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ABSTRACT Antibodies recognizing conserved CD4-induced (CD4i) epitopes on hu-
man immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-
dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from
most HIV-1-infected individuals. These antibodies preferentially recognize Env in its
CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces
exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-
1-infected cells to ADCC mediated by HIV-positive (HIV�) sera. Importantly, this
mechanism of immune evasion can be circumvented with small-molecule CD4 mi-
metics (CD4mc) that are able to transition Env into the CD4-bound conformation
and sensitize HIV-1-infected cells to ADCC mediated by HIV� sera. However, HIV-1
developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 an-
tagonism, which decreases the overall amount of Env present at the cell surface. Ac-
cordingly, BST-2 upregulation in response to alpha interferon (IFN-�) was shown to
increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu.
Here we show that BST-2 upregulation by IFN-� and interleukin-27 (IL-27) also in-
creases the surface expression of Env and thus boosts the ability of CD4mc to sensi-
tize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals.

IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from
ADCC-mediating antibodies present in HIV� sera. Vpu-mediated BST-2 downregula-
tion was shown to decrease ADCC responses by limiting the amount of Env present
at the cell surface. This effect of Vpu was shown to be attenuated by IFN-� treat-
ment. Here we show that in addition to IFN-�, IFN-� and IL-27 also affect Vpu-
mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-
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infected cells in the presence of CD4mc. These findings may inform strategies aimed
at HIV prevention and eradication.

KEYWORDS HIV-1, BST-2, envelope glycoproteins, gp120, CD4, CD4-bound
conformation, nonneutralizing antibodies, ADCC, CD4 mimetics, IFN-�, Env, IL-27,
interferons

Antibodies that preferentially recognize the CD4-bound conformation of human
immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) can eliminate

HIV-1-infected cells through antibody-dependent cellular cytotoxicity (ADCC) responses
(1–4). These antibodies are present in serum (1, 5), breast milk (5), and cervicovaginal
lavage fluid (2, 5) samples from HIV-1-infected individuals and have been proposed to
be part of the pressure exerted on HIV-1 to efficiently downregulate CD4 from the cell
surface (6). Accordingly, Nef- and Vpu-mediated CD4 downregulation conceal the
exposure of Env epitopes recognized by these antibodies (1, 3, 7). In addition, HIV-1
decreases ADCC responses by diminishing the overall amount of Env present at the cell
surface. This is achieved through Vpu-mediated BST-2 (tetherin/CD317/HM1.24) down-
regulation (7–9), which allows for efficient release of viral particles (10, 11), and also
through efficient Env internalization mediated by an endocytosis motif in the cytoplas-
mic tail of gp41 (12).

A better understanding of the importance that the CD4-bound conformation of
HIV-1 envelope glycoproteins has on ADCC responses prompted us to “force” this Env
conformation on the surface of infected cells using small-molecule CD4 mimetics
(CD4mc). CD4mc induction of the CD4-bound conformation results in enhanced rec-
ognition of HIV-1-infected cells by serum, breast milk, and cervicovaginal fluid samples
from HIV-1-infected subjects. Most importantly, CD4mc sensitizes HIV-1-infected cells to
ADCC responses mediated by these biological fluids (4, 5, 13).

The effect of CD4mc on ADCC responses may be influenced by the amount of Env
available at the cell surface. Only limited amounts of Env are presented at the cell
surface due to efficient Env internalization (12) and Vpu-mediated BST-2 downregula-
tion (7–9); this places an upper limit on the amount of Env that can be rendered
susceptible to ADCC by CD4mc. Interestingly, two BST-2 isoforms possessing distinct
biological properties have been described (14, 15). While the long isoform of BST-2
(L-BST-2) contains a cytoplasmic tyrosine motif mediating endocytic recycling, sensi-
tivity to HIV-1 M Vpu and innate immune sensing, the short isoform of BST-2 (S-BST-2)
lacks this motif due to the utilization of an alternative start codon (14, 15). How these
two isoforms modulate Env recognition on the surface of HIV-1-infected cells by
HIV-positive (HIV�) sera and how this affects the activity of CD4mc remain unknown.

