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Abstract

Dietary methionine restriction (MR) produces a coordinated series of transcriptional

responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and

adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methio-

nine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts cen-

trally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21

also has direct effects in adipose to enhance glucose uptake and oxidation. However, an

understanding of how the liver senses and translates reduced dietary methionine into these

transcriptional programs remains elusive. A comprehensive systems biology approach inte-

grating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three

interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and

oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast,

the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the

nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis pro-

vided evidence for redox imbalance, stemming from large reductions in the master anti-oxi-

dant molecule glutathione coupled with disproportionate increases in ophthalmate and its

precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product,

glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its meta-

bolic phenotype.

Introduction

Restriction of dietary methionine intake by 80% produces a coordinated series of transcrip-

tional, endocrine, and biochemical changes across multiple tissues, but the underlying
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mechanisms linking methionine restriction (MR) to its metabolic phenotype are poorly under-

stood. The initial sensing of methionine is thought to occur in liver, where within 6 hours of

introduction of the MR diet, increased transcription of the fibroblast growth factor 21 (Fgf21)

gene produces an 8-fold increase in serum FGF21 [1]. Loss of function approaches indicate

that FGF21 produces a combination of direct and indirect responses in adipose tissue that

enhance the capacity of both brown and white adipose tissue to take up and oxidize glucose

and fatty acids [2–4]. FGF21 works directly in adipocytes through receptor-mediated signaling

to enhance both basal and insulin-dependent glucose uptake [5]. FGF21 also acts centrally to

increase SNS-dependent remodeling and activation of thermogenesis in adipose tissue [3].

Thus, the MR-dependent increase in hepatic FGF21 provides a key link between the sensing of

reduced dietary methionine in the liver and the translation of that sensing event into physio-

logical responses [1, 4].

Although FGF21 appears to be a key mediator of a number of the indirect effects of MR in

adipose tissue, the transcriptional effects of the diet in liver are most likely linked to MR-

dependent effects on sulfur amino acid metabolism. These mechanisms remain poorly under-

stood although recent work has argued that the downstream metabolite, glutathione has a pre-

viously unappreciated role in both hepatic insulin signaling [6] and protein kinase R-like

endoplasmic reticulum kinase (PERK) signaling [1]. In the present study, a systems biology

approach has been used to conduct an integrated analysis of the transcriptome and metabo-

lome in liver and other affected tissues after short-term dietary MR. The goal is to identify

important new transcriptional targets and biochemical processes that provide insights into the

sensing and signaling mechanisms being engaged by the diet. The progression of our analyses

is presented sequentially. First we report on differentially expressed genes and pathways

responsive to MR by considering the transcriptome data from different tissues. This is fol-

lowed by an independent investigation of the metabolomic data. Finally, we provide an inte-

grated analysis of the transcriptomic and metabolomic datasets. Since all biological processes

queried by the transcriptome do not have metabolomic measurements (e.g. inflammation-

related pathways), and many metabolomic outcomes arise from post-transcriptional processes,

this strategy ensures a more comprehensive assessment of the molecular landscapes and pro-

vides an excellent discovery platform to guide future studies.

Materials and methods

Animals and diets

All vertebrate animal experiments were reviewed and approved by the Pennington Institutional

Animal Care and Use Committee using guidelines established by the National Research Council,

the Animal Welfare Act, and the PHS Policy on humane care and use of laboratory animals. Twe-

lve male C57BL/6J mice obtained from Jackson Labs (Bar Harbor, ME, USA) at 4 wks of age,

individually housed in plastic cages with corncob bedding, and adapted to the control diet for 7

days prior to randomization to either the Control diet or the methionine-restricted (MR) diet for

an additional 10–12 weeks. Details of the feeding paradigm and diets have been described previ-

ously [7], with the control diet containing 0.86% methionine, and the MR diet containing 0.17%

methionine, and both diets containing no cysteine. The diets were formulated as extruded pellets

and the energy content of both Control and MR diets was 15.96 kJ/g, with 18.9% of energy com-

ing from fat (corn oil), 64.9% carbohydrate, and 14.8% from a custom mixture of L-amino acids.

Diets and water were provided ad libitum, lights were on from 7 AM to 7 PM, and mice were

housed at 23˚C. The mice were euthanized at 11 AM using CO2-induced narcosis after a 4 h fast

that began at 7 AM, and tissues were rapidly harvested and snap frozen in liquid nitrogen. Care
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was taken to minimize the numbers of animals used in this experiment in accordance with the

ARRIVE guidelines (http://www.nc3rs.org.uk/page.asp?id=1357; see S1 ARRIVE Checklist).

Isolation and analysis of RNA

Total RNA was isolated from inguinal white adipose tissue (IWAT), brown adipose tissue

(BAT), liver, and skeletal muscle using RNeasy Mini Kits (QIAGEN, Valencia, CA). Concen-

tration and integrity of the extracted RNA were assessed using a NanoDrop ND-1000 spectro-

photometer (Nanodrop Technologies, Wilmington, DE) and an Agilent 2100 Bioanalyzer

(Agilent Technologies, Forth Worth, TX). The RNA integrity number (RIN) for all samples

ranged from 8.8 to 9.1. The gene expression profiles were assessed from 6 replicates for each

tissue for each dietary group. cDNA libraries were prepared from the extracted RNA using the

Applied Biosystems (AB) SOLiDSAGE kit, according to AB’s instructions for the SOLiD 4 Sys-

tem. Gene expression profiling was performed by expression tag sequencing (35bp read

length) on an AB SOLiD 5500XL sequencer. Sequence reads were mapped to the mouse refer-

ence genome (RefSeq RNA, mm9) using SOLiDSAGE, and further quantified to generate

count data for each gene.

SageSeq data processing and analysis

For each tissue, genes with minimum tag count� 20 in at least one sample were retained for

further analysis, resulting in 14394, 14102, 13745 and 14244 genes for IWAT, BAT, liver, and

muscle, respectively. The expression profiling data has been deposited in NCBI under GEO

accession GSE92463. A principal components analysis was performed to identify sample outli-

ers usingPartek Genomics Suite, version 6.6. (Partek Inc., St. Louis, MO).

