Photorespiration in C₃ and C₄ Plant Tissue Cultures

SIGNIFICANCE OF KRANZ ANATOMY TO LOW PHOTORESPIRATION IN C4 PLANTS¹

Received for publication April 23, 1976 and in revised form June 15, 1976

ROBERT A. KENNEDY Department of Botany, University of Iowa, Iowa City, Iowa 52242

ABSTRACT

Photorespiration rates in tissue cultures of a C_4 plant, *Portulaca* oleracea, were compared to those in tissue cultures of a C_3 plant, *Streptanthus tortuosus*. The C_4 plant tissue cultures have one-half to one-third the photorespiration rate of the C_3 plant tissue cultures and respond to varying O_2 concentrations in a manner typical of C_4 plants. The results suggest that the lack of detectable photorespiration in C_4 plants is not related to leaf anatomy.

Photorespiration is of great interest because of its relationship to plant productivity. It has been estimated that in C_3 plants, the process of photorespiration oxidizes up to 50% of the newly synthesized photosynthetic products, whereas in C_4 plants, photorespiration is either not present or occurs in much reduced amounts (20). In addition to the lack of apparent photorespiration and significantly greater net assimilation rate, C_4 plants also possess several other structural and physiological features which distinguish them from C_3 plants. These include: a different chloroplast ultrastructure, reduced discrimination of ¹³C relative to ¹²C, higher temperature optimum for photosynthesis, higher light saturation point, and significantly lower transpiration to photosynthesis ratios (13, 19).

One of the most interesting features of C_4 plants is that virtually all of them have a characteristic leaf anatomy consisting of at least two chloroplast-containing cell layers radially arranged around the vascular bundles. This concentric arrangement of chlorenchyma cells in C4 plant leaves has been called "Kranz" anatomy (13), and many structure-function postulations have been made concerning the importance of Kranz anatomy to the over-all physiology of C₄ plants. There is general agreement that operation of the complete cycle of C4 reactions is closely associated with, if not dependent upon, possession of Kranz anatomy by C₄ plants. This is particularly true for the apparent lack of photorespiration. As envisioned, the concentric arrangement of chloroplast-containing cells in C4 plants acts either to inhibit photorespiratory CO₂ loss by high CO₂ concentrations in the bundle sheath cells, or to promote refixation of evolved CO₂ as it diffuses outwardly through the mesophyll cells. A discussion and models for such structure-function relationships in C₄ plants have recently been given (13).

Regardless of the exact mechanism, most reports agree on the singular importance of Kranz anatomy in minimizing or eliminating detectable CO_2 evolution in the light by C_4 plants (1, 3, 7, 15, 16). Recently, several "atypical" features of C_4 plant physiology have been published where strict structure-function relationships do not hold. In spite of an intact Kranz anatomy, it has

been shown that there is an increased operation of the C₃ cycle during certain stages of leaf development in some C_4 plants (10, 12), a substantial incorporation of ¹⁴CO₂ into both four-carbon acids and phosphorylated compounds in a plant with an intermediate C_4 anatomy (11), and C_4 acid production in C_4 plant tissue cultures (14). There are also studies which cast doubt on the essentiality of Kranz anatomy to C4 physiology with respect to photorespiration. Goldsworthy and Day (6) have questioned the importance of Kranz anatomy in restricting diffusionary loss of CO₂ by C₄ plants. Other studies have reported lowered photorespiration in a plant with an incomplete Kranz anatomy (10), and photorespiratory responses in senescing Portulaca oleracea leaves which are virtually indistinguishable from those of mature C_3 plant leaves (9). In spite of these examples, operation of the C₄ pathway, particularly the lack of detectable photorespiration in C₄ plants, is still thought by many to be dependent on an intact Kranz anatomy.

MATERIALS AND METHODS

In the present experiments, *P. oleracea* L. stem tissue cultures, grown under a controlled light (about 80 μ einsteins m⁻² sec⁻¹) and temperature regime (20 C) were used in all experiments. Cultures, conditions, and media were otherwise as reported by Laetsch and Kortschak (14). These tissues were similar to mature *P. oleracea* leaves on the basis of cell ultrastructure and ¹⁴CO₂ labeling patterns (10, unpublished observations). In addition, leaves and tissue cultures of a C₃ plant, *Streptanthus tortuosus*, were used to enable comparison of photorespiratory activity in C₃ plant tissues to those of C₄ plants. Photorespiration assays used were modified from Zelitch (18) and involve a determination of the ¹⁴CO₂ evolved in the light and dark, after a 45-min ¹⁴CO₂ assimilation period (11).

