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Abstract

In recent years, the capability of synthetic biology to design large genetic circuits has dramatically 

increased due to rapid advances in DNA synthesis technology and development of tools for large-

scale assembly of DNA fragments. Large genetic circuits require more components (parts), 

especially regulators such as transcription factors, sigma factors, and viral RNA polymerases to 

provide increased regulatory capability, and also devices such as sensors, receivers, and signaling 

molecules. All these parts may have a potential impact upon the host that needs to be considered 

when designing and fabricating circuits. DNA microarrays are a well-established technique for 

global monitoring of gene expression and therefore are an ideal tool for systematically assessing 

the impact of expressing parts of genetic circuits in host cells. Knowledge of part impact on the 

host enables the user to design circuits from libraries of parts taking into account their potential 

impact and also to possibly modify the host to better tolerate stresses induced by the engineered 

circuit. In this chapter, we present the complete methodology of performing microarrays from 

choice of array platform, experimental design, preparing samples for array hybridization, and 

associated data analysis including preprocessing, normalization, clustering, identifying 

significantly differentially expressed genes, and interpreting the data based on known biology. 

With these methodologies, we also include lists of bioinformatic resources and tools for 

performing data analysis. The aim of this chapter is to provide the reader with the information 

necessary to be able to systematically catalog the impact of genetic parts on the host and also to 

optimize the operation of fully engineered genetic circuits.

1. Introduction

The focus of synthetic biology has been the design and implementation of small-scale 

genetic circuits (Elowitz and Leibler, 2000; Ham et al., 2008; Tabor et al., 2009), including 

the transplantation and reconstruction of small metabolic pathways in suitable hosts (Lee et 
al., 2008; Steen et al., 2010). The focus on small systems reflected, in part, the laborious 

processes of DNA fragment construction and assembly required to optimize designed 

systems. The rapid expansion of DNA synthesis capacity (Czar et al., 2009; Tian et al., 
2009) and the development of simple protocols for large-scale assembly of DNA fragments 

(Gibson et al., 2008, 2009) have broadened the potential focus of synthetic biology. 
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However, larger synthetic circuits require more components (Voigt, 2006), and their reliable 

operation requires accurate assessments of the impact of each of these components on the 

host cell processes. When such circuits overburden the host, mutations will rapidly 

accumulate to relieve the stresses that are introduced. An accurate assessment of the impact 

of synthetic circuits on host physiology will enable intelligent choice of the circuits chosen 

for implementation.

The components of synthetic circuits and their impact on the host can be broadly classified 

into two categories: (1) Regulatory components comprised transcription factors, sigma 

factors, and viral RNA polymerases, which enable controlled expression of individual circuit 

components. Importantly, the DNA sequence specificities of the regulators may result in 

aberrant and possibly deleterious gene expression within the host. (2) Circuit devices 
comprised sensors, receivers, signaling molecules, enzymes, etc. These components receive 

information and then command the cell to perform a task, such as producing chemicals and 

fuels, secreting proteins, and sending out communication signals. Individual circuit 

components may be deleterious to the host when overexpressed. Additionally, certain 

combinations of components may be deleterious even when the individual components have 

no deleterious effect. Consequently, it is importantly to monitor and catalog the impact of 

individual and combinations of circuit components on the host in order to facilitate the 

design process, the choice of components for a particular circuit, and troubleshooting of 

large synthetic circuits. In addition, a good understanding of the impact of components may 

facilitate modification of the host to better tolerate the circuit. For example, high level 

expression of some proteins can result in the accumulation of unfolded products within the 

cytoplasm, triggering the cytoplasmic heat shock response. This can be relieved by 

overexpression of cytosolic chaperones.

DNA microarrays provide an easy way to monitor changes in gene expression in the host 

(Rhodius et al., 2002). They can be used to pinpoint the effects of regulator parts of genetic 

circuits and provide a useful tool for identifying stress-response pathways that are 

upregulated in response to circuit devices. In this chapter, we will describe the process of 

performing microarray experiments and associated data analysis to monitor gene expression. 

The overall process is illustrated in Fig. 4.1 and involves the following steps: (1) 

Experimental setup: the biological question addressed, experimental design, and performing 

the microarray experiment(s); (2) Preprocessing: data quality control and normalization prior 

to analysis; and (3) Analysis: the statistical tools that identify significantly differentially 

expressed genes, clustering to identify coregulated genes or similar datasets, and functional 

annotation to identify common and/or enriched properties of the gene products in the final 

datasets. We discuss each step and indicate the utility of this technology for synthetic 

biology.

2. Different Microarray Platforms

The selection of microarray platforms is summarized in Table 4.1. Early microarrays used 

cDNA libraries, oligonucleotides, or PCR products fabricated by individual laboratories and 

printed onto polylysine- or epoxy-treated glass slides. Although inexpensive, the process is 

laborious, results can be inconsistent and usually limited to a single datapoint for each open 
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reading frame (ORF). Commercially available platforms range from low density arrays with 

a single printed oligonucleotide probe per ORF, to various high-density platforms with 

multiple probes per ORF, in which the oligonucleotides are synthesized in situ. Additionally, 

tiled arrays have oligonucleotide probes that anneal to overlapping targets across the genome 

and some platforms contain probes for intergenic regions, both coding and noncoding 

strands. Many platforms duplicate their probes across the array surface to reduce 

hybridization artifacts, thereby improving data reliability. On most platforms, it is possible 

to perform competitive two-color hybridizations, in which both the reference sample and 

experimental sample are labeled with different dyes and hybridized to the same array, 

thereby increasing experimental efficiency. Affymetrix arrays are designed for one-color 

hybridizations; consequently, the reference and experimental sample are hybridized to two 

separate arrays. The advantage of one-color hybridizations is their flexibility in comparing 

samples: only one reference hybridization is required for multiple experimental 

hybridizations, and all samples can be directly compared with each other when calculating 

gene expression ratios.

The choice of array platform depends upon the type of microarray experiment being 

performed. The advantage of commercial high-density arrays is that they provide multiple 

probes often in duplicate for each coding region, which increases data sensitivity and 

reliability. These probe sets are optimized for signal sensitivity and to reduce cross-

hybridization with other homologous genomic sequences. Probes designed toward known 

ORFs are sufficient when the user is only concerned about the expression status of known 

annotated genes and transcribed regions. However, several studies demonstrate that there are 

large number of transcripts from nonannotated regions of the genome, such as intergenic 

regions and also antisense to known coding regions (Filiatrault et al., 2010; Guell et al., 
2009; Selinger et al., 2000; Sharma et al., 2010). The functions of most of these transcripts 

are unknown, but likely include mRNAs of previously unannotated short coding regions 

(Hemm et al., 2008, 2010), sRNAs that regulate specific target mRNAs (Beisel and Storz, 

2010), and regulatory antisense transcripts (Thomason and Storz, 2010). Consequently, high-

density platforms that contain probes to both coding and noncoding strands and intergenic 

regions provide more comprehensive analysis of the transcriptome. It is also possible to 

custom design arrays to include specific probes of your choice, which is useful if you need 

to probe specific regions of the genome not covered in the commercial array sets. Finally, 

many commercial arrays are available in multiplex format in which the array surface is 

subdivided into sections. Each section contains a complete set of probes, enabling different 

samples to be separately hybridized to each section in the same experiment, thereby 

increasing the throughput of experiments.

Several studies have addressed the issue of data quality and reproducibility between 

commercial array platforms (Bammler et al., 2005; Irizarry et al., 2005; Larkin et al., 2005; 

Shi et al., 2006, 2008). Satisfyingly, these studies find that the results across platforms are 

remarkably consistent, and the observed fold change in gene expression levels correlates 

closely with qRT-PCR. However, it is important to standardize protocols for RNA labeling, 

hybridization, array processing, data acquisition, and normalization. If the array experiments 

are part of a consortium, agreeing upon a common array platform, strains and growth 

conditions will greatly facilitate the comparability of datasets produced in different 
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laboratories. The final choice of array platform may also depend on the availability of 

additional resources in the host institute that are required for microarray experiments such as 

array hybridization stations and scanners. These are often quite expensive and limited to 

certain array platforms, and are often shared between multiple laboratories within institutes.

