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Abstract

Basic knowledge about the thoracic spinal flexibility is limited and to the authors’ knowledge,

no in vitro studies have examined the flexibility of every thoracic spinal segment under stan-

dardized experimental conditions using pure moments. In our in vitro study, 68 human tho-

racic functional spinal units including the costovertebral joints (at least n = 6 functional spinal

units per segment from T1-T2 to T11-T12) were loaded with pure moments of ±7.5 Nm in

flexion/extension, lateral bending, and axial rotation in a custom-built spine tester to analyze

range of motion (ROM) and neutral zone (NZ). ROM and NZ showed symmetric motion

behavior in all loading planes. In each loading direction, the segment T1-T2 exhibited the

highest ROM. In flexion/extension, the whole thoracic region, with exception of T1-T2 (14˚),

had an average ROM between 6˚ and 8˚. In lateral bending, the upper thoracic region (T1-

T7) was, with an average ROM between 10˚ and 12˚, more flexible than the lower thoracic

region (T7-T12) with an average ROM between 8˚ and 9˚. In axial rotation, the thoracic

region offered the highest overall flexibility with an average ROM between 10˚ and 12˚ in the

upper and middle thoracic spine (T1-T10) and between 7˚ and 8˚ in the lower thoracic spine

(T10-T12), while a trend of continuous decrease of ROM could be observed in the lower tho-

racic region (T7-T12). Comparing these ROM values with those in literature, they agree that

ROM is lowest in flexion/extension and highest in axial rotation, as well as decreasing in the

lower segments in axial rotation. Differences were found in flexion/extension and lateral

bending in the lower segments, where, in contrast to the literature, no increase of the ROM

from superior to inferior segments was found. The data of this in vitro study could be used

for the validation of numerical models and the design of further in vitro studies of the thoracic

spine without the rib cage, the verification of animal models, as well as the interpretation of

already published human in vitro data.

Introduction

Few studies have focused on the biomechanics of the thoracic spine, because prior research

mainly focused on the lumbar [1–4] and the cervical spine [5–7]. This is due to the fact that

chronic degenerative diseases of the thoracic spine are reported to have a lower incidence and

therefore seem to be clinically of lower importance [8]. However, pathologies of the thoracic
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spine should not be neglected. The overall number of vertebral fractures, for instance, is, in

absolute terms, just slightly higher in the lumbar spine than in the thoracic spine [9]. Further-

more, the growing number of traffic and sports accidents lead to an increasing number of seri-

ous injuries, particularly in the lower thoracic spinal segment [10]. These fractures are very

likely associated with neurological complications, since the thoracic spinal canal is quite nar-

row and high forces are required for the formation of vertebral fractures due to the stabilizing

effect of the rib cage. Also complex osteoporotic vertebral fractures and spinal metastases are

indications for reconstructive and stabilizing surgeries in the thoracic spine; their number has

steadily increased in the recent past due to demographic changes [11, 12]. To achieve optimum

restoration of injured thoracic spinal structures, basic knowledge of the biomechanics of the

intact thoracic spine is mandatory.

Finite element models provide a useful tool for the analysis of several spinal diseases, since

they offer the possibility of performing detailed studies of various biomechanical variables and

allow individualized simulations of surgical correction procedures [13–17]. For the calibration

and validation of finite element models of the healthy spine, a comprehensive database includ-

ing experimental in vivo and in vitro biomechanical data of asymptomatic thoracic spines is

required [18, 19]. However, the limited available data of previous studies with partially contra-

dictory data and the variety of measurement methods illustrate the need for current basic

research using new standardized measurement techniques.