Pathway enrichment analysis for transcriptomic data

Pathway enrichment analysis was conducted via gene-set enrichment analysis (GSEA) and

over-representation analysis (ORA)-based approaches. For each tissue, GSEA was performed

on the DESeq2 normalized expression signals via a running-sum statistic procedure [8,9] to

determine the enrichment of a priori defined biological pathways from the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) repository [10], obtained from the Molecular Signature

Database (MSigDB)[11]. Statistical significance of pathway enrichment was ascertained by

permutation testing over size-matched random gene-sets. Adjustments for multiple testing

were performed via control of the FDR [12]. Overlap between significant pathways were visu-

alized via the EnrichmentMap Cytoscape plugin [13] using the following filters–pathway p-

value� 0.005, q-value� 0.1, overlap� 50%.

ORA was conducted using Qiagen’s Ingenuity Pathway Analysis (IPA) tool (Qiagen, USA)

on differentially expressed genes with p< 0.01 and absolute fold-change� 1.5-fold, for each

tissue. Statistical significance of over-represented pathways was ascertained via Fisher’s exact

test and adjusted for multiple testing via the FDR according to Benjamin-Hochberg [8].

Analysis of upstream activators

An exploratory analysis was carried out in IPA to predict candidate upstream regulators (e.g

transcription factors) whose activation/inhibition would be consistent with the observed

changes in gene expression patterns. Genes were assigned to upstream regulators based on a

curation of the literature in the Ingenuity Knowledge Base, and the expected effects of the reg-

ulator on its target gene’s expression was compared against the observed direction of gene

expression change in the study. An ORA (Fisher’s exact test) was performed to determine
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whether a regulator was significantly enriched for differential expression of its target genes.

The overall activation/inhibition status of the regulator was then inferred from the level of con-

sistency in the observed up- or down-regulation of its target genes. The strength of evidence

was statistically represented via a z-score, and regulators with an absolute z-score� 2 were

predicted to be ‘activated’ or ‘inhibited’, based on the sign of the z-score (http://pages.

ingenuity.com/rs/ingenuity/images/0812%20downstream_effects_analysis_whitepaper.pdf).

Metabolomic data analysis

A portion of IWAT, liver, and skeletal muscle from mice fed the respective control and MR

diets was sent to Metabolon (Durham, NC, USA) for metabolomics analysis using GC/MS and

UPLC-MS/MS analytical platforms. The quality control analysis included several technical

replicate samples that were created from a homogeneous pool containing a small amount of all

study samples. Instrument and process variability met Metabolon’s acceptance criteria and a

total of 258, 359 and 290 metabolites were measured for IWAT, liver, and muscle samples,

respectively (metabolites were not measured for BAT due to insufficient tissue amount).

Metabolite data on each sample was normalized to unit median and analyzed for significant

differences between the control and MR groups via Welch’s test [14]. The level of false posi-

tives was controlled by FDR [12]. Pathway enrichment analysis from metabolite data in each

tissue was conducted via the Metabolite Biological Role tool [15] by querying KEGG pathways

and using metabolites with a q-value� 20%, as input. Significantly enriched pathways were

visualized by the KEGG Mapper tool (http://www.genome.jp/kegg/mapper.html).

Results

Principal components analysis

A principal components analysis was performed to identify sample outliers and identified

three outlier samples for IWAT and one outlier sample each for BAT and muscle (Fig 1). After

excluding outliers, the remaining samples were subjected to data normalization and differen-

tial gene expression analysis using the DESeq2 tool. Prior to DESeq2 analysis, all signals < 1

were thresholded to 1. The significance of differential expression was ascertained by modeling

the mean-variance relationship through the negative binomial distribution, and by adjust-

ments for multiple testing via the false discovery rate (FDR) [8].

Analysis of the transcriptome

We first determined the extent of differential gene expression induced by MR treatment in

BAT, IWAT, liver, and skeletal muscle by comparing the proportion of total genes that were

significantly differentially expressed at different nominal p-value cutoffs. Results are shown as

a cumulative probability plot in Fig 2A. Larger proportions of differentially-expressed genes

were observed in liver and IWAT at all p-value cutoffs, finally reaching 7.9% and 7.5% of all

genes at p = 0.05, respectively. In contrast, the overall extent of differentially-expressed genes

was moderate in BAT (4.7%) and very low in muscle (0.9%). After controlling for false discov-

eries (FDR� 5%), there were no significantly differentially expressed genes in muscle. In Fig

2B, we compared the overlap among differentially-expressed genes (FDR� 5%) from IWAT,

liver, and BAT. The overlap among the lists was minimal, suggesting that the transcriptomic

responses to MR were tissue-specific. The top 10 genes showing the largest fold-changes in

MR vs. Control (FDR< 5% for all genes) are shown in Fig 2C (additional gene results are

shown in S1 Table). As reported previously [6], hepatic FGF21 was induced by dietary MR and

has been included in the liver-specific heatmap.
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To obtain a more comprehensive picture of the biological mechanisms affected by MR, we

carried out gene-set enrichment analysis (GSEA) of transcriptomic data from IWAT, liver,

BAT, and muscle. The top-scoring pathways in each tissue (FDR� 5% for IWAT and� 10%

for liver, BAT and muscle) are shown in Table 1. Notably, at a FDR cutoff of 10%, no pathways

were found to be significantly up-regulated by MR in liver or muscle, or significantly down-

regulated in BAT (complete results available in S2 Table). In IWAT, we observed a general up-

regulation of metabolic pathways and down-regulation of processes related to cytoskeletal

matrix organization, as indicated respectively by the ‘ECM receptor interactions’ and ‘fatty

acid metabolism’ gene-sets in Fig 3A. In contrast, the main biological signals from the MR

liver transcriptome implied a down-regulation of inflammation-related pathways, as illustrated

by the ‘complement cascade’ pathway. We then interrogated the extent of gene overlap among

the top regulated pathways in IWAT and liver (FDR� 5%). In Fig 3B, IWAT up- and down-

regulated pathways with� 50% overlap are shown, which clearly illustrates the compositional

redundancies of ‘Huntington’s disease’, ‘Parkinson’s disease’, and ‘Alzheimer’s disease’

Fig 1. Principal components analysis on SAGE data. PCA was performed on DESeq2 generated signals

from IWAT, liver, BAT and skeletal muscle after retaining genes with minimum tag count�20 (�18 for

muscle) in at least one sample in each tissue. The first two principal components are plotted, and the

proportion of variance explained by each component is indicated on the respective axis titles. Control samples

are shown in red and MR-treated samples are shown in blue. The circled samples represent outliers and were

removed from further analysis.

https://doi.org/10.1371/journal.pone.0177513.g001
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pathways with the more mechanistically informative ‘oxidative phosphorylation’ pathway. A

similar analysis on the liver-related significant pathways is presented in Fig 3C.