Deep sequencing (RNA-seq) is rapidly becoming a viable alternative for expression analysis 

(Cho et al., 2009; Filiatrault et al., 2010; Guell et al., 2009; Sharma et al., 2010; Sorek and 

Cossart, 2010; Wang et al., 2009). In this approach, purified RNA is converted to cDNA 

flanked with adaptamers that are then sequenced using high-throughput sequencers. The 

sequence reads are mapped back to the genome and the frequency of reads provides a digital 

read-out of RNA levels. The main advantage of this approach is that all transcripts are 

sequenced; consequently, the quantitative information is not limited to existing genomic 

sequences or restricted to annotations of ORFs. In addition, RNA-seq can provide nucleotide 

resolution information of transcript boundaries (5′ ends, operon structures, etc.), a greater 

dynamic range of expression values compared to microarrays and requires small amounts of 

RNA. However, microarrays currently are cheaper to perform, easier to high-throughput for 

large experiment sets, ideal for characterizing expression of known RNAs, and both the 

experimental and data handling issues have been optimized over several years.

3. Experimental Design

Microarray experiments can easily generate large lists of differentially expressed genes 

making it difficult to unravel the underlying biology. Consequently, careful experimental 

design is critical for interpretable data. Optimal datasets are where only a few cellular 

systems are disrupted by a designated perturbation (e.g., induced overexpression of 

candidate gene). Here, the response usually occurs within a short time frame of the 

perturbation and therefore can be monitored by following gene expression over a short time 

course (Nonaka et al., 2006; Rhodius et al., 2006). In contrast, cells exposed to long-term or 

steady-state differences (e.g., wild-type vs. constitutively expressing mutant strain) can 

generate complex responses as a result of a cascade of transcriptional effects, making data 

interpretation difficult.

The gene expression comparisons considered here will be the consequence to the host cell of 

expressing either a single part or device of a synthetic circuit or a combination of 

components. First, it is important to establish a standardized expression data set for all 

circuit parts. This enables cross-comparisons of the effects of different components on host 

gene expression and therefore can be used as a guide for selecting parts when designing and 

constructing a circuit. The aim is to catalog the short-term effects of induced overexpression 

of components within the host under a series of defined growth conditions. Here, gene 

expression is monitored after induction using a time course in which samples are removed at 

intervals for up to 1 doubling of culture growth (e.g., at 5, 10, 20, and 40 min after 

induction). Note that it is essential to standardize the defined growth conditions and the 

control wild-type host strain used in the transcriptome experiments to enable easy 

comparison of data between laboratories and scientific communities. It may also be 

necessary to examine the effects of components under the specific operating conditions of 

the proposed genetic circuits, especially if these conditions are dramatically different to the 
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standardized conditions or involve long-term expression over several days. This may involve 

performing much longer time courses of part overexpression (e.g., at 8 h intervals for 48 h), 

or monitoring the effects of parts or even complete circuits under the specific growth 

conditions. This will enable fine-tuning of the circuit design and also provide information 

for whether it is necessary to modify the host in order to optimize circuit performance.

Time-course expression analysis is an effective method for yielding information about the 

succession of transcriptional changes induced by any component of a circuit. Typically, 

monitoring expression for 1 doubling after induction is sufficient for identifying direct and 

any indirect effects, as by that point, the induced protein will reach at least 50% of its 

maximum induced levels in the cell. Overexpression of a transcription factor part will likely 

result in a rapid transcriptional response, even if this is as a result of aberrant gene 

expression; however, overexpression of a device that may exert stresses upon the cell may 

take longer for transcriptional effects to become apparent as these will likely be indirect. 

Typically, RNA samples are harvested at select time intervals after induction and are 

compared on microarrays with samples harvested at equivalent time points from a 

noninduced control culture. This is best achieved by splitting the starting culture into two 

aliquots immediately prior to induction: inducing one aliquot and maintaining the other as a 

control (Fig. 4.2). Note that using completely separate starting cultures for any microarray 

comparison is inferior as there is increased biological variation in the separate cultures, and 

hence increased variability in the expression profiles. Harvesting samples at comparable 

time points from both the control and induced culture will correct for any growth state 

changes that may occur over the duration of the time course. Sometimes, overexpression of a 

protein may alter the growth rate of the induced culture. In this case, it is best to harvest 

samples at comparable culture densities to compensate. However, it is still important to be 

aware of growth rate differences when interpreting the final gene expression datasets as 

expression of the ribosomal operons are growth rate dependent and hence will likely be 

differentially expressed.

4. Experimental Variation

Experimental variation derives either from biological or technical issues. Variability in 

biology is more difficult to control and can come from issues with the biological sample, the 

growth conditions of the culture, and alteration in gene expression levels. We discuss each of 

these in turn and then conclude with the technical issues contributing to variability. Issues 

related to the biological sample itself are best described by its complexity, quantity, and 

quality.

1. Complexity relates to whether the samples are simple, that is, one organism 

under defined growth conditions (e.g., single homogenous cultures), or complex, 
that is, several organisms or across different growth states (e.g., mixed cultures, 

including biofilms and host-pathogen models). Sample complexity can 

dramatically increase biological variation due to poor reproducibility of growth 

conditions, variability of organism composition of mixed populations, and the 

isolation of total RNAs from multiple organisms that result in increased cross-

hybridization and decreased signal specificity with target probes on microarray. 
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Most biological sample effects are minimized when monitoring part effects 

under defined growth conditions; however, if the proposed operating conditions 

of the genetic circuit involve complex environments, then this will dramatically 

increase the biological variability and consequently the expression profiles 

measured under these conditions.

2. Sample quantity is a factor, especially from complex environments that are not 

standard cultures and therefore are difficult to grow in large enough quantities. 

Low sample yield reduces signal strength on microarrays, thereby increasing 

noise and signal variability.

3. Sample quality relates to the purity and integrity of the isolated RNA and labeled 

cDNA probes prior to hybridization on the microarray. For example, 

contaminating RNases reduces RNA quality: RNases vary with different host 

strains, growth conditions, and cellular stress levels.

Growth conditions are another important source of variation, even with defined homogenous 

cultures. Batch experiments relate to growing cultures in flasks and generally have low or 

moderate levels of variability. Samples compared from separate starting cultures have higher 

levels of variability than samples from the same culture. Consequently, it is generally better 

to split a culture and to induce gene expression in one culture and use the other as a 

comparative control (see Fig. 4.2). Experiments performed in chemo-stats tend to have low 

background variability; however, long chemostat runs can result in the accumulation of 

mutations, especially in stressed cultures, which can dramatically increase variability from 

run to run. Defined media, such as M9 (and others) decreases experiment to experiment 

variability, compared with complex media such as Lennox broth, where the composition of 

the broth can vary between lot numbers. Finally, the expression levels of weakly expressed 

genes are inherently more variable due to the sensitivity of probes on the array.

Technical variation comprises sample preparation and labeling, sample hybridization, and 

microarray slide variability (Yang et al., 2002). As discussed earlier, microarray variability 

has been shown to be small between most commercial arrays and largest with home-made 

arrays. Typical sources of variation include differences in array platform and probe design. 

This latter category includes probe length, specificity, cross-hybridization issues, and 

different probe sequences for the same target genes on different array platforms. For large-

scale studies, these effects can be minimized by using the same array platform, and if 

possible, arrays manufactured from the same batch. Sample preparation, labeling, and 

hybridization will be discussed in the next section. With large-scale studies, confounding 

effects by extraneous factors can be minimized by orthogonalizing variable components, for 

example, by using equal numbers of arrays from different batches.