Biomechanical investigations regarding the thoracic spinal flexibility are scarce. The first

comprehensive in vitro study on thoracic spine flexibility was carried out by White in 1969

[20]. In this biomechanical study, a two-dimensional analysis of monosegmental specimens

and a three-dimensional analysis of polysegmental specimens were performed. So far, this

study represents the basic knowledge of thoracic spine flexibility. However, the loads were not

applied by means of pure moments in this study, while the application of pure moments is the

gold standard in spine biomechanics today [21, 22]. A subsequent in vitro study of Panjabi

et al. used pure moments to determine the mechanical properties of the thoracic spine by

using load-deformation curves and calculating flexibility coefficients. They performed exem-

plary measurements, each with n = 1 monosegmental specimen for the whole thoracic region

from T1-T2 to T11-T12 [23]. Single functional spinal units of the thoracolumbar junction

were investigated by Markolf et al. and Oxland et al. [24, 25]. In all these in vitro studies pure

moments were applied, but different measurement equipment and torque levels were used. In

1990, White and Panjabi gave an overview of the ranges of motion for all functional spinal

units of the human spine. Multiple in vivo and in vitro studies, performed by different authors,

were combined in this overview, leading to high variations within the data [26].

The aim of the present study was therefore to investigate the segmental range of motion

and neutral zone of the healthy human thoracic spine by applying pure moments, with a suffi-

cient number of specimens, under controlled, standardized testing conditions.

Materials and methods

A total of 68 thoracic functional spinal units (FSUs) from 29 human donors were tested. For

each of the eleven segmental levels of T1-T2 to T11-T12, n = 6 specimens were used for testing,

except for the levels T4-T5 and T7-T8, of which each n = 7 specimens were available. The aver-

age age of the donors was 57 years (40–80 years), whereby 13 of the donors were male and 16

female (Table 1). None of the specimens showed any visible ligamentous, discogenic, or bony

damage relevant to biomechanical testing. Tumorous or fracture related damages were

excluded prior to preparation using conventional X-ray images (Faxitron 43805N, Hewlett

Packard, Palo Alto, USA). The spines were stored at -20˚C. Prior to testing, the specimens
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were thawed at 4˚C and prepared at room temperature. Muscles, nerves, fat, and other soft tis-

sues were carefully dissected while preserving the ligaments, joint capsules, intervertebral

discs, and costovertebral joints. The ribs were shortened to a length of about 1.5 cm using a

saw.

The upper half of the cranial vertebra and the lower half of the caudal vertebra were embed-

ded in polymethylmethacrylate (PMMA, Technovit 3040, Heraeus Kulzer, Wehrheim, Ger-

many). Before embedding, screws were fixed in the cranial and caudal endplates of each FSU

to ensure a firm connection between the vertebral bodies and the subsequent plastic cast. The

disc was adjusted horizontally and the costovertebral joints, the facet joints, as well as the

inter- and supraspinous ligaments were covered with modelling clay during embedding to

preserve the full mobility of the FSUs. After embedding, flanges were coaxially fixed to the

PMMA blocks. During preparation and testing, the specimens were kept moist with physiolog-

ical saline (0.9%) [21].

After manual alignment regarding the anatomical planes, the 68 FSUs were each loaded in

a custom-built spine tester (Fig 1) by applying pure moments of ±7.5 Nm in lateral bending

(±Mx), flexion/extension (±My), and axial rotation (±Mz) [27]. While the monitored rotation

axis was engaged, the specimens were allowed to move almost unconstrained in the remaining

five degrees of freedom due to a traveling gantry and balancing weights (RMS errors in maxi-

mum off axis torques: Mx = 0.2 Nm, My = 0.2 Nm, Mz = 0.1 Nm, RMS errors in maximum off

axis forces: Fx = 6.2 N, Fy = 7.0 N, Fz = 20.5 N). The pure moments were applied continuously

for 3.5 cycles with an angular velocity of 1˚/s in flexion/extension and lateral bending, as well

as 0.5˚/s in axial rotation using three stepper motors (Isel 3450, Isert-electronic, Eiterfeld, Ger-

many) with a torque of 55 Ncm and 1.8˚ per step. The moments were measured by a 6-DOF

load cell (FT 1500/40, Schunk GmbH & Co. KG, Lauffen/Neckar, Germany), which has a mea-

suring range of ±40 Nm, a resolution of 0.02 Nm and a measuring error of<1%. The first two

cycles served for preconditioning of the specimen, while the third cycle was used for data

evaluation.