The gene expression changes following MR can be viewed as an integrated response, conse-

quent to the activation or inhibition of upstream gene-regulators, such as transcription factors.

To generate predictions on such activation or inhibition states of transcription factors that

would be consistent with the observed transcriptomic changes, we interrogated the liver and

IWAT transcriptome data via the Upstream Regulator analysis tool in Ingenuity Pathway

Analysis [16]. The liver transcriptome changes were found to be consistent with the predicted

regulation of several transcription factors including ATF4, NUPR1, PPARA, SP1, and NFE2L2

(predicted activation) and MLXIPL, CREBBP, SREBF2, HNF4A (predicted inhibition). Of

these, one with the strongest evidence for regulation was the nuclear factor erythroid2-like 2,

or NFE2L2 transcription factor (overlap p = 1.12e-13, z-score = 3.641). The expression profile

of NFE2L2 target genes (Fig 4A) demonstrates a majority of such genes to have highly signifi-

cant differences in mean expression between MR and Control samples (adjusted p� 0.05 for

18/21 genes) with moderate to large effect sizes (absolute fold-changes 2-fold or higher). Nota-

bly, the observed directions of gene expression changes were always consistent with predic-

tions based on the known regulation of these genes by NFE2L2; thus genes up-regulated by

NFE2L2 activation were up-regulated in MR (e.g. Psat1, Cyp4a14) while genes up-regulated

upon NFE2L2 inhibition were down-regulated (e.g. Ghr, Gna14). A similar upstream regulator

analysis in IWAT identified several transcription factors related to nutrient metabolism, and

further connected them into a broader gene regulatory network containing common gene

Fig 2. Overview of differential gene expression in tissues. (A) Cumulative probability plot of differentially

expressed genes in IWAT (green), liver (blue), BAT (red) and skeletal muscle (brown), depicting the fraction of

all genes (y-axis) satisfying the various nominal p-value cutoffs (x-axis). Only genes with nominal p-value

�0.05 are shown. (B) Overlap analysis of the differentially expressed genes, with adjusted p-value�0.05, in

IWAT, liver and BAT (no genes identified at this threshold in skeletal muscle). (C) Heatmaps depicting

expression patterns of top 10 differentially expressed genes (5 up-regulated and 5 down-regulated) across

methionine-restricted and Control samples in IWAT, liver and BAT. Genes are selected based on the

magnitude of fold-changes, and all genes have an adjusted p-value�0.05. Expression values are row-

normalized for each gene with shades of blue indicating lower expression and red indicating higher

expression.

https://doi.org/10.1371/journal.pone.0177513.g002
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targets and biological processes associated with such genes. The most notable IWAT-specific

transcription factor-driven mechanistic networks is illustrated in Fig 4B, where several pre-

dicted to be activated transcription factors (PPARGC1B, PPARA, PPARGC1A, ESRRA,

Table 1. Key transcriptionally affected KEGG pathways in MR treated tissues.

NAME SIZE NES NOM p-val FDR q-val Direction Tissue

TYPE_I_DIABETES_MELLITUS 20 -1.860 0.000 0.040 Dn_MR Liver

COMPLEMENT_AND_COAGULATION_CASCADES 60 -1.872 0.002 0.070 Dn_MR Liver

PROPANOATE_METABOLISM 28 -1.717 0.010 0.078 Dn_MR Liver

GRAFT_VERSUS_HOST_DISEASE 17 -1.751 0.002 0.091 Dn_MR Liver

AUTOIMMUNE_THYROID_DISEASE 16 -1.721 0.006 0.095 Dn_MR Liver

STEROID_BIOSYNTHESIS 15 2.003 0.000 0.016 Up_MR BAT

ECM_RECEPTOR_INTERACTION 70 -2.310 0.000 0.000 Dn_MR Muscle

PROPANOATE_METABOLISM 29 -1.861 0.002 0.059 Dn_MR Muscle

FOCAL_ADHESION 171 -2.237 0.000 0.000 Dn_MR IWAT

ECM_RECEPTOR_INTERACTION 63 -2.188 0.000 0.000 Dn_MR IWAT

BASAL_CELL_CARCINOMA 39 -2.057 0.000 0.001 Dn_MR IWAT

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 161 -1.972 0.000 0.002 Dn_MR IWAT

TIGHT_JUNCTION 101 -1.732 0.000 0.040 Dn_MR IWAT

MELANOMA 54 -1.734 0.002 0.045 Dn_MR IWAT

HYPERTROPHIC_CARDIOMYOPATHY_HCM 63 -1.743 0.004 0.048 Dn_MR IWAT

REGULATION_OF_ACTIN_CYTOSKELETON 167 -1.704 0.000 0.050 Dn_MR IWAT

OXIDATIVE_PHOSPHORYLATION 95 3.000 0.000 0.000 Up_MR IWAT

PARKINSONS_DISEASE 92 2.934 0.000 0.000 Up_MR IWAT

CITRATE_CYCLE_TCA_CYCLE 28 2.761 0.000 0.000 Up_MR IWAT

HUNTINGTONS_DISEASE 143 2.676 0.000 0.000 Up_MR IWAT

PYRUVATE_METABOLISM 34 2.545 0.000 0.000 Up_MR IWAT

PROPANOATE_METABOLISM 29 2.508 0.000 0.000 Up_MR IWAT

ALZHEIMERS_DISEASE 130 2.448 0.000 0.000 Up_MR IWAT

GLYCOLYSIS_GLUCONEOGENESIS 49 2.348 0.000 0.000 Up_MR IWAT

PEROXISOME 75 2.263 0.000 0.000 Up_MR IWAT

VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 41 2.244 0.000 0.000 Up_MR IWAT

