Table 3.
Measured accuracies of eight in silico predictors as benchmarked against seven different variant reference datasets. Measured accuracies are calculated as the areas under the respective ROC curves (AUCs) and Matthews correlation coefficients (MCCs). See Additional file 1: Figure S4 for the ROC curve graphs
ClinvarHC | Humsavar | Swissvar | Varibench | TP53-TA | BRCA1-DMS | UniFun | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | MCC | AUC | MCC | AUC | MCC | AUC | MCC | AUC | MCC | AUC | MCC | AUC | MCC | |
GERP++ | 0.863 | 0.587 | 0.777 | 0.469 | 0.677 | 0.286 | 0.571 | 0.15 | 0.719 | 0.283 | 0.544 | 0.069 | 0.538 | 0.04 |
fitCons | 0.641 | 0.3 | 0.533 | 0.033 | 0.564 | 0.008 | 0.651 | 0.024 | 0.557 | 0 | 0.559 | 0 | 0.515 | 0.033 |
SIFT | 0.848 | 0.489 | 0.841 | 0.543 | 0.698 | 0.289 | 0.651 | 0.228 | 0.835 | 0.484 | 0.653 | 0.199 | 0.631 | 0.184 |
PolyPhen | 0.827 | 0.447 | 0.831 | 0.541 | 0.699 | 0.301 | 0.672 | 0.256 | 0.859 | 0.469 | 0.596 | 0.088 | 0.623 | 0.168 |
CADD | 0.939 | 0.731 | 0.851 | 0.57 | 0.73 | 0.331 | 0.663 | 0.25 | 0.869 | 0.418 | 0.556 | 0.032 | 0.589 | 0.119 |
Condel | 0.879 | 0.51 | 0.911 | 0.664 | 0.728 | 0.333 | 0.86 | 0.57 | 0.883 | 0.074 | 0.747 | 0.172 | 0.614 | 0.098 |
REVEL | 0.945 | 0.68 | 0.968 | 0.83 | 0.792 | 0.462 | 0.89 | 0.59 | 0.907 | 0.465 | 0.737 | 0.088 | 0.63 | 0.148 |
fathmm | 0.787 | 0.288 | 0.902 | 0.538 | 0.701 | 0.253 | 0.936 | 0.509 | 0.53 | 0 | 0.621 | 0 | 0.531 | 0.02 |