The resulting load-deformation curves represent the typical stiffness properties of the single

motion segments (Fig 2) and were used for the determination of the biomechanical parameters

range of motion (ROM) and neutral zone (NZ). The ROM describes the deformation of the

specimen at the maximum load in the respective loading direction, while the NZ is the motion

range of the specimen in the unloading phase (at 0 Nm) and is therefore a measure for the lax-

ity of the motion segment [21, 22]. ROM and NZ were automatically determined using a self-

Table 1. Donor age (in years) and sex (m = male, f = female) of the thoracic FSUs.

Segmental level #1 #2 #3 #4 #5 #6 #7 Mean ± SD

T1-T2 53, f 58, f 46, f 40, m 43, f 60, m - 50 ± 8

T2-T3 57, f 56, m 79, m 66, f 46, m 58, m - 60 ± 10

T3-T4 54, m 45, m 53, f 59, f 58, f 60, m - 55 ± 5

T4-T5 54, f 57, f 44, f 66, f 46, f 63, f 56, m 55 ± 7

T5-T6 54, m 71, f 53, f 58, f 60, m 80, f - 63 ± 10

T6-T7 54, f 44, f 59, m 43, f 46, f 56, m - 50 ± 6

T7-T8 76, f 71, f 53, f 58, f 60, m 65, m 66, f 64 ± 7

T8-T9 56, m 54, f 46, f 46, m 51, m 54, m - 51 ± 4

T9-T10 50, m 57, f 71, f 62, f 75, f 65, m - 63 ± 8

T10-T11 54, m 69, m 60, m 51, m 63, f 44, f - 57 ± 8

T11-T12 49, f 71, f 62, f 59, m 65, m 57, f - 61 ± 7

https://doi.org/10.1371/journal.pone.0177823.t001
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programmed MATLAB routine (MathWorks Inc., Natick, USA) which fitted a polynomial

function to the curve to define the midpoint of the hysteresis curve regarding the angle and

measured the displacements at ±7.5 Nm (ROM) as well as at the midpoint of the connecting

line between the two turning points of the polynomial function (NZ). The evaluated hysteresis

curves of all experiments are depicted in the S5–S7 Dataset files.

The present in vitro study and related use of human specimens were approved by the ethical

committee board of the University of Ulm, Germany (No. 302/14).

Fig 1. Experimental setup. A typical thoracic spinal motion segment before load application in the spine tester.

https://doi.org/10.1371/journal.pone.0177823.g001
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Results

The motion segment T1-T2 was found to have the highest ROM in all six loading directions,

of which flexion was identified as the loading direction with the highest ROM in this specific

motion segment (Figs 3–5). The upper half of the thoracic spine from T1-T2 to T6-T7 showed

a higher range of motion than the lower thoracic spine from T7-T8 to T11-T12 in all loading

planes. The lowest ROMs were detected in extension for all motion segments between T2-T3

and T11-T12, followed by flexion, both having ROMs equal or less than 4˚, whereas the highest

ROMs were generally found in axial rotation for all motion segments from T2-T3 to T10-T11

and in lateral bending for T11-T12, respectively. In axial rotation, the NZ to ROM ratio was

the lowest of all three loading planes, whereas the highest NZ to ROM ratio was found in lat-

eral bending.

In flexion/extension, the level T1-T2 showed the greatest ROM of all motion segments with

a mean value of 7.1˚ in flexion and 6.7˚ in extension (Fig 3). In T2-T3, the ROM reduced to

Fig 2. Load-deformation curves. Characteristic hysteresis curves of representative thoracic spinal motion segments of the upper,

middle, and lower thoracic spine in flexion/extension, lateral bending, and axial rotation.

https://doi.org/10.1371/journal.pone.0177823.g002
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4.1˚ in both flexion and extension and was lowest in the segment T7-T8 with 2.8˚ for both

loading directions. In the upper part of the thoracic spine from T3-T4 to T6-T7 and the lower

part T8-T9 to T11-T12, the mean values of the ROM ranged from 3.1˚ to 3.8˚. The standard

deviations accounted in most segments for 20–36% of the ROM, while T2-T3 showed a large

standard deviation of 49% and T1-T2 a small standard deviation of 6%. The NZ was between

0.6˚ and 2.1˚, which makes up 14–30% of the mean ROMs (S1 Dataset).