FATTY_ACID_METABOLISM 36 2.220 0.000 0.000 Up_MR IWAT

PENTOSE_PHOSPHATE_PATHWAY 22 2.137 0.000 0.000 Up_MR IWAT

AMINOACYL_TRNA_BIOSYNTHESIS 40 2.036 0.000 0.001 Up_MR IWAT

BUTANOATE_METABOLISM 28 1.972 0.000 0.002 Up_MR IWAT

FRUCTOSE_AND_MANNOSE_METABOLISM 33 1.956 0.000 0.002 Up_MR IWAT

CARDIAC_MUSCLE_CONTRACTION 52 1.841 0.000 0.007 Up_MR IWAT

TERPENOID_BACKBONE_BIOSYNTHESIS 13 1.781 0.011 0.011 Up_MR IWAT

LIMONENE_AND_PINENE_DEGRADATION 10 1.736 0.014 0.017 Up_MR IWAT

PPAR_SIGNALING_PATHWAY 59 1.725 0.005 0.018 Up_MR IWAT

BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS 19 1.719 0.000 0.019 Up_MR IWAT

TRYPTOPHAN_METABOLISM 32 1.657 0.015 0.032 Up_MR IWAT

GLYCEROPHOSPHOLIPID_METABOLISM 60 1.617 0.004 0.043 Up_MR IWAT

Pathways were analyzed for enrichment in differentially expressed genes by GSEA method. Pathways with FDR� 0.05 for IWAT and� 0.1 for liver, BAT,

muscle are shown. Col 1, name of KEGG pathway; col 2, pathway size (number of genes in pathway); col 3, Normalized Enrichment Score, a measure of

pathway enrichment adjusted for pathway size; col 4, nominal p-value for pathway significance; col 5, pathway false discovery rate (expressed as q-value);

col 6, direction of pathway enrichment in MR compared to Control; col 7, tissue of analysis.

https://doi.org/10.1371/journal.pone.0177513.t001
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KLF15 and NR4A3), were interconnected through their regulation of a common repertoire of

genes (middle layer of the network). The transcription factors and a subset of their target

genes were further linked to downstream biological functions, based on mining of the IPA

Knowledge Base, allowing for an exploration of the possible functional consequences of regula-

tor-driven transcriptomic changes. Additional details of the upstream regulator analysis are

provided in S3 Table.

Analysis of the metabolome

Our strategy for the analysis of metabolomics data mirrored the approach taken for transcrip-

tome analysis. First, we performed univariate statistical analysis to identify metabolites displaying

Fig 3. Pathway enrichment analysis based on transcriptomic response to MR. (A) Examples of top-

scoring KEGG pathways in IWAT and liver, identified by gene-set enrichment analysis (GSEA). The

heatmaps show expression patterns for the genes contributing to core enrichment of ‘Fatty acid metabolism’

pathway in IWAT and ‘Complement cascade’ pathway in liver (blue and red indicated lower and higher

expression levels, respectively. (B) Gene overlap among top-scoring pathways in IWAT. Up-regulated and

down-regulated pathways in MR are shown in red and blue respectively. Pathways sharing >50% of their

genes are connected via a green edge. (C) Overlap among top-scoring pathways based on gene expression

data in liver. GSEA significant pathways (FDR<0.1) were analyzed via the Enrichment Map application in

Cytoscape (v3.4.0) for identifying pathways with >50% overlap in their component genes. Pathways

upregulated in MR-treated liver samples are shown in red and downregulated pathways are shown in blue.

https://doi.org/10.1371/journal.pone.0177513.g003
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significant responses to MR in IWAT, liver, and muscle after controlling for false discoveries.

The number of significantly altered metabolites (FDR� 5%) in each tissue and their inter-tissue

overlap are depicted in Fig 5A. The largest number of metabolite changes were observed in

IWAT (94 metabolites), followed by liver (60 metabolites) and then muscle with very few

changes (7 metabolites). A total of 16 metabolites were identified as significantly altered in both

Fig 4. Prediction of upstream regulators’ involvement in the transcriptomic response. (A) Response of

NFE2L2 target genes in liver from MR-fed mice, compared to Control. The list of NFE2L2 target genes was

obtained from the Ingenuity Knowledge Base and their fold-change (MR vs. Control, log2 scale) is plotted on the

y-axis. Statistical significance of differential expression is indicated for each gene—*, p<0.05; **, p<0.005; ***,

p<0.0005. (B) Predicted transcription factor (TF) network in MR-treated IWAT. Several transcription factors with

predicted activation from IPA analysis are integrated into a network based on overlapping target genes, and the

effect of these changes on downstream processes are also modeled. Interactions between TF:target genes

and between genes: downstream processes are shown as solid or dashed lines, respectively. Genes (middle

panel) are color coded based on their observed upregulation or downregulation in MR vs. Control samples.

Upstream regulators and downstream processes are colored based on their activation or inhibition status (red

and blue, respectively). Edges representing activating interactions are shown in red, inhibitory interactions in

blue, unknown effects in gray, and findings inconsistent with literature in yellow.

https://doi.org/10.1371/journal.pone.0177513.g004
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IWAT and liver, but the overall overlap across all 3 tissues was negligible. The top 10 altered

metabolites in each tissue (based on fold-changes) are shown in Fig 5B (the full list of metabolite

expression in each tissue is presented in S4 Table).

We next sought to identify the KEGG metabolic pathways that were enriched for signifi-

cantly differentially expressed metabolites in IWAT and liver. Results are summarized in

Table 2 for pathways that were significant at the 5% FDR level. The largest number of signifi-

cant pathways was observed in IWAT and predominantly involved pathways related to fatty

acid and amino acid metabolism (e.g. biosynthesis of unsaturated fatty acids, FDR = 4.5e-09;

cysteine and methionine metabolism, FDR = 9.5e-04). In liver, pathways related to ‘primary bile
acid biosynthesis,’ ‘glycine-serine-threonine metabolism,’ and ‘ABC transporters’ displayed the

most significant enrichment (FDR� 0.0002).

In addition to the above KEGG-based pathway analysis, we sought to compare the relative

expression of metabolites in IWAT and liver that were classified by their compound classes.