5. Sample Preparation

Sample preparation includes RNA harvesting, cDNA synthesis and labeling with fluorescent 

dyes, and sample hybridization on the microarray. Many array manufacturers recommend 

protocols for these steps, some of which are specific to the microarray platform (e.g., 

Affymetrix). In addition, there are many published protocols, for example, Beyhan and 
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Yildiz (2007), Botwell and Sambrook (2003), and Rhodius and Wade (2009). Here, we will 

discuss important issues of sample preparation and present protocols successfully utilized by 

many laboratories for two-color hybridizations on most array platforms. Sample preparation 

involves harvesting the biological material, extracting and purifying the RNA, generating 

cDNA containing the modified nucleotide amino-allyl dUTP (aa-dUTP) and covalently 

linking the Cy3 or Cy5 fluorophores to the cDNA samples. Typically in two-color 

hybridizations to the same array, the reference sample is labeled with Cy3 (scans as red) and 

the experimental with Cy5 (scans as green). After labeling, both samples are mixed and 

hybridized to the same array. Reverse labeling in which the dyes are switched (reference is 

Cy5 and experimental Cy3) is often not necessary, as most dye-dependent biases are 

removed during data normalization (see later).

5.1. Materials

5 .1.1. Solutions

1. All solutions should be RNase free, either by treating with 0.1% DEPC or by 

purchasing as RNase free from suppliers such as Ambion.

2. Ethanol/phenol stop solution: H2O-saturated phenol (pH < 7.0) in ethanol (5%, 

v/v).

3. Lysozyme solution: 500 μg/mL lysozyme in 10 mM Tris (pH 8.0), 1 mM EDTA 

(pH 8.0). Prepare fresh just before use.

4. Nuclease-free water, Ambion #AM9938.

5. Sodium acetate, pH 5.5, 3 M (100 mL), Ambion #AM9740.

6. 25× aa-dUTP/dNTP mix: 12.5 mM dATP/dGTP/dCTP, 5 mM dTTP, 7.5 mM aa-

dUTP (Ambion, #8439). The 3:2 ratio of aa-dUTP:dTTP is optimized for 

Escherichia coli based on the (G + C) content of the template cDNA. Higher GC 

content organisms may require a lower aa-dUTP to dTTP ratio; lower GC 

content organisms may require a higher ratio.

7. 1 M KPO4, pH 8.5: 9.5 mL 1 M K2HPO4, 0.5 mL KH2PO4. Prepare daily to 

ensure optimal pH.

8. Phosphate wash buffer: 5 mM KPO4, 80% EtOH. May be slightly cloudy. 

Prepare daily.

9. Phosphate elution buffer: 4 mM KPO4, pH 8.5. Prepare daily.

10. 20× SSC (1 L), Ambion #AM9763.

11. SDS, 10% solution (100 mL), Ambion #AM9822.

5 .1.2. Supplies

1. All microfuge tubes and pipette tips should be RNase and DNase free.

2. TURBO DNA-free Kit, Ambion #AM1907. Contains TURBO DNase, 10× 

buffer, and DNase inactivation reagent.
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3. Random octamer oligonucleotide, any oligo company.

4. SuperScript III Reverse Transcriptase, Invitrogen #18080-093. Includes 5× first-

strand synthesis buffer.

5. MinElute PCR purification kit (50), QIAGEN #28004.

6. CyDye postlabeling reactive dye packs, GE Healthcare #RPN5661.

5.2. Sample harvesting

Careful isolation of RNA from biological samples is essential in order to accurately capture 

the RNA profile present at time of harvesting. Transcription profiles can rapidly change in 

response to the cellular stresses of harvesting (media change, centrifugation, temperature 

change, etc.). Also, RNA is extremely sensitive to degradation by RNases present both in the 

harvested cells and introduced during the purification procedure. Consequently, it is essential 

to use RNase-free materials and solutions throughout the purification and cDNA synthesis 

steps. It is also essential to “freeze” the RNA profile during sample harvesting. This is 

achieved by mixing the cells with a reagent designed to inactivate transcription and prevent 

RNA degradation; for example, RNAprotect (QIAGEN); a solution of 40% methanol, 62.5 

mM HEPES, pH 6.5 at −45 °C (Pieterse et al., 2006); or 5% acid phenol in ethanol stop 

solution as outlined below:

1. Transfer 10 mL of culture (0.3 − 1 × 109 cells/mL) into a 15-mL conical tube 

containing 1.25 mL of ice-cold ethanol/phenol stop solution.

2. Harvest cells by centrifugation at 6700 × g for 2 min at 4 °C. Remove media by 

aspiration.

3. Rapidly freeze cell pellet in liquid nitrogen. Store at −80 °C until required.

5.3. Total RNA preparation

There are multiple RNA purification methods and kits available. The method of choice will 

be determined by the properties of your strain (growth conditions, ease of lysis, and level of 

RNases), the experimental design, and the quantity of available sample versus yield of RNA 

required for each array experiment. Consequently, it may be necessary to modify protocols 

to enhance lysis or to cope with high levels of endogenous RNases. It is also important to 

note that some kit protocols that have affinity purification steps may not give representative 

yields of small RNAs. Total RNA from bacterial cultures can be isolated using the hot 

phenol method outlined below, or by using several commercial reagents (e.g., TRIzol, 

Invitrogen), or kits (e.g., RNeasy, QIAGEN; RiboPure, Ambion). Also, there are protocols 

and kits available that (1) enrich mRNA from total RNA preparations by using oligos that 

bind to 16S and 23S rRNA, enabling these RNAs to be subtracted from the RNA prep (e.g., 

MICROBExpress, Ambion); (2) purify bacterial RNA from complex host-bacterial samples 

using a similar oligo subtraction method to remove contaminating rRNA and poly-A 

mRNAs from select eukaryote hosts (e.g., MICROBEnrich, Ambion); and (3) amplify RNA 

from low yield samples using a linear cDNA amplification step (Gao et al., 2007). We find 

that for E. coli cultures the hot phenol method outlined below yields the best quality RNA 

preps in terms of RNA integrity, size, purity, and yield.
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1. Resuspend the cell pellet (from 10 mL of culture) in 800 μL lysozyme solution. 

Transfer lysate to 2-mL microfuge tube containing 80 μL of 10% SDS, mix by 

inversion, and incubate at 64 °C for 2 min.

2. Add 88 μL 1 M sodium acetate solution (pH 5.2) and mix by inversion.

3. To the lysate add an equal volume (~1 mL) of H2O-saturated phenol (pH < 7.0). 

Mix by inverting 10 times. Incubate in a 64 °C water bath for 6 min, continuing 

to mix the tube contents by inverting every 40–60 s.

4. Place tube on ice to chill for 2 min. Afterward, centrifuge at 16,000×g for 10 min 

at 4 °C.

5. Remove the upper aqueous phase into a fresh tube, taking care not to disturb the 

interface (this is a common point of RNase contamination of preps). Also, 

perform this step quickly, as the aqueous layer can rapidly become cloudy after 

centrifugation, making it difficult to separate the layers. If this happens, 

recentrifuge the sample.

6. Add to the solution an equal volume (~1 mL) of 1:1 mix of H2O-saturated 

phenol:chloroform. Invert the tube 6–10 times to mix and centrifuge at 16,000×g 
for 2 min.

7. Carefully remove the upper aqueous phase to a fresh microfuge tube. Repeat the 

H2O-saturated phenol:chloroform extractions until the interface is clear (usually 

≥ 2–3 times). Some strains may require extensive phenol:chloroform extractions 

to completely remove contaminating RNases.

8. Divide the final extracted solution equally between two 1.5-mL micro-fuge 

tubes. Precipitate by adding 0.1 volume 3 M sodium acetate (pH 5.5) and 2.5 

volumes 100% cold ethanol. Incubate at −80 °C for 30 min.

9. Recover the RNA by centrifugation at 16,000×g for 30 min at 4 °C.

10. Wash the RNA pellet with 1 mL 80% cold ethanol. Centrifuge at 16,000×g for 5 

min at 4 °C. Carefully remove the ethanol solution by aspiration and dry the 

RNA pellet in a speed vacuum.

11. Redissolve and pool each pair of pellets in a final volume of 87 μL and place in a 

fresh 1.5-mL microfuge tube.

5.4. DNase treatment

1. To each RNA preparation (87 μL), add 10 μL 10× TURBO DNase buffer and 3 

μL TURBO DNase. Incubate reaction at 37 °C for 30 min.