In lateral bending, the segment T1-T2 had the highest range of motion, with a mean value

of 5.9˚ in both directions (Fig 4). The ROM of the upper and middle segments from T2-T3 to

T6-T7 ranged between 4.9˚ and 5.6˚, whereas the inferior segments exhibited a smaller range

of motion between 3.8˚ and 4.5˚. The lowest ROM was again detected in the segment T7-T8

with 3.7˚. The standard deviations ranged between 17% and 34% of the mean ROMs, with the

largest standard deviation in the segment T3-T4. Generally, ROM and NZ had almost symmet-

rical motion behavior. The NZ was between 0.7˚ and 2.0˚, which makes up 16–35% of the

mean ROMs (S1 Dataset).

In axial rotation, almost symmetrical motion behavior for the rotation to each the left and

right direction was detected (Fig 5). The ROM was again highest in the first segment T1-T2

with 6.2˚, followed by segment T6-T7 with 5.9˚. In the upper thoracic spine from T2-T3 to

T5-T6, values between 5.2˚ and 5.7˚ were measured. In the segments from T7-T8 to T9-T10

the mean ROM was about 5˚, while a continuous decrease of range of motion could be

detected from T9-T10 to T11-T12. The smallest ROM with a mean of 3.3˚ was measured in

Fig 3. Flexion/extension. ROM and NZ at ±7.5 Nm pure moment in flexion/extension for all thoracic spinal motion

segments (n = 6, except n = 7 for T4-T5 and T7-T8), represented as mean values with standard deviations.

https://doi.org/10.1371/journal.pone.0177823.g003
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the last segment T11-T12. The standard deviations were between 18% and 31% of the mean

ROMs. The NZ, with values between 0.4˚ and 1.2˚, makes up 10–20% of the mean ROMs and

was lower than in the other both motion planes (S1 Dataset).

Discussion

The aim of the present study was to investigate the segmental range of motion and neutral

zone of the thoracic spine by applying pure moments under controlled, standardized testing

conditions, since the literature regarding the biomechanical properties of the single thoracic

spinal motion segments is scarce and the segmental flexibility of the thoracic spine has to be

determined to understand the biomechanics, to solve clinical problems, and to calibrate and

validate numerical models. The present in vitro study therefore provides monosegmental

ROM data for all thoracic spinal segments.

Specimens

68 FSUs from 29 different human donors were used in this study. Complete or almost com-

plete thoracic spines were available from nine donors and between three and five segments

could be used per donor. The missing segments were replaced by individual segments from 20

other donors. At least six monosegmental specimens were tested per segment, although a

higher number would have been preferable. However, due to the limited availability of human

Fig 4. Lateral bending. ROM and NZ at ±7.5 Nm pure moment in lateral bending for all thoracic spinal motion segments

(n = 6, except n = 7 for T4-T5 and T7-T8), represented as mean values with standard deviations.

https://doi.org/10.1371/journal.pone.0177823.g004
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specimens, as well as ethical and financial issues, n = 6 specimens per segment is generally

accepted for in vitro studies.

Specimens of young healthy donors are most appropriate to exclude variations in the bio-

mechanical properties which are caused by degenerative remodelling processes occurring in

middle age. Kettler et al. and Mimura et al. determined in their in vitro studies with lumbar

specimens a decrease of ROM in flexion/extension and lateral bending with increasing degree

of degeneration. A slight increase of ROM was found in axial rotation [28, 29]. Due to the

unavailability of younger donors, the average age of specimens in this study was 58 years (40–

80 years). Variations of donor age and thus the stage of disc degeneration could be responsible,

besides specific differences in specimen morphology, for the variations within the results and

could therefore affect their comparability. Since the specimens had to be randomly distributed

on the single segmental level groups due to the limited availability, donor age or sex had to be

disregarded. However, mean donor age and sex of the eleven segmental level groups were not

substantially different between the groups, varying between 50 and 64 years and a sex ratio

between 3:3 and 6:1 (Table 1).