This analysis is distinct from that of the more mechanism-oriented compound lists assembled

in KEGG. Analysis by compound class showed a strong difference in IWAT and liver expres-

sion for metabolites belonging to the long-chain fatty acid (LCFA), polyunsaturated fatty acid

(PUFA) and gamma-glutamyl amino acid (GGAA) classes (Table 3). More specifically, all

reported LCFA species were found to be significantly elevated in IWAT (p< 0.05), whereas

most of the liver LCFA were downregulated by MR, with only 4/15 species reaching a

Fig 5. Overview of metabolite expression in tissues. (A) Overlap analysis of the differentially expressed

metabolites, with adjusted p-value�0.05, in IWAT, liver and muscle. (B) Heatmaps depicting expression

patterns of top differentially expressed metabolites across MR and Control samples in IWAT, liver and

muscle. Metabolites are selected based on the magnitude of fold-changes, and all metabolites have an

adjusted p-value�0.05 (for muscle, only 7 metabolites met the adjusted p-value criterion). Expression values

are row-normalized for each metabolite with shades of blue indicating lower expression and red indicating

higher expression.

https://doi.org/10.1371/journal.pone.0177513.g005

Genomic and metabolomic analysis of responses to methionine restriction

PLOS ONE | https://doi.org/10.1371/journal.pone.0177513 May 16, 2017 10 / 22

https://doi.org/10.1371/journal.pone.0177513.g005
https://doi.org/10.1371/journal.pone.0177513


significance level of p< 0.05. In a similar manner, the majority of PUFAs trended towards up-

regulation in IWAT from MR-fed mice (p< 0.1), whereas PUFAs from MR livers were largely

downregulated with no significant differences observed (p> 0.1). Conversely, large, statisti-

cally significant changes in gamma-glutamyl amino acids (GGAAs) were only observed in MR

livers, whereas only 1/7 GGAAs could be detected in IWAT.

Integrated analysis of the transcriptome and metabolome

To generate additional insights from a combination of the transcriptome and the metabolome

data, we carried out integrative analysis by focusing on genes and metabolites that were

Table 2. Key metabolically regulated KEGG pathways in MR treated tissues.

KEGG pathways IWAT_neg log FDR Liver_neg log FDR Muscle_neg log FDR

Metabolic pathways 11.87 5.17 2.68

ABC transporters 8.87 3.34 3.45

Aminoacyl-tRNA biosynthesis 8.87 2.98 2.79

Biosynthesis of unsaturated fatty acids 8.34 1.10

beta-Alanine metabolism 4.92

Glycine, serine and threonine metabolism 2.06 3.68 4.47

Pantothenate and CoA biosynthesis 4.46 2.90 1.61

Purine metabolism 4.46

Glutathione metabolism 4.31 2.37

Primary bile acid biosynthesis 1.68 3.68

Arginine and proline metabolism 3.66 2.01 0.84

Pyrimidine metabolism 3.57 3.34

Cyanoamino acid metabolism 3.20

Taurine and hypotaurine metabolism 1.68 3.16

Cysteine and methionine metabolism 3.02 1.10

Alanine, aspartate, glutamate metabolism 2.99

Histidine metabolism 2.29

Fatty acid biosynthesis 2.06

Sulfur metabolism 1.80 1.89

Butanoate metabolism 1.86

Amino sugar, nucleotide sugar metabolism 1.80

Renal cell carcinoma 1.76

Glycerophospholipid metabolism 1.68

Lysine degradation 1.68

Riboflavin metabolism 1.68

Lysosome 1.59

Starch and sucrose metabolism 1.58

Parkinson’s disease 1.50

Linoleic acid metabolism 1.42

Nitrogen metabolism 1.42

Galactose metabolism 1.38

Valine, leucine and isoleucine biosynthesis 1.34

Oxidative phosphorylation 1.31

Pathways were analyzed for enrichment of differentially expressed metabolites upon MR exposure. Col 1, name of pathway; col 2–4, statistical evidence for

pathway enrichment in IWAT, liver and muscle respectively (negative logarithm of the FDR). Only pathways containing�5 metabolites, and with a FDR<0.1

in at least one tissue are shown.

https://doi.org/10.1371/journal.pone.0177513.t002
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Table 3. Comparison of metabolite expression in IWAT and liver, based on metabolite class.

Compound Compound Class Ratio WT MR vs Con Liver Ratio WT MR vs Con IWAT

10-heptadecenoate (17:1n7) LCFA -1.85 1.57

10-nonadecenoate (19:1n9) LCFA -1.59 2.24

arachidate (20:0) LCFA -1.22 3.02

cis-vaccenate (18:1n7) LCFA -1.96 1.67

eicosenoate (20:1n9 or 11) LCFA -2.08 2.05

erucate (22:1n9) LCFA -2.38 2.21

margarate (17:0) LCFA -1.16 1.61

myristate (14:0) LCFA -1.69 1.99

myristoleate (14:1n5) LCFA -1.43 1.73

nonadecanoate (19:0) LCFA -1.25 1.88

oleate (18:1n9) LCFA 1.08 2.29

palmitate (16:0) LCFA -1.35 1.49

palmitoleate (16:1n7) LCFA -2.08 1.43

pentadecanoate (15:0) LCFA 1.22 1.93

stearate (18:0) LCFA -1.14 1.79

adrenate (22:4n6) PUFA -1.45 1.19

arachidonate (20:4n6) PUFA -1.19 1.51

dihomo-linoleate (20:2n6) PUFA -1.43 2.13

dihomo-linolenate (20:3n3 or n6) PUFA -1.39 1.25

docosadienoate (22:2n6) PUFA -1.64 2.17

docosahexaenoate (DHA; 22:6n3) PUFA -1.04 1.42

docosapentaenoate (n3 DPA; 22:5n3) PUFA 1.00 1.03

docosapentaenoate (n6 DPA; 22:5n6) PUFA 1.11 1.44

eicosapentaenoate (EPA; 20:5n3) PUFA -1.59 0.92

linoleate (18:2n6) PUFA -1.14 1.64

linolenate (18:3n3 or 6) PUFA -1.09 1.58

stearidonate (18:4n3) PUFA 1.16 ND

gamma-glutamylglycine GGAA 13.10 ND

gamma-glutamylvaline GGAA 7.37 ND

gamma-glutamylleucine GGAA 7.03 1.54

gamma-glutamylthreonine* GGAA 6.79 ND

gamma-glutamylisoleucine* GGAA 4.24 ND

gamma-glutamylphenylalanine GGAA 1.43 ND

gamma-glutamylglutamate GGAA 1.26 ND

5-oxoproline Sulfur metabolite 2.21 1.24

cysteine Sulfur metabolite 2.39 1.48

cysteine-glutathione disulfide Sulfur metabolite 3.01 1.36

cysteinylglycine Sulfur metabolite -1.29 ND

glutathione, oxidized (GSSG) Sulfur metabolite -1.16 1.47

glutathione, reduced (GSH) Sulfur metabolite -3.84 2.41

homocysteine Sulfur metabolite 5.53 ND

hypotaurine Sulfur metabolite -2.94 -1.72

methionine Sulfur metabolite 1.38 1.22

N-acetylmethionine Sulfur metabolite 1.34 1.5

ophthalmate Sulfur metabolite 16.25 1.46

S-adenosylhomocysteine (SAH) Sulfur metabolite 1.15 1.82

S-adenosylmethionine (SAM) Sulfur metabolite 1.03 ND

(Continued )
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differentially regulated by MR (FDR� 0.2). By jointly considering the transcriptomic and