2. Add an additional 3 μL TURBO DNase and incubate a further 30 min at 37 °C.

3. Add 10 μL DNase inactivation reagent and incubate at room temp, mixing four 

times.

4. Centrifuge at 10,000×g for 1.5 min and transfer the supernatant containing the 

RNA to a fresh tube. Store at −20 °C until required.
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5.5. Assessing RNA quality and yield

1. Determine RNA concentration by measuring the absorbance of a 1:100 dilution 

in H2O at 260 nm (concentration, c (μg/μL), in a 1-mL quartz cuvette with a 1 

cm path length: c = A260 × f × 0.04 μg/μL, where f is the dilution factor). Typical 

yields are 70–300 μg RNA from 10 mL of culture, depending on strain of E. coli, 
growth conditions, and culture density upon harvesting.

2. Check purity by measuring the absorbance ratio of nucleic acid versus protein 

(A260/A280) of a 1:100 dilution in 10 mM Tris–HCl buffer, pH 7.5 (note that the 

absorbance ratio is sensitive to pH: as RNA is acidic, the ratio must be measured 

in a low salt neutral buffer). Good RNA preps free from protein contamination 

give values between 1.8 and 2.1.

3. If required, the integrity of the RNA can be analyzed on a denaturing 

formaldehyde 1% agarose gel (Ausubel et al., 1998). Upon visualizing the gel, 

the 23S and 16S ribosomal RNA should be easily observed. For good RNA, the 

23S species should be twice as intense as the 16S with little or no smearing 

between or below these bands.

5.6. cDNA synthesis and RNA hydrolysis

cDNA is synthesized using random octamer primers and a dNTP mix containing aa-dUTP 

(aa-dUTP).

1. In 0.2-mL PCR tube, mix 15 μg total RNA with 16 μg random octamer primer to 

give a final volume of 35 μL. Incubate at 70 °C for 10 min and then chill on ice 

for 10 min.

2. cDNA synthesis reaction: Prepare a cocktail on ice containing for each reaction: 

12 μL 5× first-strand synthesis buffer; 2.4 μL 25× aa-dUTP/ dNTP mix; 6 μL 0.1 

M DTT, 2.3 μL SuperScript III RT; 2.3 μL H2O. Add 25 μL cocktail to annealed 

RNA sample and incubate at 50 °C for 3 h.

3. RNA is removed from the completed reverse transcription reaction by hydrolysis. 

To the sample, add 1.2 μL 0.5 M EDTA and 6 μL 1 N NaOH and incubate for 10 

min at 65 °C.

4. Neutralize the reaction by adding 65 μL 1 M HEPES, pH 7, and mix well.

5 .7. Sample cleanup

Unincorporated aa-dUTP and competing free amines must be removed from the sample to 

enable successful coupling of the amino-allyl cDNA with the Cy3/Cy5 dyes. Consequently, 

Tris-based buffers cannot be used in the following cleanup steps. Each sample is cleaned 

using the QIAGEN MinElute PCR Purification Kit that has been modified, replacing the 

QIAGEN wash and elute buffers (PE and EB), which contain free amines, with phosphate-
based wash and elute buffers (Beyhan and Yildiz, 2007; Hasseman, J., TIGR Aminoallyl 

Labeling of RNA for Microarrays & TIGR Microarray Labeled Probe Hybridization).
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1. Remove the reverse transcription reactions from the PCR tube to a fresh 1.5-mL 

microfuge tube.

2. Add 500 μL QIAGEN Buffer PB to each sample.

3. Load samples on to MinElute Columns and centrifuge at ≥10,000×g for 1 min.

4. Discard the flow-through and add 750 μL phosphate wash buffer to each column 

and centrifuge at ≥ 10,000×g for 1 min.

5. Discard the flow-through and centrifuge again at ≥10,000×g for 1 min.

6. Add 10 μL phosphate elution buffer to the center of each column matrix, 

incubate for 1 min, and then elute using a fresh collection tube by centrifugation 

at ≥ 10,000 × g for 1 min. Samples can be stored at −20 °C if required.

5.8. Cy3/Cy5 coupling

The Cy dyes are shipped as a desiccate in sealed packs. Note that they are extremely 

sensitive to light and moisture, therefore each pack is opened and resuspended in DMSO 

immediately prior to use. Each pack is sufficient for approximately five reactions.

1. To each cDNA sample, add 1 μL 1 M sodium bicarbonate, pH 9.0 (note the 

bicarbonate becomes carbon dioxide with time; therefore, use fresh solution <1 

month old).

2. Resuspend each fresh tube of Cy3 or Cy5 in 10 μL DMSO. Keep in dark until 

ready for use.

3. Add 2 μL of either Cy3 or Cy5 solution to each cDNA sample. Incubate for 2 h 

at room temperature in the dark.

4. Unincorporated Cy dyes are removed using the QIAGEN MinElute PCR 

purification kit following the procedure previously described in sample cleanup, 

steps 2–6. Note that the eluted samples should be colored red for Cy3 and blue 

for Cy5.

5. cDNA yield and labeling efficiency of the eluted samples can be calculated by 

using a nanodrop to measure their absorbance at 260, 550, and 650 nm against a 

water blank (Botwell and Sambrook, 2003). For each sample, calculate

Where

324.5 pg/pmol average MW of a dNTP
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vol = sample volume (μL)

Optimal labeling values for hybridizations are incorporation of >150–200 pmol 

dye per sample and <20 nucleotides/dye molecule.

6. It is preferable to use the eluted samples the same day for hybridization, storing 

in the dark until required. For longer storage or if the hybridization volumes are 

small (<20 μL), combine pairs of Cy3 and Cy5 samples (2 μg each cDNA) to be 

hybridized together, dry down in a speedvac in the dark. Store at −20 °C.

5 .9. Sample hybridization

Hybridization protocols, sample volumes, and quantities vary depending on the microarray 

platform and hybridization chamber. For some array platforms, the hybridization sample is 

applied under a lifter-slip placed over the array on the glass slide. The slide is then placed in 

a small hybridization chamber and incubated between 42 and 65 °C (depending on the 

length of the array probes) for up to 16 h. In general, these hybridizations require large 

sample volumes (≥ 40 μL) and are prone to sample drying and uneven hybridization 

intensities over the array surface, resulting in poor or discarded data. Recently, several high-

density array platforms (e.g., Nimblegen) use special hybridization systems (e.g., MAUI 

hybridization system) that dramatically improve hybridization efficiency. In these cases, 

mixers are applied over the array surface creating a sealed chamber, enabling the application 

of small sample volumes that are actively mixed during the hybridization process. This 

generates an even hybridization, minimizes sample evaporation, increases signal sensitivity, 

increases reproducibility, and shortens hybridization times. Below, we give a sample 

hybridization mix used for arrays with lifter-slips (volume = 50 μL): volumes can be scaled 

accordingly, maintaining the correct final concentration of SSC, HEPES, and SDS. Note 

water and all solutions must be filtered (e.g., with a 0.2 μm filter) to prevent small particles 

damaging the surface of the array.

1. For each hybridization, combine Cy3 and Cy5 sample pairs, using 2μg cDNA for 

each sample, in a 0.2-mL microfuge tube (if combined samples were dried down, 

resuspend in 10 μL H2O).

2. To each hybridization reaction, add 7.5 μL 20× SSC, 1.25 μL 1 M HEPES, pH 

7.0, 1.25 μL 10% SDS and H2O to a final volume of 50 μL (3× SSC, 25 mM 
HEPES, 0.25% SDS final).

3. Incubate reaction at 99 °C for 2 min and then allow to cool at room temperature 

for 5 min. Lightly vortex sample to mix and spin down before applying to 

surface of microarray, following the hybridization instructions for your 

microarray and hybridization chamber.

5.10. Slide washing and scanning

Prior to scanning, hybridized slides are washed to remove any sample nonspecifically bound 

to the slide surface. As slide washing protocols will vary according to the manufacturer, we 

give a washing protocol commonly used for oligo and ORF PCR arrays printed onto 

polylysine-coated slides. Note that all wash stock solutions should be filtered before using. 