During preparation, care was taken to preserve the costovertebral joints, since they stabilize

the thoracic spine in all three loading directions [30–32]. The anterior part of the rib cage, includ-

ing the sternal complex and the ribs, was excluded from the test setup to reach a high comparabil-

ity between the single motion segments, although it was also found to influence the stability of

the thoracic spine in former in vitro studies [33–35]. The effect of the ribs and its sternal portion

Fig 5. Axial rotation. ROM and NZ at ±7.5 Nm pure moment in axial rotation for all thoracic spinal motion segments (n = 6,

except n = 7 for T4-T5 and T7-T8), represented as mean values with standard deviations.

https://doi.org/10.1371/journal.pone.0177823.g005
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on the flexibility of the single motion segments should be evaluated separately. The ligaments

were left intact, since damaged or missing ligament structures were found to influence the ROM,

as well as the intradiscal pressure and the relative position of the vertebral bodies [36, 37].

The specimens were checked for damage prior to preparation using conventional X-ray.

CT or MRI scans, however, were not performed. The present study therefore solely provides

kinematic and stiffness properties for the mechanical validation of finite element models of the

thoracic spinal motion segments.

Testing conditions

According to current recommendations for in vitro experiments, the specimens were tested

with 3.5 loading cycles, of which the third loading cycle was evaluated [21, 22]. This procedure

has become the state of the art for biomechanical flexibility testing, because the first two load-

ing cycles are used for preconditioning to reduce viscoelastic effects [22, 26]. Moreover, the

monosegmental ROMs were determined by using pure moments of ±7.5 Nm to allow direct

comparison to ROM data in the literature for the lumbar spine, although ±5 Nm are recom-

mended for thoracic spinal flexibility testing [38]. Since there was no visible change in range of

motion, hysteresis, and elastic stiffness during all loading cycles, pure moments of ±7.5 Nm

were considered as acceptable for testing (S1 Dataset).

An axial preload was omitted in the present study, although it is recommended for spinal in

vitro testing [39, 40]. Axial preload may reduce the segmental mobility and effect the kinematic

response, wherefore it was used in previous studies to simulate the experimental motion of the

spine as physiologically as possible [41–43].

Another limitation of the present study represents the manual alignment of the specimens

in the spine tester, which could have led to slight off axis loads in flexion/extension and lateral

bending. However, it was tried to compensate the possible angle offsets by automatic determi-

nation of each hysteresis curve midpoint.

Care was also taken not to exceed the testing period of 20 hours during preparation and

testing for each specimen, since the biomechanical properties of the tested specimens will

change and autolytic processes will start [21].

Biomechanical interpretation of the results

Specific anatomical properties influence the range of motion of the single spinal regions. The

cross-sectional areas of the discs of the upper thoracic spine, for example, are relatively small

compared to those in the lower thoracic spine and increase inferiorly, whereas the disc heights

are approximately the same in the upper and lower thoracic spine [44], leading to a higher

ROM, given the same amount of pure moments for all segmental levels in our in vitro study,

in the upper thoracic spinal motion segments because of the lower moment of inertia of area.

In the present study, the first segment T1-T2 exhibited the highest flexibility of all segments in

all loading directions, indicating similar range of motion characteristics as the cervicothoracic

transition, whereas the range of motion tended to decrease in inferior direction towards the

lumbar spine in all six loading directions (Figs 3–5).

Another anatomical characteristic of the thoracic spine is provided by the different posi-

tions of the costovertebral joints. While these joints are positioned each between the single

motion segments at the level of the discs for all segments from T1-T2 to T9-T10, potentially

having a stabilizing effect together with the costotransverse joints and their ligament struc-

tures, the costovertebral joints of the two inferior pairs of ribs are located on the middle of T11

and T12, respectively. The costovertebral joints therefore have no potential stabilizing effect

on the motion segments T10-T11 and T11-T12. However, these two motion segments showed
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an equal or lower ROM compared to the other motion segments in the present study, indicat-

ing a larger stabilizing effect of the discs, ligaments, facet joint capsules, and facet joint orienta-

tions in these motion segments. Moreover, a stabilizing effect of the costovertebral joints was

only determined in combination with a radical discectomy in previous in vitro studies [30, 45].