metabolomics data, we observed evidence of upregulation in highly interconnected biological

processes involving mitochondrial fatty acid transport, fatty acid beta-oxidation, tricarboxylic

acid cycle, and electron transport/oxidative phosphorylation (Fig 6 and Table 4). Similarly, an

important finding from the joint transcriptome-metabolome analysis attributable to the MR

diet was a significant liver-specific alteration in sulfur amino acid metabolite levels (Table 3).

An integrated view of several metabolic processes involving sulfur-containing amino acid

metabolites affected by dietary MR is depicted in Fig 7A and 7B and Fig 8.

Discussion

This study presents the first extensive characterization and analysis of integrated molecular

responses to dietary methionine restriction in key metabolic tissues in mice. A distinguishing

aspect of our study is the generation of detailed transcriptomic and metabolomic signatures

from the same set of samples, followed by integrative bioinformatic analysis to identify biologi-

cal mechanisms that are uniquely or commonly identified by each molecular phenotype. The

Table 3. (Continued)

Compound Compound Class Ratio WT MR vs Con Liver Ratio WT MR vs Con IWAT

S-methylcysteine Sulfur metabolite 1.06 ND

S-methylglutathione Sulfur metabolite -1.51 ND

taurine Sulfur metabolite -9.09 -1.07

Col 1, compound name; col 2, compound class; col 3, ratio of average expression in MR vs Control liver samples; col 4, ratio of average expression in MR

vs Control IWAT samples. Expression ratios are shaded based on their statistical significance–p<0.05, dark gray; 0.05<p<0.1, light gray; p>0.1, unshaded.

LCFA, long-chain fatty acid; PUFA, polyunsaturated fatty acid; GGAA, gamma-glutamyl amino acid.

https://doi.org/10.1371/journal.pone.0177513.t003

Fig 6. Integrated analysis of metabolite and transcript expression for pathways related to ‘fatty acid

transport and metabolism, tricarboxylic acid cycle, and oxidative phosphorylation’ in MR IWAT

compared to controls. The relationship between the 3 pathways are shown and genes/metabolites involved

in each pathway are indicated either by their original names or by numeric and alphabetic proxies. Genes and

metabolites that are significantly upregulated in MR IWAT compared to Control are shown in pink. The full

names of all genes/metabolites, their fold-changes and estimates of statistical significance are detailed in

Table 4.

https://doi.org/10.1371/journal.pone.0177513.g006
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findings from an earlier study in rats [17] are consistent with many aspects of the current

study, although there are methodological, analytical, and species differences between the stud-

ies. One key difference is that tissues were collected from non-fasted rats [17], while tissues

used in the present study were from fasted mice. This may explain the differences in hepatic

Table 4. Gene and metabolite changes in fatty acid transport and metabolism, tricarboxylic acid cycle and oxidative phosphorylation pathways in

MR-treated adipose tissue. The gene and metabolite identifiers used in Fig 6 are mapped to their real descriptions in this table.

GENES METABOLITES

ID in Fig 6 Name Fold-change FDR (q value) ID in Fig 6 Name Fold-change FDR (q value)

Fatty acid transport and metabolism pathway

1 Cpt1b 5.11 0.02 Fatty acyl CoA myristate (14:0) 1.99 0.01

2 Slc25a20

(Cat)

2.89 1.30E-03 palmitate (16:0) 1.49 0.01

3 Cpt2 2.48 0.11 stearate (18:0) 1.79 8.00E-03

4 Acadl 2.45 0.01 oleate (18:1n9) 2.29 7.00E-03

Acadvl 3.29 7.89E-05 myristate (14:0) 1.99 0.01

5 Hadha 3.20 3.7E-03

6 Hadha 3.20 3.7E-03

7 Hadhb 3.34 2.8E-03

8 Acot2 2.35 0.04

Acot11 4.92 1.09E-09

Tricarboxylic acid cycle pathway

A Cs 1.94 0.06 Citrate Citrate 2.14 0.16

B Aco2 2.35 0.04 succinate succinate 1 0.27

C Idh3a 2.38 0.01 fumarate fumarate 2.05 0.14

D Ogdh 2.65 1.5E-03 malate malate 2.02 0.02

E Sucla2 2.20 0.01 FAD FAD 2.38 0.02

F Sdha 1.88 0.07

G Fh1 2.43 0.01

H Mdh2 1.47 0.63

I Acss1 2.90 1.61E-03

Oxidative phosphorylation pathway

NDUFA1 Ndufa1 2.52 0.06 FMN FMN 1.17 0.16

NDUFA10 Ndufa10 2.17 0.06 Succinate Succinate 1 0.27

NDUFAB1 Ndufab1 2.50 0.03 Fumarate Fumarate 2.05 0.14

NDUFB9 Ndufb9 1.89 0.07 Pi Pi 1.59 0.02

NDUFC1 Ndufc1 1.98 0.04

NDUFV1 Ndufv1 2.60 8.00E-03

SDHA Sdha 1.87 0.07

UQCRFS1 Uqcrfs1 2.04 0.03

UQCRC1 Uqcrc1 2.41 5.00E-03

UQCRC2 Uqcrc2 2.02 0.04

UQCR11 Uqcr11 2.16 0.03

COX4 Cox4i1 2.07 0.03

COX5A Cox5a 2.44 0.02

COX7A Cox7a1 4.17 2.79E-05

COX8 Cox8b 4.16 2.79E-05

COX17 Cox17 1.99 0.04

ATP5A Atp5a 1.78 0.14

ATP5B Atp5b 2.30 0.03

ATP5D Atp5d 1.89 0.08

PPA2 PPA2 2.05 0.03

UCP1 Ucp1 7.5 5.07E-07

https://doi.org/10.1371/journal.pone.0177513.t004
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methionine and cysteine levels between the studies, where we found small but significant

increases in methionine and cysteine levels. The study in rats reported decreases in both

metabolites in the liver [17]. We speculate that compensatory mechanisms in the liver were

mobilized by 4h of fasting to compensate for the reduced intake of methionine and cysteine in

the MR diet. In contrast, evidence of enhanced γ-glutamyl amino acid transport was evident in

both rat and mouse liver (Fig 7B), indicating induction of a common adaptive pathway to

enhance glutathione synthesis in both species. Transcriptional similarities were also evident in

liver and IWAT between the studies, where reduction in lipogenic capacity (liver) and

enhanced oxidative activity (IWAT) were evident in both species.