Type I interferons (IFNs) are an important part of the early host immune response
observed during acute HIV-1 infection (16). The antiviral effect exerted by IFN is
highlighted by the observation that transmitted/founder HIV-1 strains that initiate host
infection have been shown to be more resistant to type I IFN responses than HIV-1
strains found during the chronic phase of infection (17–19). Furthermore, Vpu enhances
viral replication particularly during early stages of infection, probably by counteracting
the IFN-inducible restriction factor BST-2 (18, 20). The induction of BST-2 expression by
type I IFN treatment was also shown to sensitize infected cells to ADCC (8). In addition,
interleukin-27 (IL-27) also enhances BST-2 levels on the surface of human monocytes
and CD4 T cells (21). IL-27 is a member of the IL-12 family of cytokines and drives the
differentiation of Th1 CD4 T cells (22, 23). Interestingly, IL-27 induces an antiviral gene
expression profile similar to that induced by alpha interferon (IFN-�), including the
apobec3g gene (24). Furthermore, IL-27 inhibited the replication of HIV-1 in cultures of
primary CD4� T cells and monocytes/macrophages through the induction of APOBEC
(apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like) proteins (24, 25).
Notably, IL-27-mediated BST-2 upregulation was shown to be independent from type
I IFN responses (21). However, the effect of IL-27 on ADCC responses during viral
infection has not been determined.
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Here we evaluated the role of BST-2 on Env accumulation on the surface of
HIV-1-infected cells and tested whether type I IFNs or IL-27 could be exploited in
conjunction with CD4mc to further enhance ADCC responses mediated by HIV-positive
(HIV�) sera.

RESULTS
BST-2 expression modulates Env accumulation on the surface of HIV-1-infected

cells and its recognition by HIV� sera in the presence of CD4mc. In the absence of
Vpu, Env accumulates at the plasma membrane of HIV-1-infected cells (7–9) in large
part due to the inhibitory effects of BST-2 on virus release (10, 11). This surface
accumulation results in increased susceptibility of HIV-1-infected cells to ADCC (7–9). To
further evaluate the role of BST-2 on Env surface expression, we infected Jurkat cell
lines expressing no BST-2 (Jurkat Tag) or expressing the long isoform of BST-2 (Jurkat
Tag L-BST-2) or the short isoform of BST-2 (Jurkat Tag S-BST-2) (15). Cells were infected
with the transmitted/founder virus CH58 (CH58 TF) (5) expressing the Vpu accessory
protein (wild-type [wt] CH58 TF) or containing a vpu deletion (Vpu�). Forty-eight hours
postinfection, BST-2 and Env levels were evaluated by cell surface staining followed by
intracellular p24 staining to identify infected (p24-positive [p24�]) cells. As expected,
while BST-2 was not detected on the surface of Jurkat Tag cells (Fig. 1A and D), it was
equivalently detected on the surface of uninfected (mock) Jurkat Tag L-BST-2 and
S-BST-2 cells, indicating that these two cell lines express similar levels of BST-2 (Fig. 1B
to D). However, in agreement with previous reports, HIV-1 infection significantly
decreased expression of L-BST-2 but not that of S-BST-2. The S-BST-2 isoform lacks 12
residues of the cytoplasmic tail required for Vpu group M-mediated BST-2 endosomal
degradation (14, 15) (Fig. 1C and D). As expected, a virus lacking Vpu (Vpu�) was
unable to decrease cell surface levels of BST-2 (Fig. 1B to D).