The facet joints of the thoracic spine show a specific morphology because of their three-

dimensional orientation, which leads to a different motion behavior compared to the cervical

and the lumbar spine. In the inferior direction towards the lumbar spine, the facet joints

exhibit increasing tilt angles in the sagittal plane and slightly in the transversal plane [46],

limiting the range of motion, especially in flexion/extension and slightly in axial rotation. The

variation of the facet joint orientations within the thoracic spine can be high due to interindi-

vidual differences, but in general, the tilt angles increase gradually, whereby the tilt angles in

the transversal plane end in the thoracolumbar transition zone [26, 47]. Also the thoracic spi-

nal ligaments have a strong stabilizing effect, since they are thicker than those in the cervical

and lumbar spine [26, 48]. Together with the anterior part of the rib cage, the anterior and pos-

terior longitudinal ligaments prevent hyperflexion and -extension [49].

Literature comparison

Few in vitro studies have investigated the flexibility of the thoracic spine. Furthermore, the pre-

viously existing results are only partially comparable due to varying experimental setups and

loading conditions. By means of new basic in vitro data of the thoracic spinal flexibility, evalu-

ated using now widely accepted recommendations for in vitro testing of spinal segments [21,

22], a better interpretation of the already published data should be possible. In addition, a

comprehensive database could provide a basis for the development of new finite element mod-

els or multi-body systems of the healthy human thoracic spine.

The subsequent literature overview compares the results of the present study and previously

published results of in vitro and in vivo studies (Fig 6). The flexibility tests of the present study

were performed in a well-established spine tester [27]. One specific feature of this device is the

application of pure moments, which ensures that the load is applied precisely and reproducibly

on the whole tested spinal segment in each motion plane. Similar methods for in vitro testing of

spinal segments with pure moments were found in the literature for the experiments of Panjabi

et al., Markolf et al., and Oxland et al. [23–25]. The study, which is closest to the present study

because of its comprehensiveness, has been described by White [20], who applied eccentric

loads in his two-dimensional and three-dimensional analysis of flexion/extension and lateral

bending motions. It should be noted, however, that White and Markolf et al. used an experi-

mental setup, in which the upper vertebra exhibited a limited mobility in the remaining five

motion directions [20, 24], which could have limited flexibility in the main loading direction.

A literature overview was published by White and Panjabi [26], where ROM data of several

in vitro and in vivo studies, including different test setups and load applications, were summa-

rized. Therefore, these data allow comparisons with other data only in a limited extent.

Moreover, the in vivo study of Willems et al. was performed using the polysegmental sec-

tions T1-T4, T4-T8 and T8-T12 [50]; for better comparability, the values have been divided

according to the number of segmental portions. However, the flexibility of the individual spi-

nal segments is not known. When comparing in vitro and in vivo data, it should also be noted

that no standardized torque limits exist during in vivo measurements. Furthermore, other

effects, such as the rib cage, the muscles, the intraabdominal and intrathoracic pressure, as well

as individual pain sensations, have an influence on the flexibility of the spinal segments.

In general, differences regarding segmental flexibility between the three loading planes

were not as significant as those described in literature (Fig 6). In flexion/extension, the data of
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the present study show the highest ROM in the first segment T1-T2. However, there is an

inverse trend of the results compared to the summary from White and Panjabi [26] with the

highest ROM at T11-T12, whereas the results of Markolf et al., Oxland et al., and Willems et al.

show a similar motion behavior for the lower thoracic segments [24, 25, 50]. Besides, the data

of White and Panjabi exhibited high value ranges in these two lower segments, which can

probably be explained by the high interindividual variations regarding the facet joint orienta-

tions in the thoracolumbar transition zone from T11-T12 to L1-L2 [47]. Morita et al. [51] eval-

uated similarities in their in vivo analysis of flexion/extension ROM, but just about half as high

ROM values as Willems et al. [50], which is probably due to their test setup, where the ROMs

were measured by CT scans in lying position.

In lateral bending, the ROM data of the present study are quite comparable with literature

data, especially regarding the upper half of the thoracic spine from T1-T2 to T6-T7. However,

the increase of ROM in T10-T11 and T11-T12 in the summary of White and Panjabi [26],

including the high value ranges, should be mentioned.