After washing, the Cy dyes are extremely unstable: Cy5 is rapidly degraded by ozone in 
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minutes (Branham et al., 2007; Fare et al., 2003). Slides should be dried and scanned in a 

low ozone chamber; alternatively, some companies supply wash solutions that stabilize the 

dyes (e.g., Agilent).

1. Prepare the following wash solutions in glass slide dishes: two glass slide dishes 

each containing 500 mL Wash Solution I (897 mL Milli-Q-water, 100 mL 20× 

SSC, 3 mL 10% SDS). Place an empty slide rack in one of the dishes. If using 

oligo arrays, Wash Solution I should be preheated to 60 °C and poured into the 

slide dishes immediately prior to washing the slides. This is essential to remove 

nonspecific hybridization on oligo arrays; two glass slide dishes each containing 

500 mL Wash Solution II (950 mL Milli-Q-water, 50 mL 20× SSC)and one glass 

slide dish containing 500 mL Wash Solution III (495 mL Milli-Q-water, 5 mL 

20× SSC).

2. Carefully remove slide from the hybridization chamber; keeping the array level, 

submerge into the slide dish containing Wash Solution I with no slide rack.

3. Once submerged, using fine forceps carefully remove the cover slip or mixer-

assembly following the manufacturer’s instructions, taking care not to scratch the 

surface of the array.

4. After removing the cover, place the array on the rack in the second slide dish 

containing Wash Solution I.

5. Repeat steps 2–4 for any other remaining slides. When finished, plunge the rack 

up and down 10–20 times.

6. Immediately transfer the slide rack to Wash Solution II, and plunge up and down 

for 60 s.

7. Drain the rack for 5 s, and then place in the second dish containing Wash 

Solution II and plunge up and down for 60 s.

8. Drain rack for 5 s, and then transfer to Wash Solution III and plunge up and 

down for 60 s.

9. Dry the arrays by centrifugation at 600 rpm for 2 min in a low ozone chamber.

10. Scan the arrays as soon as possible in a low ozone chamber to reduce 

degradation of Cy5.

There are several scanners and software available for processing slides and the generated 

image files; some are specific to certain slide platforms (e.g., Affymetrix). One of the most 

popular systems that handles several different slide platforms is the GenePix scanner and 

software from Molecular Devices and also SpotReader from Niles Scientific. Users should 

scan their slides following the manufacturer’s instructions. Finally, it is also possible to 

reuse slides from some manufacturers (e.g., Nimblegen) for up to three subsequent 

hybridizations without significant loss of hybridization signal by using a series of slide wash 

steps that remove the hybridized sample (stripping) but leaves the probes intact. Specific 

protocols are supplied by the manufacturer.
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6. Microarray Preprocessing

For two-color arrays, each slide is excited at two wavelengths, 532 nm for the Cy3 (green)-

labeled reference sample and 650 nm for Cy5 (red)-labeled experiment sample, to measure 

the fluorescence of the hybridized samples to each probe (feature) on the array. Note that 

during array scanning it is important to individually adjust the scanning voltages at each 

wavelength, which in turn controls the detected fluorescent intensities. This is required to (1) 

approximately balance the signal intensities from each channel and (2) to ensure an optimal 

signal dynamic range for the features on the array, reducing the number of saturated 

(overexcited) probes while maximizing the detection of weakly fluorescing probes. Scanning 

generates two high-resolution 16-bit tiff images (one for each channel) that contain the 

fluorescence intensities for each feature. Image files are also generated when scanning one-

color Affymetrix arrays: here, two slides are scanned to generate separate image files for the 

reference and experimental samples. Preprocessing involves several steps that analyze the 

image files to generate a single expression ratio for each gene represented on the array. This 

involves

1. Image analysis and quality control. The fluorescent intensities of every feature 

are determined by overlaying a grid on each image file to map the location and 

identity of each feature, and to quantify their specific signal intensity and 

surrounding background signal. This generates separate data files for each 

channel that lists all features and their associated specific and background 

fluorescent intensities. From this preliminary analysis diagnostic reports can be 

generated on the quality of the hybridization. These measure the quality of grid 

alignment with the features, calculate average specific versus background 

intensity ratios for all features, the number of saturated features and features with 

signals above threshold, and assess the uniformity of the background and specific 

signals to determine if there was any bias in the hybridization across the array 

surface.

2. Probe set summarization. High-density arrays contain multiple probes for each 

gene. Summarization collates the fluorescent values of probe sets to generate a 

single intensity for each gene, and also discards or reduces the influence of any 

probes within the set that have unusual fluorescence values.

3. Within and between array normalization. Prior to calculating gene expression 

ratios between the reference and experiment data sets, it is important to correct 

for any systematic errors in fluorescence measurements and sample 

quantification. Within array normalization corrects for systematic errors between 

the two compared samples; between array normalization corrects for systematic 

errors across multiple arrays (experiments), enabling more accurate comparisons 

of expression ratios across multiple experiments. Normalization is discussed in 

more detail in the next section.

Most companies provide associated software for array preprocessing, and additional 

software is freely available that enables more advanced preprocessing and array 

normalizations (Table 4.2). Note that Bioconductor is an open source project that provides 
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many high quality tools and documentation for microarray data analysis (Table 4.2). These 

tools run in the programming language, R, and whilst the learning curve is steep, they are 

highly recommended for the serious microarray analyst! Here, we focus on tools and 

procedures that are commonly available across freely available software. First, we present 

common diagnostic plots used to assess general features of the expression ratios and 

subsequent data normalization.

6.1. Diagnostic plots of gene expression ratios

Plots of the gene expression ratios provide very useful information on the quality of array 

experiments and facilitate comparisons between experimental repeats and across experiment 

sets. Note that in all subsequent data analysis, the gene expression ratios are log 

transformed: log2 (R/G), where R = Cy5 intensities (experimental) and G = Cy3 intensities 

(reference). Generally, the Cy3 and Cy5 values are background subtracted, which is the 

default setting on most software programs. However, this can decrease the accuracy of 

determining expression ratios for weakly expressed genes with signals close to background. 

For this reason, it is common to filter datasets removing features that have signal intensities 

less than 2–3 standard deviations above the mean background.

1. Histograms. The simplest gene expression plot is a histogram of log2 (R/G) 

expression ratios for all genes on the array (Fig. 4.3A). Most gene expression 

experiments only alter a small fraction of genes. Consequently, good histograms 

should contain a single symmetrical peak with no shoulders, and have a narrow 

distribution with only a small number of genes with large expression ratios in the 

distribution tails.

2. Scatter plots. These are plots of log Cy3 versus log Cy5 fluorescent intensities 

for every gene, and hence are more informative as they provide a visual overview 

of Cy3 and Cy5 signals for every gene (Fig. 4.3B). these plots should give a 

linear distribution with a good dynamic range and little scatter from the diagonal.

3. MA plots. MA plots enable visualization of variation of gene expression ratios 

(M = log2 [R/G]) as a function of average signal intensity (A = log2 √ [R × G]; 

Yang et al., 2002). Visually, MA plots are similar to scatter plots rotated 

clockwise by 45° (Fig. 4.3C). MA plots are good for detecting an artifact that 

arises when the labeling reaction is nonoptimal; this is apparent as a “skew” in 

the plot, such that low intensity ratios tend to be more negative (G > R) than high 

intensity ratios. This can be corrected by intensity-dependent normalization (see 

later).

4. Box plots. These are useful for comparing the spread and median of gene 

expression ratios either between sectors on an array or between arrays (Fig. 

4.3D).

6 .2. Data normalization

Normalization scales the red and green intensities within an array or across arrays by a 

common factor: log2 R/G → log2 R/(kG). Normalization attempts to correct systematic 

technical differences between the two channels (reference and experiment) or across 

Rhodius and Gross Page 15

Methods Enzymol. Author manuscript; available in PMC 2017 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments (multiple arrays). These include unequal RNA quantities, labeling efficiency, 

biases in measured expression levels, scanner settings, and array batch variations. It is also 

important that the normalization process maintains the original biological variation in the 

signal and that the assumptions of the normalization procedure are understood. 