Transcriptomic and metabolomic changes in IWAT

Of the four tissues tested, we observe the maximal MR-dependent responses in IWAT, fol-

lowed by liver, for both transcriptomic and metabolomic data. An inspection of differen-

tially expressed genes in IWAT showed evidence for upregulation of fatty acid metabolism

genes (Gyk, Elovl3), as well as genes (e.g., Ucp1) suggestive of remodeling of adipocytes to a

beige phenotype in response to MR [18]. Interestingly, one of the top MR-downregulated

genes in IWAT was leptin, most likely a reflection of MR-dependent activation of sympa-

thetic outflow to IWAT in MR-treated animals [7]. At the pathway level, gene-sets related to

‘oxidative phosphorylation’, ‘citrate acid cycle’, or ‘PPAR signaling’ showed strong evidence

of transcriptional activation in IWAT that could be further integrated into broader gene

regulatory networks when the gene and disease targets of several upregulated transcription

factors (PPARGC1A/B, PPARA, ESRRA, NR4A3, etc.) were combined. MR-exposed tissues

Fig 7. Analysis of sulfur-containing metabolites in MR treated liver. (A) Relative expression of metabolites

measured on the methionine to cysteine transmethylation and transsulfuration pathways and (B) relative

expression of gamma-glutamyl amino acids. * in (A) and (B) indicate difference between CON and MR at

p < 0.05. (C).

https://doi.org/10.1371/journal.pone.0177513.g007
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were thus predicted to have increased activities for mitochondrial respiration and thermo-

genesis and reduced activities for lipid accumulation (represented as ‘hepatic steatosis’) and

intensity of carbohydrate usage (‘hypoglycemia’), probably due to better fat mobilization

and oxidation (Fig 4B).

Metabolomics analysis further demonstrated a concerted up-regulation of the class of long-

chain fatty acids in MR-treated IWAT, along with over-representation of significantly upregu-

lated metabolites in pathways related to fatty acid metabolism. An integrative analysis of the

transcriptomic and metabolomic changes in IWAT of MR mice (considering molecules with

FDR� 0.2) confirmed and highlighted an activation cascade involving three connected mech-

anisms viz. fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphor-

ylation (Fig 6). Three genes encoding proteins required for the transport of fatty acid from the

cytosol to the mitochondrial matrix (Cpt1, Slc25a20, and Cpt2) were upregulated, as were fatty

acyl intermediates of varying chain lengths. Genes encoding enzymes required for the subse-

quent process of fatty acid chain shortening via beta oxidation were also upregulated, includ-

ing Acadl, Acadvl, Hadha, and Hadhb. We further observed significant upregulation of genes

encoding the mitochondrial proteins Acot2 and Acot11. These proteins modulate fatty acid

oxidation by hydrolyzing long-chain fatty acyl-CoA into free fatty acid and CoASH. While the

breakdown of fatty acyl-CoA into free fatty acids (instead of its final degradation into acetyl

CoA) may seem counter-intuitive, a recent report [19] noted that overexpression of Acot2
leads to enhanced mitochondrial fatty acid oxidation, possibly via efflux of free fatty acids

from the mitochondria followed by their activation and re-entry for beta oxidation (an efflux-

Fig 8. The effect of dietary MR on levels of key molecules and metabolites in hepatic sulfur amino acid

metabolism. The changes in expression levels of key molecules in methionine, cysteine and glutathione

metabolism are shown. Experimentally measured metabolites are shown as solid boxes, and experimentally

measured genes are shown in bold. Dashed boxes refer to metabolites not measured. Upregulated metabolites

are colored in red and downregulated metabolites are colored in deep blue (p < 0.05).

https://doi.org/10.1371/journal.pone.0177513.g008
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activation-entry circuit). This process could effectively prevent the build-up of long chain fatty

acyl-CoA esters inside the mitochondria where they are known to inhibit fatty acid oxidation

via substrate overload [20, 21]. Subsequent to fatty acid oxidation, one of the metabolic fates of

the derived acetyl CoA is its further utilization in the tricarboxylic acid cycle.

We observed statistically significant increases in three TCA cycle intermediates (e.g., citrate,

fumarate and malate). Further, with the sole exception of malate dehydrogenase, genes encod-

ing other key enzymes of the TCA cycle were significantly upregulated, suggesting an overall

expansion of TCA cycle capacity. Consistent with this scenario, we further observed significant

upregulation of several components in the next linked process of electron transport/oxidative

phosphorylation. Expression of several genes in each of the functional protein complexes

(Complex I-V) were increased in IWAT by MR. Among the measured metabolites, we also

observed increases in flavin mononucleotide (a part of respiratory chain complex I), fumarate

(complex II) and inorganic phosphate (component for the generation of ATP in complex V).

Considered together, this analysis is consistent with the previously documented remodeling

of IWAT that occurs after dietary MR [22]. The details provided here provide new insights

into how the morphological and molecular changes expand oxidative capacity of the tissue.

The MR-induced remodeling of WAT is dependent on a MR-dependent increase in sympa-

thetic nervous system outflow to adipose tissue [7, 23]. We have recently shown that both the

MR-dependent remodeling of IWAT and increase in energy expenditure are dependent on

transcriptional activation and release of hepatic FGF21 by the diet [1, 4].