In axial rotation, the ROM values of the present study and their progression are quite compa-

rable with the data in the literature, where in general the same progression of ROM values was

detected. In the in vivo study of Gregersen and Lucas [52], using Steinmann pins, average ROMs

of 7˚ for all thoracic spinal motion segments were detected in each standing and sitting position,

with a substantially higher ROM in the segment T1-T2. In contrast, Fujimori et al. [53] evaluated

in their in vivo study ROMs between 2˚ and 5˚ for all thoracic spinal motion segments and

increasing ROMs from T1-T2 to T9-T10, which is also probably due to their test setup, where

they analyzed the thoracic spinal range of motion using CT Scans in lying position.

Conclusions

The literature regarding the biomechanical properties of the single thoracic spinal motion seg-

ments is scarce. Due to the limited available data of the few previous studies with partially con-

tradictory data and different measurement methods, the segmental flexibility of the whole

thoracic spine has to be determined to understand the biomechanics, to solve clinical prob-

lems, and to calibrate and validate numerical models of the thoracic spine.

The present study showed that in flexion/extension, the thoracic spinal segments have the

lowest range of motion in the spinal section from T2-T3 to T11-T12, but the highest range of

motion in T1-T2, of all three loading planes. In lateral bending, the upper half of the thoracic

spine from T1-T2 to T6-T7 showed generally a higher range of motion than the lower half

from T7-T8 to T11-T12. The highest range of motion was observed in the upper and middle

segments from T2-T3 to T9-T10 in axial rotation, where also a decrease in range of motion in

the lower thoracic segments was observed.

In flexion/extension as well as in lateral bending, no increase of range of motion in the

lower thoracic segments could be detected in the present study, which partially contrasts with

former in vitro studies. It is also remarkable that a higher range of motion was determined for

the upper thoracic spinal segments in all loading directions.

The data of the present study could be used for the validation of numerical models and the

design of further in vitro studies of the thoracic spine, the verification of applicability of animal

models, as well as the interpretation of already published human in vitro data.

Fig 6. Literature comparison. Comparison of the ROM data evaluated in the present study, represented as mean values with

standard deviations of the full ROM in each loading plane, with data extracted from the literature. The data of White and Panjabi [26]

are represented as mean values with value ranges.

https://doi.org/10.1371/journal.pone.0177823.g006
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S1 Dataset. Raw data. The data including all ROM and NZ values in all six loading directions

of the present in vitro study are summarized. Additionally, neutral zone stiffness (NZS), elastic

zone stiffness (EZS), and hysteresis area are listed.

(XLSX)

S2 Dataset. Load-displacement raw data T1-T5. The load-displacement raw data of all exper-

iments regarding the segmental levels T1-T2, T2-T3, T3-T4, and T4-T5 including all 3.5 load-

ing cycles are listed.

(XLSX)

S3 Dataset. Load-displacement raw data T5-T9. The load-displacement raw data of all exper-

iments regarding the segmental levels T5-T6, T6-T7, T7-T8, and T8-T9 including all 3.5 load-

ing cycles are listed.

(XLSX)

S4 Dataset. Load-displacement raw data T9-T12. The load-displacement raw data of all

experiments regarding the segmental levels T9-T10, T10-T11, and T11-T12 including all 3.5

loading cycles are listed.

(XLSX)

S5 Dataset. Hysteresis curves T1-T5. The hysteresis curves of the third loading cycle of all

experiments regarding the segmental levels T1-T2, T2-T3, T3-T4, and T4-T5 are depicted.

(XLSX)

S6 Dataset. Hysteresis curves T5-T9. The hysteresis curves of the third loading cycle of all

experiments regarding the segmental levels T5-T6, T6-T7, T7-T8, and T8-T9 are depicted.

(XLSX)

S7 Dataset. Hysteresis curves T9-T12. The hysteresis curves of the third loading cycle of all

experiments regarding the segmental levels T9-T10, T10-T11, and T11-T12 are depicted.

(XLSX)
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