Normalization requires common references between the two samples that remain 

unchanged. Possible approaches to normalization are:

1. Normalization to housekeeping genes. This is not considered to be an acceptable 

method as there is no evidence for a class of genes that has constant expression 

under different conditions.

2. Normalization to reference RNA. In these cases, each sample is spiked with 

RNA standards from another organism and accompanying target probes are 

present on the array. The expression values of each channel are then normalized 

to the standards. This is useful if there are large-scale changes in gene expression 

and hence the assumptions of global scaling are not valid (described next). 

However, the disadvantage of this approach is that errors are easily introduced 

from the accuracy of quantifying the references, application of references to the 

samples, and their signal intensity measurements from the array.

3. Normalization by global scaling. The most common form of normalization is by 

global scaling, which assumes that the total amount of mRNA remains constant 

under the various experimental conditions and only a small subset of genes 

change expression. Note, if this assumption is true, then the histogram of 

expression ratios remains “balanced”: that is, symmetrical with small tails. 

Simple forms of global scaling sum total mRNA intensities from each channel 

and scale one to the other. More advanced global normalizations discussed below 

correct for biases in expression data that are a function of signal intensity or have 

altered distributions of expression ratios that can be affected by array batches and 

labeling efficiencies.

4. Intensity-dependent normalization (loess smoothing). Gene expression ratios 

visualized using MA plots often display a skew in the median intensities that is a 

function of signal intensity and is due to differences in dye stability, efficiency of 

dye incorporation, and scanner settings (Fig. 4.4A and B). This can be corrected 

using loess smoothing, in which a robust locally weighted regression curve 

(loess) is fitted to the data using overlapping windows of signal intensity 

(typically ~30% of the data). The data is then normalized to the curve such that 

the distribution of log gene expression ratios is centered on zero across the range 

of signal intensities (Yang et al., 2002).

5. Scale normalization. This adjusts the spread of gene expression ratios so that 

they have similar distributions between different arrays, and hence normalizes for 

differences in dye stability, dye incorporation, scanner settings, and array batch 

variations (Yang et al., 2002). Note that the assumption here is that the biological 

distribution of mRNA expression is similar across multiple experiments. This is 

applicable across replicates, but can reduce biological information if comparing 

different conditions that result in dramatically different variations in gene 
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expression distributions; for example, time-course experiments. Simple scale 

normalization can be visualized using box-plots and involves regularizing the 

variance of log gene expression ratios across multiple experiments (Fig. 4.4C and 

D). Quantile normalization regularizes the distribution of probe intensities such 

that they are same across multiple arrays (Bolstad et al., 2003).

A variety of programs are freely available that perform array preprocessing tasks; some are 

listed in Table 4.2.

7. Clustering

Clustering is an exploratory data analysis process for datasets containing multiple array 

experiments. It is used to: discover patterns in the data; group “similar” patterns together 

either by clustering genes (rows) with similar expression profiles or by clustering arrays/

experiments (columns) with similar profiles, or both genes and experiments; reduce the 

complexity of the data into several distinct patterns; and provide a method to order and 

organize the data (reviewed in Boutros and Okey, 2005; D’Haeseleer, 2005; Quackenbush, 

2001). Consequently, clustering is extremely useful for data visualization, hypothesis 

generation, and selection of genes for further consideration. Clustering is an extremely 

useful tool for characterizing the transcriptional effects of circuit parts on the host. First, 

clustering expression experiments of different parts will identify parts that have similar 

effects on the host. This is useful for classifying parts into different categories based on their 

effects on the host, thereby aiding the design of large circuits with multiple parts. For 

example, the user may decide to select parts that affect different systems in the host to avoid 

“overstressing” any one particular system. Second, for a specific part, clustering genes 

across multiple experiments that measure the effect of the part under different growth 

conditions or across an induction time-course will identify genes with similar expression 

profiles and therefore aid detection of the cellular systems affected by the part across the 

different conditions. This is extremely useful, as it is well-documented that genes with 

similar expression profiles are involved in similar cellular processes and are often 

transcriptionally coregulated by regulators.

Most microarray data clustering is unsupervised; that is, no prior information (e.g., gene 

functional categories, operon structure, etc.) is used to guide the clustering. The goal of 

unsupervised clustering is to discover patterns from the data; however, even if the data is 

random such clustering assumes that there is still an underlying pattern. Consequently, 

clustering always works! Therefore it is important to cluster with caution, use different 

algorithms, and where possible, filter the data so that only genes with the most varied 

expression profiles are used. When clustering by array/experiment, the aim is to identify 

conditions that generate similar expression profiles; consequently, it is typical to use all the 

expression data. However, when clustering by genes to identify coregulated genes it is 

important to filter the dataset prior to clustering. This serves both to reduce the dataset to a 

meaningful size and, importantly, to remove genes with expression profiles that have little 

variance across the dataset, thereby reducing “noise” in the clusters. Commonly used filters 

are: (1) genes with expression ratios present in a given fraction of experiments; (2) number 

of genes with expression ratios above a certain threshold in a given fraction of experiments; 
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(3) number of genes with variance or standard deviation of their expression ratios across the 

experiments exceeding a specified value. Finally, when preparing data for clustering, it is 

important to use normalized data that has been log transformed.

7.1. Measures of similarity between genes and distance between clusters

The basic principles of clustering will be discussed in the context of clustering only genes; 

however, these principles also apply to clustering by array/experiment. Clustering measures 

the similarity in expression profiles between genes and also the distance between clusters of 

genes with similar profiles. The aim of clustering algorithms is to identify clusters that 

maximize the similarity of gene expression profiles within clusters whilst maximizing the 

distance between clusters to obtain distinct clusters. It is also important to be able to identify 

outliers that contain expression profiles that do not easily fit into any particular cluster; 

however, only some algorithms do this.

There are two main measures of similarity between genes: correlation coefficients that are 

scale-invariant; and distance metrics that are scale-dependent. Scale-invariant measures 

identify similar patterns of “ups” and “downs” in gene expression ratios, while scale-

dependent measures also consider the magnitude of the expression patterns. Commonly used 

correlations and distance metrics are listed in Table 4.3A. Euclidean distance is the most 

commonly used metric and considers both the patterns of ups and downs and also the 

magnitude of the expression ratios, thereby preserving more information about the data. 

There are three commonly used measures of distance between clusters listed in Table 4.3B. 

The average linkage is the least sensitive to outliers; however, complete distance often 

generates the most discrete clusters, while single linkage often performs very poorly.

7.2. Clustering algorithms

Clustering algorithms can be divided into two types: (1) hierarchical, in which genes with 

similar patterns are joined together by a dendrogram, for example, hierarchical clustering; 

and (2) partitioning, in which the data is divided into groups or clusters with similar patterns, 

for example, Self-Organizing Maps (SOMs) and k-means. Some freely available clustering 

software is listed in Table 4.2 and simple clustering algorithms outlined below.

1. Hierarchical clustering. This is an agglomerative process that starts with every 

gene considered as its own cluster (Eisen et al., 1998). The most similar pair of 

clusters are joined together to form a parent cluster, then the next most similar 

pair of clusters are joined together, and the process repeated until there is just one 

large cluster. During this process, all genes are scored using the similarity 

metrics, and the distance between clusters measured using the distance metrics. 

The merging of the clusters is illustrated using a dendrogram connecting each 

gene and the expression profiles illustrated using a heatmap (Fig. 4.5A). The 

dendrogram and associated heatmap provides a good overall visual guide of 

patterns in the data; however, there are several caveats. First, the order of the 

nodes in the dendrogram is arbitrary, placing genes adjacent to each other that 

may be not that similar. Some software programs flip the dendrogram nodes to 

optimize the ordering of genes based on their similarity (Fig. 4.5B). Second, as 

the agglomerative process of connecting gene expression profiles is rigid and 
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relies on joining the most similar clusters first, any poor clusters generated early 

in the process affects the quality of clusters later on. Also, unrelated gene 

expression profiles are eventually joined. Third, it is difficult to define discrete 

clusters using hierarchical clustering.