Experiments were conducted in 125- or 250-ml Erlenmeyer flasks containing 3 to 5 g of callus tissue, and in some experiments, 50 ml of culture medium. No difference was observed between experiments in which the tissue cultures remained on the nutrient medium or were placed in similar flasks containing a thin layer of water. After a 30-min equilibration period, 0.3 μ mol ¹⁴CO₂ was injected into sealed flasks for assimilation. Radioactive CO₂ given off in 30-min light and dark periods was then determined by passing CO₂-free air through the flask at 600 ml min⁻¹. The first 15 min of ${}^{14}CO_2$ evolution in both the light and dark phase was generally not used for counting, and the order in which the light and dark periods were used was unimportant. All experiments were conducted in a water bath maintained at 30 C with a light intensity of 800 to 1000 µeinsteins m^{-2} sec⁻¹ at the callus surface. ¹⁴CO₂ evolved was trapped in 1 N KOH with 6% isoamyl alcohol.

RESULTS

Table I characterizes Chl content, ¹⁴CO₂ assimilation and evolution data for *Portulaca* and *Streptanthus* leaves and tissue

¹ This work was supported by National Science Foundation Grant BMS-75-09931.

Table I. Chlorophyll, ${}^{14}CO_2$ Assimilated, and ${}^{14}CO_2$ Evolved for C_4 (P. oleracea) and C_3 (S. tortuosus) Plant Tissue Cultures and Whole Leaves

	Chlorophy11		¹⁴ CO ₂ assimilated				¹⁴ CO ₂ evolved			
			rate		ср м х 10-3		light		dark	
	mg gfwt	a/b ratio	umole gfwt hr	umole mg chl/hr	<u>g f wt</u> hr	mg chl hr	$\frac{cpm \times 10^{-3}}{g f wt}$	$\frac{\text{cpm x 10}^{-3}}{\text{mg ch1}}$	<u>cpm x 10⁻³</u> g f wt	$\frac{\text{cpm} \times 10^{-3}}{\text{mg chl}}$
Young Portulaca leaves	0.91	3.2	10.19	11.20	3280	3606	1886	2072	1820	2000
Portulaca_callus	0.12	2.0	1.35	11.26	446	3626	58	471	64	520
Young Streptanthus leaves	1.93	2.1					5663	2934	2056	1065
Streptanthus callus	0.10	2.4	1.23	12.2	406	3942	286	2776	94	913

¹30 min. evolution period in CO_2 -free air.

cultures. Both tissue cultures contain nearly identical amounts of Chl and have similar Chl a/b ratios. The Chl a/b ratio for the C₄ callus is, understandably, not as high as that of whole *Portulaca* leaves, nor as high as is generally found in C₄ plant leaves (2, 8). Assimilation rates for both tissue cultures are quite high. When expressed on a Chl basis, the photosynthetic rate of *Portulaca* tissue cultures was slightly greater than that of young *Portulaca* leaves.

The difference in photorespiration between C_3 and C_4 tissues can be noticed by comparing the ¹⁴CO₂ evolved in the light to that in the dark. Unlike C_3 plants, there is no increased lightdependent ¹⁴CO₂ evolution in C_4 plants (18). It is important to note in Table I that the major difference between C_3 and C_4 tissue cultures, as in whole leaves, is in the amount of ¹⁴CO₂ given off in the light compared to that in the dark. This basic difference between C_3 and C_4 plant tissues is easily seen by examining light to dark ratios of CO₂-evolution in CO₂-free air (Table II). As in intact leaves (9), *Portulaca* tissue cultures have light to dark ratios of approximately 1, whereas *Streptanthus* tissue cultures have light to dark ratios of nearly 3. Such values are characteristic of C_4 and C_3 plants, respectively (9, 11, 18). Both types of callus fix about the same amount of ¹⁴C in the light and evolve similar amounts in the dark.