Transcriptomic and metabolomic changes in liver

In contrast to the MR-driven molecular responses in IWAT, which broadly affected processes

related to fuel metabolism and energy production, the consequences of MR diet on the liver

transcriptome were centered on the down-regulation of pro-inflammatory signaling, and up-

regulation of anti-oxidant responses. Thus, we observed a significant downregulation of

KEGG pathways related to inflammatory signaling (‘complement and coagulation cascades’,
‘graft vs host disease’, etc.), whereas there was a statistically significant enrichment for genes

containing the antioxidant response elements (ARE) that are activated by the transcription fac-

tor, NFE2L2 [1]. The activation of ARE-regulated genes is a well-known contributor to the reg-

ulation of cellular antioxidant defense systems, and a growing body of evidence suggests that

modulation of these cytoprotective genes have profound effects on immune and inflammatory

signaling [24, 25]. In the present case, the induction of ARE-regulated genes may be in

response to the reduction in hepatic glutathione produced by the MR diet [6], and geared

toward reversing the shortfall by enhancing glutathione synthesis [1]. The observed reduction

in pro-inflammatory pathway gene expression in the liver could also be a consequence of the

antioxidant response, driven by the activation of NFE2L2 responsive genes, as demonstrated

in Fig 4A.

Metabolomic analysis showed the top MR-downregulated liver metabolites to largely con-

sist of taurine-related molecules, whereas several cholate derivatives were up-regulated. Meta-

bolomic analysis further supported the potential for a pro-oxidant state in the MR-treated

liver, as evidenced by large reductions in the master anti-oxidant molecule glutathione [26],

coupled with concomitant increases in opthalmate, a presumed oxidative-stress marker

derived from 2-aminobutyrate and glutamate [27, 28] which were both increased in liver (Fig

7A and 7B, Fig 8, Table 3). Based on these observations, we envisage a scenario where reduc-

tions in methionine availability from dietary sources results in re-alignment of molecular pro-

cesses to maintain hepatic methionine levels, at the expense of cysteine. Indeed, previous

studies have demonstrated that the flux of compounds through the pathways highlighted in
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Fig 8 is largely determined by the availability of sulfur amino acids. Specifically, reactions

involving enzymes with lower Michaelis constant (Km) are favored under scarce substrate

availability. Under conditions of MR, re-methylation of methionine via homocysteine will

therefore be favored over transsulfuration, as the Km of Hcy transferase enzymes is two orders

of magnitude lower than for cystathione synthase and cystathione gamma-lyase, which leads

to the conservation of methionine at the cost of glutathione and taurine. Similarly, the Km for

L-cysteine tRNA synthetase (necessary for incorporation of cysteine into protein) is ten times

less than that for gamma-glutamyl cysteine synthase (rate limiting step for GSH synthesis) or

cysteine dioxygenase (generation of precursor for sulfate and taurine) and therefore, under

conditions of limited cysteine availability, protein synthesis will be maintained and synthesis

of sulfate, taurine, and GSH diminished [29, 30]. Consistent with this scenario, we observed

significantly reduced levels of both taurine and glutathione (Table 3), whereas levels of methio-

nine were slightly increased in MR-treated liver.

There were also substantial increases in levels of gamma-glutamylated amino acids, GGAA as

well as their cyclized derivative, 5-oxoproline [31] and free amino acids, perhaps highlighting the

importance of protein synthesis needs. Decyclization of 5-oxoproline releases glutamate, which

instead of replenishing glutathione levels via ligation to cysteine, can react instead with increased

levels of 2-aminobutyrate, leading to gamma glutamyl-2-amino butyrate. This intermediate fur-

ther condenses with glycine to generate ophthalmic acid, via glutathione synthase. The generation

of ophthalmate, at the expense of glutathione, probably reflects the consequences of increased

2-aminobutyrate and glutamate availability in MR-treated liver (Fig 8). In earlier studies, the shift

from glutathione to ophthalmate production was observed under conditions of oxidative stress

e.g. during paracetamol-induced hepatotoxicity [28], leading to the suggestion that ophthalmate

could be a novel biomarker of hepatic glutathione depletion [32]. According to this scenario, the

very large increase in ophthalmate levels (>35-fold), coupled to a significant lowering of GSH

(~4-fold reduction, from 250 nmol/g) that was observed in the current study would be consistent

with a net pro-oxidant environment in MR-treated liver. In contrast to the liver, an adequate

GSH driven anti-oxidant response appears intact in MR IWAT where levels of both reduced and

oxidized forms of glutathione are increased and no statistically significant induction of ophthal-

mate is noted (Table 3). Faced with a pro-oxidant milieu, the MR liver is predicted to mobilize

anti-oxidant responses, perhaps via activation of the NFE2L2 transcription factor, as predicted by

IPA analysis of the transcriptome (Fig 4A). In response to oxidative stress, NFE2L2 is known to

undergo nuclear translocation and bind to the antioxidant response elements (AREs) of a num-

ber of anti-oxidant genes, resulting in their transcriptional activation [33]. Thus, the observed

transcriptional induction of the 21 NFE2L2 target genes strongly suggests the activation of an

anti-oxidant program in MR liver. Upregulation of the anti-oxidant defense response may also

help explain the observed reduction in hepatic pro-inflammatory signaling pathways observed in

our study; this is consistent with earlier reports linking anti-oxidant responses to amelioration of

hepatic pro-inflammatory signaling [34, 35]. Together, our transcriptional and metabolomics

data indicate that the liver preserves methionine at the expense of cysteine, glutathione, and tau-

rine in mice consuming the MR diet. The evidence suggests that the perception of a glutathione

reduction may be the key signal that activates the NFE2L2 transcriptional program that increases

a cadre of genes that function to correct the reduction in hepatic glutathione [1]. These findings

point to cysteine and its downstream product, glutathione, as key signaling molecules linking die-

tary MR to its metabolic phenotype. This conclusion is supported by recent findings that addition

of small amounts of cysteine to the MR diet reverses the reduction of liver glutathione, reverses

the activation ARE genes, and reverses the induction of hepatic FGF21 and most components of

the MR phenotype [1]. The present studies extend our understanding of these processes by
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providing new insights into how restricting dietary methionine affects sulfur amino acid metabo-

lism in the liver.
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tor); column 2, changes in expression of regulator upon methionine restriction, if any; column

3, type of regulator; column 4, predicted activation state of regulator (activation or inhibition);
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3, nominal significance of differential expression; column 4, adjusted p-values; column 5, bio-

chemical pathway; column 6, tissue examined.
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