Skip to main content
. 2017 May 15;17:345. doi: 10.1186/s12879-017-2365-1

Table 8.

List of advanced error measures to aggregating the error values across multiple series

Measure name Formula Description
Absolute Percentage Error (A P E t,s) APEt,s=|ytxt,syt| where t is time horizon and s is the series index.
Mean Absolute Percentage Error (M A P E t) MAPE=1Ss=1SAPEt,s where t is time horizon, s is the series index S is the number of series for the method.
Median Absolute Percentage Error (M d A P E t) Median Observation of A P E s Obtaining median of APE errors over series.
Relative Absolute Error (R A E t,s) RAEt,s=|ytxt,s||ytxRWt,s| Measures the ratio of absolute error to Random walk error in time horizon t.
Geometric Mean Relative Absolute Error (G M R A E t) GMRAEt=[s=1S|RAEt,s|]1/S Measures the Geometric average ratio of absolute error to Random walk error
Median Relative Absolute Error (M d R A E t) Median Observation of R A E s Measures the median observation of R A E s for time horizon t
Cumulative Relative Error (C u m R A E s) CumRAEs=t=1T|yt,sxt,s|t=1T|yt,sxRWt,s| Ratio of accumulation of errors to cumulative error of Random walk Method
Geometric Mean Cumulative Relative Error (GMCumRAE) GMCumRAE=[s=1S|CumRAEs|]1/S Geometric Mean of Cumulative Relative Error across all series.
Median Cumulative Relative Error (MdCumRAE) M d C u m R A E=M e d i a n(|C u m R A E s|) Median of Cumulative Relative Error across all series.
Root Mean Squared Error (R M S E t) RMSEt=s=1S(ytxt,s)2S Square root of average squared error across series in time horizon t
Percent Better (P B t) PBt=1Ss=1S[I{es,t,eWRt}] Demonstrates average number of times that method overcomes the Random Walk method in time horizon t.
|e s,t|≤|e WRt|⇔I{e s,t,e WRt}=1