months, 77.14% at 6 and 

9 months.
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Table 1

Major mathematical notations used in this paper.

Mathematical notation Definition

x 3D position in ℝ3

W* space of currents and varifolds

W testing space

ω testing vector field in W

KW shape Gaussian kernel of RKHS

KV deformation Gaussian kernel

σW decay rate of the Gaussian kernel KW

σV decay rate of the Gaussian kernel KV

ke linear kernel for varifold definition

n oriented unit normal vector in ℝ3

nonoriented unit normal vector in ℝ3

ϕt diffeomorphism (invertible and smooth mapping) at time t

vt the deformation velocity field at time t

pk initial deformation momentum in ℝ3 located at the control point ck

Si observed surface at timepoint ti

reconstructed virtual shape

predicted surface, i > 0

the dynamic cloud

atlas at timepoint ti

κ principal curvature direction

Fi ensemble of fibers

virtual ensemble of fibers

predicted fibers, i > 0

Mi multishape (Si, Fi) observed at timepoint ti

πS(F) projecting fibers F onto a surface S

fk the two extremeties of fiber f, k ∈ {1, 2}

ξ a triangular face (mesh)

μ a vertex in ℝ3

μl a vertex belonging to a labeled region l

F(ξ) set of fibers that hit the face ξ

d(ξ, ξ′) similarity measure between two faces ξ and xi′ in fiber properties

ε radius of the local neighborhood search
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Mathematical notation Definition

low-rank tensor of size Nk × Nt × Ns defined at vertex μ

masking tensor of size Nk × Nt × Ns defined at vertex μ

r multilinear rank of dimension 1 × 3

Nk number of faces in k–ring neighborhood centered at vertex μ

Nt number of acquisition timepoints (including the first observation)

Ns number of all training subjects + the new testing subject

Mr smooth manifold of tensors

PΩ linear tensor projection onto Ω
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Table 2
Surface prediction accuracy evaluation using Dice index averaged across 10 cortical 
hemispheres

Our method (in bold) outperformed each of the three baselines with statistical significance

3 months 6 months 9 months

Euclidean one-atlas 86.15 80.58 75.45

Varifold one-atlas 89.29 81.67 76.03

Euclidean heterogeneous-atlas 89.33 81.95 76.28

Varifold heterogeneous-atlas 90.12* 82.48* 76.83*

*
p < 0.05.
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Table 3
Surface prediction accuracy evaluation using symmetric Euclidean distance (mm) 
averaged across 10 cortical hemispheres

Our method (in bold) outperformed each of the three baselines with statistical significance

3 months 6 months 9 months

Euclidean one-atlas 1.24 1.33 1.70

Varifold one-atlas 0.79 1.04 1.27

Euclidean heterogeneous-atlas 0.78 1.02 1.25

Varifold heterogeneous-atlas 0.77* 1.01* 1.24*

*
p < 0.05.
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Table 4

The absolute mean difference between the estimated missing connectivity features and the ground-truth 

connectivity features using the conventional low-tensor completion method (Kressner et al., 2014) and the 

refined one using the mean connectivity feature confidence map.

3 months 6 months 9 months

Estimation error ((Kressner et al., 2014)) 1.70 2.85 2.86

Estimation error (with mean guidance) 1.64 2.70 2.70
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Table 5

Fiber prediction accuracy evaluation averaged across 10 cortical hemispheres.

3 months 6 months 9 months

global mismatch % (Rekik et al., 2016b) 20.80 19.60 19.25*

global mismatch % (Proposed) 19.8 19.4 20.00

fiber mismatch per face (Rekik et al., 2016b) 3.11 2.78 3.13

fiber mismatch per face (Proposed) 2.60* 2.37* 3.04

mean whole-brain varifold distance (Rekik et al., 2016b) 32.30 32.29 34.82

mean whole-brain varifold distance (Proposed) 32.22 29.74* 33.17

*
denotes statistically significant results (p < 0.05) when compared to baseline methods.
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Algorithm 1

Enhanced longitudinal multishape evolution prediction from baseline

1:
INPUTS: The longitudinal mean atlases , the set of training baseline vertices , the baseline testing multishape M0 = (S0; F0), and 

.

2:

Initialize  and  for i ∈ 2 {0; …; N}.

3:
Initialize ε as the mean distance between S0 and  plus its standard deviation.

4:
for every vertex μ in the reconstructed baseline shape  do

5:  if its 3D position x is located outside the ε–neighborhood from S0 then

  Update x using surface topography-based selection criteria.

  * For each unchecked adjacent face ξ to μ, use the fiber-to-surface selection criterion to identify the most similar corresponding 
training face in fiber properties to the testing face. Mark this face as ‘checked’.

  * Retrieve the dynamic feature for μ as  at each timepoint.

  * Retrieve the spatiotemporal connectivity features for the selected deforming training face (set of fibers  that hit 

 at timepoint, then .

6:   else

  Implement * while using projections of both training and testing fibers on their corresponding surfaces (no need to use the atlas for 
mutliprojections in this case).

7:  end if

8: end for

9:

OUTPUT: Set of predicted multishapes  at timepoints ti.
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