When we evaluated Env levels on the surface of infected cells with the conformation-
independent 2G12 antibody (Fig. 2A), we observed a significant correlation with BST-2
levels (Fig. 2B). This supports previous observations indicating that BST-2 modulates the
overall amount of Env on the surfaces of infected cells (7, 8). We then assessed whether
enhanced accumulation of Env affected recognition of HIV-1-infected cells by HIV�

sera. Despite different amounts of BST-2 and Env present on the surface of Jurkat cell
lines expressing S-BST-2, L-BST-2, or no BST-2, cells infected with a wild-type virus were
barely recognized by HIV� sera (Fig. 2C). This is believed to reflect the ability of HIV-1
to downregulate CD4 in infected cells such that only closed Env trimers remain (1, 3, 5,
7, 26). Antibodies present in HIV� sera preferentially recognize Env in its CD4-bound
conformation (1, 27). Infection with a vpu� virus led to a small increase in recognition
of HIV-1-infected cells by HIV� sera (Fig. 2C). In order to expose epitopes recognized
by antibodies present in HIV� sera, infected cells were incubated in parallel with the
potent CD4mc BNM-III-170 which forces Env to adopt a CD4-bound-like conformation
(4, 28) and in conjunction with coreceptor binding site antibodies (CoRBS) efficiently
expose anti-cluster A epitopes (4). CD4mc addition enhanced recognition of all three
infected cell lines (Fig. 2C). In agreement with decreased sensitivity of S-BST-2 to
Vpu-mediated downregulation, Jurkat Tag S-BST-2 cells infected with a wild-type virus
responded significantly better to CD4mc than Jurkat Tag L-BST-2 cells infected with the
same virus. This likely results from an enhanced Env accumulation on the surfaces of
Jurkat Tag S-BST-2 cells due to the inability of Vpu to downregulate S-BST-2 (Fig. 2A and
C). Likely due to the absence of BST-2 in the Jurkat Tag empty vector (EV) cell line,
infection with a vpu� virus has a minor effect on Env levels (as evaluated by 2G12) and
therefore recognition of infected cells by HIV� sera in the absence of CD4mc. Infection
with a Vpu� virus of Jurkat Tag S-BST-2 and L cells led to a slightly better recognition
of infected cells in the absence of CD4mc. Upon addition of CD4mc, however, all
infected cells were significantly better recognized by HIV� sera. This finding confirms
previous observations indicating that antibodies present in HIV� sera preferentially
recognize Env in the CD4-bound conformation (1). Of note, the difference in HIV�

serum recognition in the presence of CD4mc between wild-type and vpu� virus-
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infected cells was higher in Jurkat L-BST-2 cells that express the BST-2 isoform suscep-
tible to Vpu action (Fig. 2C). Accumulation of Env (as measured by 2G12) correlated
significantly with recognition of infected cells by HIV� sera (Fig. 2D). Recognition of
infected cells by HIV� sera also correlated with BST-2 expression (Fig. 2E).

BST-2 levels regulate Env accumulation and its recognition by HIV� sera on
the surface of HIV-1-infected primary CD4� T cells. Figures 1 and 2 showed that
BST-2 levels, and its sensitivity to Vpu downregulation, dictated Env accumulation on
the surfaces of HIV-1-infected cell lines. Moreover, Env accumulation on the surfaces of
infected cells increased the amount of Env available to engage CD4mc and henceforth
sample the CD4-bound conformation, which is preferentially recognized by HIV� sera
(1, 27). IFN-� treatment has been shown to enhance BST-2 levels, resulting in an
accumulation of Env on the surfaces of HIV-1-infected cells and thus increasing the
sensitivity of HIV-1-infected cells to ADCC (8). Similar observations were recently
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reported (29). Therefore, we decided to take advantage of the type 1 interferon
responsiveness of BST-2 (10, 11). Primary CD4� T cells from healthy HIV-1 uninfected
individuals were mock infected or infected with HIV-1 (CH58 TF), and BST-2 levels were
modulated by stimulation with type 1 IFNs (IFN-� and IFN-�) or with IL-27 (21). As
expected, BST-2 levels were significantly higher in uninfected than HIV-1-infected cells.
Interestingly, IFN-�, IFN-�, and IL-27 treatment enhanced BST-2 detection in both
uninfected and HIV-1-infected cells (Fig. 3A). BST-2 upregulation resulted in Env accu-
mulation on the surfaces of infected cells, as measured with the 2G12 antibody (Fig. 3B).