2. Self-organizing maps (SOMs). SOMs is a partitioning algorithm that requires the 

user to input the desired number of clusters (centroids; Tamayo et al., 1999). The 

centroids take the form of a grid of dimensions x times dimensions y (e.g., 2 × 3) 

that is overlain on the data in n dimensional expression space. Next, an initial 

gene is chosen at random and the closest centroid moved toward that gene and 

the process repeated in turn for all genes, completing one cycle or iteration. 

Multiple iterations are performed until the program is terminated. As the initial 

order of gene selection is random, slightly different clusters are generated with 

each run; consequently, it is important to perform multiple runs in order to 

identify stable clusters. The disadvantage of SOMs is that all genes are forced 

into clusters; consequently, outliers can distort optimal clusters.

3. k-means. This is also a partitioning algorithm in which the user inputs the 

desired number of clusters (k) (Tavazoie et al., 1999). The algorithm then 

chooses k centroids at random that represent random gene expression profiles. 

Each gene is assigned to the closest centroid until all genes are assigned, then the 

centroids are reset to the average of their assigned genes (cluster). All genes are 

then reassigned to the new closest centroid and the process repeated for a defined 

number of iterations or until no more genes change cluster. Similar to SOMs, k-

means generates different clusters in multiple runs depending on the initial 

centroid positions. Some software programs (e.g., k-means support in MEV; see 

Table 4.2) take advantage of the random initiation by deliberately rerunning the 

algorithm multiple times to identify genes that frequently cocluster (i.e., form 

“consensus” clusters). Here, a user-defined threshold is applied such that gene 

members are required to cocluster in X% of k-means runs. The advantage of this 

approach is that robust clusters are generated, giving the user a feel for the 

significance of clusters. Also, genes that do not commonly cocluster (i.e., 

outliers) remain unassigned and therefore do not distort existing clusters (see Fig. 

4.5C).

4. Figures of Merit (FOM). The disadvantage of both SOMs and k-means is that the 

user is required to estimate the optimal number of clusters to describe the data. 

The FOM algorithm estimates the predictive power of a clustering algorithm and 

therefore can be used as a guide for determining the optimal number of clusters 

(Yeung et al., 2001). For example, FOM can be applied by running k-means 

repeatedly over a range of cluster numbers. This generates a curve of the 

predictive power of the clustering algorithm versus the number of clusters. The 

predictive power increases with the number of clusters; hence the curve can be 

used to select the optimal number of clusters for running k-means.

In summary, when clustering gene expression profiles, it is very important to use the most 

variable profiles for clustering and to “explore” the data using several different clustering 
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algorithms in order to obtain robust clusters. The aim is to identify clusters that describe 

distinct expression patterns and to identify/remove outliers that can detract from the quality 

of the obtained clusters.

8. Differential Expression Analysis

Specialized statistical methods are required to identify significantly differentially expressed 

genes from microarray data (Allison et al., 2006; Dudoit et al., 2003). Use of these methods 

is essential to reliably identify genes that are perturbed by expression of parts in a host. Data 

from a single microarray experiment without further experimental validation is insufficient 

to reliably identify differentially expressed genes. This is because application of a fold cutoff 

does not take into account the uncertainty in measuring gene expression ratios introduced 

from biological sample variability and from technical issues. For example, expression ratios 

of weakly expressed genes are often inherently unreliable as their fluorescence 

measurements have low signal to noise ratios. Consequently, it is essential to perform 

replicate experiments from separate biological cultures (i.e., biological rather than technical 
replicates) to enable the construction of test statistics that incorporate variability estimates 

for each gene. This provides assessment of the statistical significance (e.g., p-value) in the 

differential expression values for each gene, enables a cutoff to be applied to identify 

significantly differentially expressed genes, and also provides an estimate of the type-I (false 

positive) and type-II (false negative) error rates at each applied cutoff. In addition, prior to 

statistical analysis, all microarray expression data should be normalized and log2 

transformed.

Microarray datasets present unique problems for identifying significantly differentially 

expressed genes. Statistical analysis of expression measurements of a single gene in 

condition A versus condition B is relatively straightforward. Here, simple statistics such as 

the Student’s t-test can be used to derive p-values of whether the mean of the replicated log 

ratios differ from a null hypothesis of 0, in which there is no change in expression in 

condition A versus condition B. However, this approach is problematic when scaled up to 

large datasets such as microarrays that contain measurements of 1000s of genes with few 

experimental replicates. Here, additional methods are used including modified t-statistics 

and controls for the increased type-I error rate due to multiple testing.

1. Modified t-statistic. The t-statistic is derived from the difference in means 

divided by the sample variance. Due to the few replicates in microarray 

experiments, gene-specific variance estimates are imprecise, which can result in 

highly variable t-statistics when applied across 1000s of genes. Specialized 

microarray statistical methods such as SAM (Tusher et al., 2001), LIMMA 

(Smyth, 2004), and Cyber-T (Baldi and Long, 2001; see Table 4.2) calculate a 

modified t-statistic in which the estimated gene-specific variance is combined 

with a predicted variance derived from all genes on the microarray. This 

improves the estimate of variance for each gene, thereby increasing the power of 

the t-statistic. However, this approach assumes that the null distribution of the 

test statistics is the same across all transcripts and that all transcripts are 

independent, which is not necessarily true.
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2. Controlling the type-I error rate. Applying a cutoff of p < 0.05 for replicates of a 

single gene experiment predicts 1 false positive from 20 independent trials. 

However, microarrays involve multiple statistical testing of 1000s of genes, 

which dramatically increases the type-I error (false positive) rate for a given α 
(p-value). For example, applying a cutoff of p < 0.05 for a typical microbial 

genome of 4500 genes would generate 4500 × 0.05 = 225 genes as false positives 

even if there is no significant differential gene expression. Consequently, 

specialized statistical methods are applied to microarray data to correct for 

multiple testing and thereby control for type-I errors. The Bonferroni correction 

is a simple method for controlling Family-Wise Error Rate (FWER; probability 

of making type-I errors) at level α, where p̃ ≤ α. Here, the p-value for each gene 

(pg) is adjusted: p̃ = Npg, where N = number of genes. However, the Bonferroni 

correction is a very stringent adjustment as it decreases FWER to 0, which can 

result in missing many true positives (i.e., false negatives, or type-II error rate), 

and also assumes independence amongst genes. There are multiple methods for 

controlling type-I error. The Ŝidák procedure, min P and max T (Westfall and 

Young, 1993) adjust p-values to control FWER (see also Dudoit et al., 2003). 

However, often it is more useful to have an estimate of the false detection rate 

(FDR): that is, for a given threshold, what fraction are false positives (Benjamini 

and Hochberg, 1995). Methods include controlling FDR below a certain level by 

adjusting p-values based on their ranking (Benjamini and Hochberg, 1995), and 

mixture-models that treat genes as either as differentially or not differentially 

expressed (Allison et al., 2002; Datta, 2005; Do et al., 2005; Pounds and Morris, 

2003). One popular microarray statistical tool, SAM (Statistical Analysis of 

Microarrays; Tusher et al., 2001), provides a method for estimating FDR for a 

chosen cutoff value of test statistic (Storey, 2002). This is achieved by permuting 

the datasets to determine if the expression of any of the genes is significantly 

related to the response. Any test statistic of the permuted dataset exceeding the 

cutoff is counted as a “false positive.” The appealing feature of SAM is that the 

user chooses what cutoff to apply based on an FDR they are comfortable in 

dealing with in their significant data set. Recent versions of SAM have also 

incorporated a “Miss rate” table that also estimates the false negative rate of 

genes that do not make the cutoff (Taylor et al., 2005). In addition, SAM 

generates a q-value for each gene, which describes the lowest FDR rate at which 

the gene is called significant (Storey, 2002).

