Skip to main content
. 2017 May 16;15(5):e2000779. doi: 10.1371/journal.pbio.2000779

Fig 6. The synonymous single nucleotide polymorphism (sSNP) T2562G inverts local translation speed in CFTR mRNA, which can be rescued by tRNAThr(CGU).

Fig 6

(A) Thr-854–encoding codon ACT in wild-type CFTR is translated fast, as its cognate tRNAThr(AGU) is relatively abundant. (B) T2562G sSNP converts the ACT triplet to ACG codon, which is read by the rare cognate tRNAThr(CGU) and reduces local ribosomal speed. Stochasticity in the delivery of tRNAThr(CGU) cognate to the ACG codon creates variations in the intimate translation speed of each ACG codon at this position and hence generates 2 distinct CFTR channel populations, one with wild-type–like (wtl) CFTR properties and a second with a reduced conductance and a more compact structure (small-conductance [sc] population). (C) Increase of the cellular level of tRNAThr(CGU) pairing to the mutated ACG codon restores ribosome speed at the rare Thr-ACG codon and rescues the CFTR conductance defect.