Another method of illustrating the photorespiratory differences between C_3 and C_4 plant tissues is to determine their response to varying O_2 concentrations (9). C_4 plant tissues evolve relatively constant amounts of CO_2 , regardless of the gas

Table II. Effect of $-CO_2$, N_2 , and O_2 on Photorespiratory ${}^{14}CO_2$ Released by C_4 (P. orleracea) and C_3 (S. tortuosus) Tissue Cultures

Expt.	Plant Tissue	Gas phase	¹⁴ CO ₂ released/ g f wt light	¹⁴ CO ₂ released/ g f wt dark	Light dark
No.	cpm x 10 ⁻³				
1	Portulaca callus	-C02	58	64	0.91
2	Portulaca callus	N2	40	25	
3	Portulaca callus	02	54	43	
4	Streptanthus callus	-C02	111	42	2.64
5	Streptanthus callus	N2	61	15	
6	Streptanthus callus	02	224	80	
7	Portulaca leaves	-co ₂	1080	1003	1.08
8	Streptanthus leaves	-c0 ₂	5663	2056	2.75

¹Averages of at least 3 separate experiments.

treatment, whereas C_3 plants are very much affected by O_2 concentration (4, 5, 9, 18). For Portulaca tissue cultures, a N₂ atmosphere does not markedly decrease photorespiration, nor does O2 gassing increase it (Table II). Streptanthus tissue cultures, on the other hand, exhibit O₂ responses typical of C₃ tissues. These responses can best be seen in Figure 1. Under $21\% O_2 (-CO_2)$, and especially in 100% O_2 , Streptanthus tissue cultures had light CO₂ evolution rates significantly above those of the C₄ callus (Fig. 1, left, right). When exposed to a N₂ atmosphere, however, the C3 callus exhibited photorespiratory responses virtually indistinguishable from those of Portulaca (Fig. 1, center). The extent of the differences between C_3 and C_4 plant tissue cultures can be seen by examining the slopes in Figure 1. Whereas the ¹⁴CO₂ evolution rates for the C₃ callus are nearly twice those of the C₄ callus in CO₂-free air, the C₃ rate is over 3 times greater under 100% O2. However, under conditions which virtually eliminate photorespiration in C₃ plants (N₂ atmosphere, Fig. 1, center), the rate and slope of the C₃ tissue culture are decreased to the level of the C4 callus. Also, since the slopes for CO₂ evolution in the dark are nearly identical, it is the photorespiratory CO₂ release which is the truly distinguishing feature.

DISCUSSION

The unique physiological and biochemical features of C₄ plants have generally been considered to be causally linked to their characteristic Kranz anatomy. The present data suggest that such a one-to-one correspondence does not exist. This is also supported by previous work. Laetsch and Kortschak (14) showed that four carbon acids were the most heavily labeled compounds produced by tissue cultures of another C₄ plant and concluded "that carbon fixation pathways are not related to leaf and chloroplast structure." Similar results have been obtained with P. oleracea tissue cultures. In short term ¹⁴CO₂ assimilation experiments, the early labeled products of Portulaca tissue cultures are similar to those of whole leaves. The ¹⁴C content in C₄ acids decreases with time in pulse-chase experiments, while that in C₃ cycle products increases (unpublished results). The role of specialized leaf anatomy in C₄ plants was also questioned when a plant with incomplete Kranz anatomy, but substantial labeling of

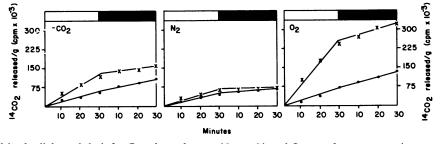


FIG. 1. ¹⁴CO₂ evolved in the light and dark for *Portulaca oleracea* (---) and *Streptanthus tortuosus* ($\times---\times$) tissue cultures. The tissue cultures were allowed to assimilate completely 0.3 μ mol ¹⁴CO₂ for 45 min at 30 C and 800 to 1000 μ einsteins m⁻² sec⁻¹. Subsequently, CO₂-free air (21% O₂), N₂, or 100% O₂ was passed over the tissues and the ¹⁴CO₂ evolved in the light was compared to that given off in the dark.

four carbon acids, still exhibited much reduced photorespiration ratios (11). Shomer-Ilan and Waisel (17) have also suggested modification of the Kranz requirement for operation of the C_4 pathway based on typical C_4 pathway carbon reactions in a plant without Kranz.