We then evaluated whether IFN-�, IFN-�, and IL-27 treatment enhanced recognition
of HIV-1-infected cells by HIV� sera. Despite a significant increase in Env accumulation
on the surfaces of infected cells (Fig. 3B), treatment with IFN-� and IL-27 failed to
enhance recognition of infected cells by HIV� sera, and the effect of IFN-� treatment
was relatively minor (Fig. 4). However, addition of the CD4mc BNM-III-170 significantly
increased recognition of HIV-1-infected cells by HIV� sera; these results are in agree-
ment with previous reports demonstrating the ability of HIV� sera to recognize CD4i
epitopes on primary HIV-1 Env that are not spontaneously exposed (1, 3) and the
capacity of CD4mc to promote the CD4-bound conformation of Env on the surfaces of
HIV-1-infected cells (4, 5, 13, 30). Remarkably, the combination of IFN-�, IFN-�, or IL-27
with BNM-III-170 further increased recognition of HIV-1-infected cells by all sera tested
compared to any one of these treatments (Fig. 4).

BST-2 upregulation boosts the capacity of CD4mc to sensitize HIV-1-infected
cells to ADCC mediated by HIV� sera. To evaluate whether the enhanced recognition
of HIV-1-infected cells induced by the combination of IFN-�, IFN-�, and IL-27 treat-
ments and BNM-III-170 would result in enhanced ADCC killing, we infected primary
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CD4� T cells with HIV-1 CH58 TF and evaluated their susceptibility to ADCC mediated
by autologous peripheral blood mononuclear cells (PBMCs) using a previously de-
scribed fluorescence-activated cell sorting (FACS)-based assay (5, 31). As reported (5,
13), CD4mc BNM-III-170 significantly increased ADCC mediated by all HIV� sera tested
(Fig. 5). In agreement with the recognition of infected cells by HIV� sera (Fig. 4), IFN-�
treatment alone had a minor but significant effect on ADCC responses (Fig. 5), but IFN-�
and IL-27 treatment failed to do so (Fig. 5). Remarkably, addition of BNM-III-170 further
enhanced the susceptibility of infected cells to ADCC for cells treated with IFN-�, IFN-�,
or IL-27 (Fig. 5). As expected, enhanced recognition of HIV-1-infected cells by HIV� sera
positively correlated with enhanced ADCC responses (Fig. 6). These results highlight the
potential of combining type I IFNs and IL-27 with CD4mc to sensitize HIV-1-infected
cells to ADCC.

DISCUSSION

Increasing evidence suggests that Fc� receptor-dependent functions of antibodies
play a role in controlling human immunodeficiency virus type 1 (HIV-1) infection and
replication (32–40). Analysis of the correlates of protection in the RV144 vaccine trial
suggested that decreased HIV-1 acquisition was linked to increased ADCC activity in
protected vaccinees (41). ADCC-mediating antibodies (Abs) targeting anti-cluster A
epitopes were isolated from some RV144 vaccinees (42) and were shown to preferen-
tially recognize the HIV-1 envelope glycoproteins sampling the CD4-bound conforma-
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FIG 4 Treatment with type I IFN or IL-27 enhances recognition of HIV-1-infected cells by sera from HIV-1-infected individuals in the presence of CD4mc. Primary
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tion (7). CD4i antibodies represent a significant portion of the anti-Env Abs elicited
during natural HIV-1 infection (1, 27, 43). This elicitation of CD4i Abs could result from
transitional exposure of CD4i Env epitope during viral entry (44) or, most likely, after
binding of shed gp120 with CD4 on uninfected bystander cells (30). However, not all
CD4i antibodies are able to mediate ADCC against HIV-1-infected cells. While anti-
cluster A antibodies have been shown to mediate potent ADCC responses against
infected cells exposing Env in the CD4-bound conformation (3, 4, 7, 45), CD4i antibodies
targeting the coreceptor binding site appear to be unable to do so (3, 4, 45, 46). While
the reasons for these differences are not fully understood, the angle of approach of the
antibody toward Env might differentially expose the Fc region which must be engaged
by the Fc� receptor in order to activate effector cells. Nevertheless, to limit the
exposure of anti-cluster A epitopes that are exposed in the CD4-bound conformation
of Env on the surfaces of infected cells, HIV-1 evolved sophisticated mechanisms to
efficiently internalize Env (12) to counteract the host restriction factor BST-2 with the
viral Vpu protein (7–9) and to downregulate CD4 by Nef and Vpu (1, 7). The require-
ment to evade ADCC provides one plausible explanation of why the vast majority of
circulating HIV-1 strains worldwide express functional Nef and Vpu proteins, which limit
the exposure of CD4i Env epitopes on the surfaces of infected cells.