These examples illustrate that plants with functional C_4 physiology may also possess Kranz anatomy, but are not dependent on it. C_4 anatomy may continue to be very important in the taxonomy of C_4 plants, and it may explain their increased wateruse efficiency and ability to grow in habitats of limited water. It does not appear that Kranz anatomy is essential to proper functioning of carbon metabolism in C_4 plants, including low photorespiration. Also, the present data do not agree with models that propose that operation of the C_4 pathway and/or lack of photorespiration is dependent on a particular anatomy. If an inhibition of photorespiration by high CO_2 concentrations occurs in C_4 plants, it may happen within the bundle sheath chloroplasts as suggested much earlier (6), but not within the bundle sheath cells as a whole.

Acknowledgments - I am grateful to J. Barnes and L. Williams for assistance in this study, and to R. D. Sjolund for providing tissue cultures of Streptanthus tortuosus.

LITERATURE CITED

- 1. BLACK, C. C. 1971. Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Adv. Ecol. Res. 7: 87-114.
- CHANG, F. H. AND J. T. TROUGHTON. 1972. Chlorophyll a/b ratios in C₃- and C₄-plants. Photosynthetica 6: 57-65.
- CHOLLET, R. AND W. L. OGREN. 1975. Regulation of photorespiration in C₃ and C₄ species. Bot. Rev. 41: 137-179.

- COOMBS, J. 1973. B-Carboxylation, photorespiration and photosynthetic carbon assimilation in C₄ plants. Curr. Adv. Plant Sci. 2: 1-10.
- FORRESTER, M. L., G. KROTKOV, AND C. D. NELSON. 1966. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 41: 422-427.
- GOLDSWORTHY, A. AND P. R. DAY. 1970. Further evidence for reduced role of photorespiration in low compensation point species. Nature 228: 687-688.
- HESKETH, J. D. AND D. W. BAKER. 1970. Prediction and Measurement of Photosynthetic Productivity. Centre Agr. Publ. Doc., Wageningen. pp. 317-322.
- HOLDEN, M. 1973. Chloroplast pigments in plants with the C₄-dicarboxylic acid pathway of photosynthesis. Photosynthetica 7: 41-49.
- KENNEDY, R. A. 1976. Relationship between leaf development, carboxylase enzyme activities and photorespiration in the C_c plant Portulaca oleracea L. Planta 128: 149-154.
- KENNEDY, R. A. AND W. M. LAETSCH. 1973. Relationship between leaf development and primary photosynthetic products in the C₄ plant *Portulaca oleracea* L. Planta 115: 113-124.
- KENNEDY, R. A. AND W. M. LAETSCH. 1974. Plant species intermediate for C₃, C₄ photosynthesis. Science 184: 1087-1089.
- KHANNA, R. AND S. K. SINHA. 1973. Change in predominance from C₄ to C₃ pathway following anthesis in Sorghum. Biochim. Biophys. Res. Commun. 52: 121-124.
- 13. LAETSCH, W. M. 1974. The C4 syndrome: a structural analysis. Annu. Rev. Plant Physiol. 25: 27-52.
- LAETSCH, W. M. AND H. P. KORTSCHAK. 1972. Chloroplast structure and function in tissue cultures of a C₄ plant. Plant Physiol. 49: 1021-1023.
- LIU, A. Y. AND C. C. BLACK. 1972. Glycolate metabolism in mesophyll cells and bundle sheath cell isolated from crabgrass, *Digitaria sanguinalis* (L.). Arch. Biochem. Biophys. 149: 269-280.
- OSMOND, C. B. AND B. HARRIS. 1971. Photorespiration during C₄ photosynthesis. Biochim. Biophys. Acta 234: 270-282.
- SHOMER-ILAN, A. AND Y. WAISEL. 1955. Suaeda monica, a C. plant without typical bundle sheaths. Plant Physiol. 56: 676-679.
- ZELITCH, I. 1968. Investigations on photorespiration with a sensitive ¹⁴C-assay. Plant Physiol. 43: 1829-1837.
- ZELITCH, I. 1971. Photosynthesis, Photorespiration and Plant Productivity. Academic Press, New York.
- 20. ZELTTCH, I. 1975. Pathways of carbon fixation in green plants. Annu. Rev. Biochem. 44: 123-145.