In agreement with the necessity for HIV-1 to avoid exposing the CD4-bound
conformation of Env, we recently showed that forcing Env to adopt this conformation
with CD4mc sensitizes HIV-1-infected cells to ADCC by sera from HIV-1-infected sub-
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virus CH58 (CH58 T/F), either treated for 24 h with type I IFN (IFN-� and IFN-�) or IL-27 or not treated, were used as target cells, and autologous PBMCs were
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jects (5). Here we show that increasing the amounts on Env at the cell surface, once this
Env is induced by CD4mc to adopt the CD4-bound conformation, results in increased
recognition of HIV-1-infected cells by HIV� sera. We found that enhanced recognition
of infected cells by HIV� sera translates into enhanced susceptibility of infected cells to
ADCC. This was achieved by exploiting the type 1 interferon responsiveness of the
restriction factor BST-2, known to trap mature viral particles on the surfaces of infected
cells. IFN-� and -� enhance BST-2 levels on the surfaces of infected cells, which
translates into enhanced levels of Env potentially able to be targeted by ADCC after
engaging the CD4mc. Interestingly, similar results were obtained using IL-27, a cytokine
known to modulate BST-2 levels in an IFN-independent manner. Altogether, our results
suggest a model (Fig. 7) where the conformation and availability of Env at the cell
surface dictates the sensitivity of HIV-1-infected cells to ADCC. HIV-1 limits the amount
of Env present at the cell surface and tightly controls its conformation. By preventing
Env from assuming the CD4-bound conformation, HIV-1 avoids Env recognition by CD4i
ADCC-mediating Abs present in the sera of the majority of HIV-1-infected individuals.
Small CD4mc sensitize HIV-1-infected cells to ADCC by forcing Env to expose CD4i
anti-cluster A-mediating epitopes. IFN-�, IFN-�, and IL-27 treatment, through upregu-
lation of BST-2, increases the total amounts of Env available for CD4mc to induce
ADCC-susceptible Env conformations on the surfaces of infected cells. While HIV-1-
infected cells are protected from ADCC responses, we recently demonstrated that
uninfected bystander CD4� T cells bind gp120 shed from productively infected cells
and are efficiently recognized by ADCC-mediating antibodies (30). Importantly, we also
demonstrated that this phenomenon can be blocked by CD4mc that abrogates the
binding of gp120 to uninfected cells and effectively redirects the immune system to
infected cells. Therefore, the combination of CD4mc and type I IFN or IL-27 would
represent an effective strategy to specifically target and eliminate HIV-1-infected cells
by ADCC.

Robust type I interferon responses are among the earliest host immune defenses
observed during acute HIV-1 infection (16). Accordingly, transmitted/founder viruses,
including those used in the present study, were found to be more resistant to IFN
treatment than viruses from chronic HIV-1 infection (17–19). In that context, Vpu
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+ CD4mc + IFN-
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FIG 7 Env conformation and its accumulation at the cell surface dictates sensitivity of HIV-1-infected cells to ADCC. ADCC-mediating Abs present
in sera from HIV-1-infected individuals preferentially recognize Env in its CD4-bound conformation (1). To limit the exposure of this conformation,
HIV-1 has evolved sophisticated mechanisms to counteract the host restriction factor BST-2 with the viral Vpu protein (7–9) and to downregulate
CD4 by Nef and Vpu (7). Nef and Vpu decrease the accumulation of Env and its interaction with CD4 at the cell surface, two factors that determine
the susceptibility of HIV-1-infected cells to ADCC. Small CD4 mimetics sensitize HIV-1-infected cells to ADCC mediated by HIV� sera by forcing
Env to sample its CD4-bound conformation (5). Type I IFN or IL-27 treatment, through upregulation of BST-2 despite Vpu activity, boosts the ability
of CD4mc by increasing the amounts of CD4mc-sensitized Env available on the cell surface.
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counteraction of BST-2 was recently identified as a major determinant of this IFN
resistance (18, 20) and was found to play a crucial role in enhancing virus replication
and release in human CD4� T cells, particularly in the presence of IFN (18). Here we
found that IFN-�, IFN-�, or IL-27 treatment enhanced BST-2 levels and, in combination
with CD4mc, similarly sensitized HIV-1-infected cells to ADCC. However, there are many
other IFN-� subtypes, and some of them inhibit HIV-1 replication more efficiently in
vitro and in animal models than IFN-�2 (47, 48). Thus, it will be important to evaluate
to what extent the different IFN-� subtypes sensitize HIV-1-infected cells to ADCC in the
presence of CD4mc.

CD4mc were recently shown to enhance the viral neutralization and ADCC activities
of antibodies elicited in nonhuman primates (NHP) by several different Env immuno-
gens (49), suggesting that combining a vaccine with a small-molecule CD4mc, admin-
istered orally or in a microbicide formulation, might be useful as a prophylactic strategy
against HIV-1 transmission. Interestingly, mucosal application of IFN-� protected ma-
caques from intrarectal and intravaginal simian-human immunodeficiency virus (SHIV)
challenges (50). Similarly, IFN-�2 treatment of rhesus macaques prevented systemic
infection by simian immunodeficiency virus (SIV) (51). Whereas a combination of IFNs
or IL-27 with CD4mc might further limit HIV-1 transmission or help decrease the size of
the viral reservoir in HIV-1-infected individuals remains to be evaluated, our results
support performing future experiments aimed at evaluating whether sensitization of
HIV-infected cells to ADCC could affect viral transmission and/or replication in animal
models.

MATERIALS AND METHODS
Cell lines and isolation of primary cells. HEK293T human embryonic kidney (obtained from ATCC)

and primary cells were grown as previously described (7, 52). Peripheral blood mononuclear cells
(PBMCs) were obtained by leukapheresis. All participants provided informed written consent prior to
enrollment in accordance with Institutional Review Board approval. CD4 T lymphocytes were purified
from resting PBMCs by negative selection and activated as previously described (5). Jurkat Tag cells
stably expressing the long isoform of BST-2 (L-BST-2) or the short isoform of BST-2 (S-BST-2) and the
Jurkat Tag empty vector (EV) cell line expressing no BST-2 were previously described (15).

Viral production, infections, and detection of infected cells. In order to achieve the same level of
infection between wild-type (wt) and Vpu� viruses, vesicular stomatitis virus G (VSVG)-pseudotyped
HIV-1 replicating competent viruses were produced. Briefly, proviral vectors and a VSVG-encoding
plasmid were cotransfected in 293T cells by standard calcium phosphate transfection. Two days after
transfection, cell supernatants were harvested, clarified by low-speed centrifugation (5 min at 1,500 rpm),
and concentrated by ultracentrifugation for 1 h at 4°C at 100,605 � g over a 20% sucrose cushion. Pellets
were resuspended in fresh RPMI 1640 medium, and aliquots were stored at �80°C until use (1). Viruses
were then used to infect Jurkat Tag cell lines or primary CD4 T cells from healthy donors by spin infection
at 800 � g for 1 h in 96-well plates at 25°C.

CD4 mimetic, type I IFN, or IL-27 treatments. The CD4mc BNM-III-170 was synthesized as described
previously (28). BNM-III-170 was dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 10
mM, aliquoted, and stored at �20°C. BNM-III-170 was then diluted to 50 �M in phosphate-buffered saline
(PBS) for cell surface staining or in complete RPMI 1640 medium for ADCC assays. IFN-� (PBL Assay
Science) was reconstituted in complete RPMI 1640 medium at 1 � 107 U/ml, aliquoted, and stored at
�80°C. IFN-� was then added to the cells at 1,000 U/ml. IFN-� (Rebif; EMD Serono Inc.) (19) was added
to the cells at 1 ng/ml. IL-27 (R&D Systems) was reconstituted at 100 �g/ml in sterile PBS containing 0.1%
bovine serum albumin and stored at �80°C. IL-27 was then added to the cells at 100 ng/ml. Type I IFN
or IL-27 was added to the cells 24 h postinfection, 24 h before cell surface staining or ADCC assays.

Antibodies and sera. The following antibodies (Abs) were used as the primary Abs for cell surface
staining: 5 �g/ml of human anti-HIV-1 Env monoclonal antibody (MAb) 2G12 (National Institutes of
Health [NIH] AIDS and Research and Reference Reagent Program), 2 �g/ml rabbit anti-BST-2 Ab
(sc-99191; Santa Cruz), or sera from HIV-1-infected individuals (1:1,000 dilution), whereas 1 �g/ml of
either Alexa Fluor 647-labeled goat anti-human MAbs (Invitrogen, San Diego, CA, USA) or Brilliant Violet
421-labeled donkey anti-rabbit MAbs (Biolegend, San Diego, CA, USA) were used as secondary Abs, and
AquaVivid (Invitrogen, San Diego, CA, USA) was used as a viability dye. All sera were heat inactivated for
30 min at 56°C and stored at 4°C until ready to use in subsequent experiments. Written informed consent
was obtained from all study participants (the Montreal Primary HIV Infection Cohort [53, 54] and the
Canadian Cohort of HIV Infected Slow Progressors [55–57]), and research adhered to the ethical
guidelines of Centre de Recherche du CHUM (CRCHUM) and was reviewed and approved by the CRCHUM
institutional review board (ethics committee). A random-number generator (QuickCalcs; GraphPad) was
used to randomly select a number of sera for experiments.

Plasmids. The plasmid encoding the HIV-1 transmitted founder (T/F) CH58 was previously described
(5, 17, 58–60).
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Flow cytometry analysis of cell surface staining and ADCC responses. Cell surface staining was
performed as previously described (1, 5). Binding of HIV-1-infected cells by HIV� sera, anti-Env MAbs
(2G12) or anti-BST-2 MAbs was performed 48 h after infection, 24 h after treatment with type I IFN or
IL-27, in the presence or absence of BNM-III-170 (50 �M) or an equivalent volume of vehicle (DMSO).
Detection of p24� infected cells was performed as described previously (5). The percentage of infected
cells (p24� cells) was determined by gating the living cell population based on the viability dye staining
(Aqua Vivid; Invitrogen). Samples were analyzed on a LSRII cytometer (BD Biosciences, Mississauga, ON,
Canada), and data analysis was performed using FlowJo vX.0.7 (Tree Star, Ashland, OR, USA).

Measurement of ADCC-mediated killing was performed with a previously described assay (5). Briefly,
primary CD4� T cells infected for 48 h and treated for 24 h with type I IFN or IL-27 or not treated with
type I IFN or IL-27 were incubated with autologous PBMCs (effector/target cell ratio of 10:1) in the
presence or absence of HIV� sera (1:1,000), in the presence of CD4mc BNM-III-170 (50 �M), or with an
equivalent volume of vehicle (DMSO). The percentage of cytotoxicity was calculated as described
previously (5).

Statistical analyses. Statistics were analyzed using GraphPad Prism version 6.01 (GraphPad, San
Diego, CA, USA). Every data set was tested for statistical normality, and this information was used to apply
the appropriate (parametric or nonparametric) statistical test. P values of �0.05 were considered
significant; significance values are indicated as follows: *, P � 0.05; **, P � 0.01, ***, P � 0.001; ****, P �
0.0001.
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