Most microarray statistical analysis is one-class where only one response variable is tested; 

for example, condition A versus condition B. The one-class problem tests whether the mean 

log expression ratios differ from the null hypothesis of 0. It is also possible to perform two-
class comparisons; for example, condition A versus condition B (expt 1) compared against 

condition A versus condition C (expt 2), where the mean log ratios of expt 1 are compared 

for significant difference against the mean log ratios of expt 2. This is useful to compare if 

there are significant difference between different parts when compared to a common control. 

It is also possible to apply statistical analysis to time-course data to identify significant 

differentially expressed genes using either a one-class or two-class comparison based on the 

consistent increase or decrease in gene expression over time (e.g., SAM; Table 4.2).
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A common question for statistical analysis of microarray data is: How many replicates are 

sufficient? Most algorithms require at least four biological replicates to obtain reasonable 

statistics. However, more replicates increase the statistical power: that is, maximizing the 

detection of true positives and minimizing FDR. Several approaches are available for 

estimating sample size (number of replicates) based on the observed variability of gene 

expression ratios in pilot experiments in order to achieve a desired statistical power (Lee and 

Whitmore, 2002; Li et al., 2005; Tibshirani, 2006; software SAM, R/size; Table 4.2).

Finally, it is common in many microarray experiments for statistical analysis to yield long 

lists of significant genes. Consequently, some users to employ both a statistical and a fold 

cutoff to reduce their candidate list and also employing the reasoning that genes with high-

expression ratios are more likely to be directly regulated and therefore easier to biologically 

interpret. Note that, for published reports, it is necessary to describe the statistics and 

expected number of false positives within the significant dataset.

9. Data Analysis: Understanding the Perturbation

Biological interpretation of candidate gene lists identified through clustering and by 

significant differential expression is essential in order to identity the biological processes or 

systems perturbed by expression of parts. Expression of regulators may result in general 

aberrant ectopic gene expression due to recognition of miscellaneous sites throughout the 

genome. However, expression of circuit devices may target specific cellular processes that 

will likely be reflected in the expression patterns. Several approaches can be used to identify 

candidate cellular processes (see Table 4.4).

1. Metabolic pathways. Expression data can be overlain on metabolic maps in order 

to identify genes in reactions or pathways that are differentially regulated.

2. Functional categories. A common query is whether particular functional groups 

are enriched within datasets. A useful classifier for this purpose is Gene 

Ontology (GO) that categorizes genes according to their associated biological 

processes, cellular components and molecular functions. A Fisher’s exact or chi-

square test can be performed to determine if a particular GO term is 

overrepresented within a set of differentially expressed genes compared to the 

whole genome (additional tools are listed in Table 4.4). There are several 

limitations to this approach: an arbitrary cutoff is required to identify 

differentially expressed genes; many differentially expressed genes are required 

to provide robust statistics; nondifferentially expressed genes are not used; the 

level of gene expression is not incorporated. A better alternative is to ask whether 

the genes associated with a GO term are “differentially expressed” within the 

dataset. This is termed Gene Set Enrichment Analysis (GSEA) and can be tested 

using Wilcoxon rank sum test, modified Kolmogorov-Smirnov statistic 

(Subramanian et al., 2005) or using tools available in various software packages 

(see Table 4.4).

3. Protein interactions. High-throughput studies of protein–protein interactions have 

revealed that proteins involved in the same process often interact (Arifuzzaman 
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et al., 2006; Butland et al., 2005). These interaction maps can be used to 

determine if any protein networks are over-represented within the expression 

data; however, these datasets may have many false positives as there is little 

overlap between them. Alternatively, the EcoCyc database has a collection of low 

throughput (experimentally verified) data (Table 4.4).

4. Transcriptional networks. Coregulated genes are often controlled by common 

transcription factors. Consequently, it is often useful to search for 

overrepresented motifs within the promoter regions of genes that cocluster or are 

differentially expressed (see algorithms listed in Table 4.4).

10. Closing Remarks

The key to successful microarray experiments are careful experiment design that enables the 

user to capture the direct effects of the introduced perturbation, in this case, the effect of 

expressing parts within a host. Systematic analysis of multiple parts requires the use of 

carefully defined growth conditions and control samples to enable cross-comparison of 

expression data, both within and between laboratories. Equally important is careful data 

analysis in order to maximize interpretation of the data. This requires knowledge of the 

assumptions behind data normalization, clustering, identification of significantly 

differentially expressed genes to select gene lists, and also biological interpretation to 

identify known cellular systems that are being modulated. The goal is to be able to identify 

and understand the cellular stress circuits that are being triggered by expression of parts of 

circuits. This enables the selection of parts that have orthogonal effects on the host to 

minimize the impact of the fully engineered circuit, and also to facilitate modifying the host 

to better tolerate the genetic circuit. Finally, it is important to accurately document the 

microarray experiment; both as a requirement for publication and also to enable others to 

repeat, modify, or critically evaluate your work. Sadly, this is a critical problem in the field; 

a recent study was unable to reproduce 10/18 published micro-array experiments (Ioannidis 

et al., 2009). Most journals require MIAME compliance (Minimum information about a 

microarray experiment) for publication of microarray data (Ball et al., 2004; Brazma et al., 
2001). This requires uploading array data onto public repositories such as GEO (http://

www.ncbi.nlm.nih.gov/geo/), ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/), and 

CIBEX (http://cibex.nig.ac.jp/). All these databases require detailed documentation of 

experimental design, samples and their preparation, hybridization, array design, and data 

measurement and analysis.
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Figure 4.1. 
Flowchart of the microarray process.
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Figure 4.2. 
Time-course microarray comparison for analyzing “part” effects. Example of a time-course 

comparison in which the original starting culture is split into two separate cultures 

("Reference" and “Induced”) at T0. Immediately afterward, inducer (e.g., IPTG) is added to 

the “Induced” culture to overexpress the desired circuit part. Both cultures are maintained in 

identical growth conditions and samples from each culture harvested at the same time points 

after induction. From each sample, RNA is isolated and cDNA prepared. cDNA from the 

references samples is labeled with Cy3 and from the induced samples labeled with Cy5. For 

each time point, Cy3- (reference) and Cy5-labeled (induced) cDNAs are then mixed and 

hybridized to an array.
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Figure 4.3. 
Common diagnostic plots for analyzing microarray expression data. (A) Histogram of log 

expression ratios (log2 [R/G]) from one array. Histogram should be symmetrical with no 

shoulders. Tails represent differentially expressed genes. (B) Scatter plot of log Cy5 versus 

log Cy3 fluorescent intensities (background subtracted) of features on an array. Scatter plot 

should be linear and evenly distributed. Differentially expressed genes are indicated. (C) MA 

plot of log gene expression ratios (M = log2 [R/G]) versus average intensity (A = log2 √[R × 
G] for one array. Plot should be linear with good dynamic range (range of A values) (D) Box 

plot of log gene expression ratios (M = log2 [R/G]) for one array, illustrating the quartile 

distribution of M values.
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Figure 4.4. 
MA and Box plots illustrating normalization of array data. (A) MA plot of prenormalized 

expression data from one array illustrating the loess curve. (B) MA plot of the same 

expression data in which the M values have been normalized to the loess curve (loess 

smoothing). (C) Box plots of four replicate microarray experiments, illustrating differences 

in distribution of M values. (D) Box plots of same four micro-array data in which the M 
values have been normalized by standard deviation regularization.
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Figure 4.5. 
Clustering algorithms. (A) Hierarchical clustering of top 1.5% most variable genes (59/4249 

genes) across 45 experimental conditions (arrays). Color coded heat map indicates log2 

(R/G) expression ratio of genes (red = R > G; green = G > R; black = no change). (B) 

Dendrograms linking four genes illustrating different arrangement of nodes. (C) k-means 

clustering of same dataset in (A) specifying seven (k) clusters, 10 k-means runs and 

requirement for genes to cocluster in at least eight runs. Note presence of 10 unassigned 

genes that did not meet cocluster threshold.
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Table 4.3

Commonly used measures of similarity between genes and distance between clusters

Measure Comments

(A) Measures of similarity between genes

Correlation (Pearson) Identifies similar patterns of ups and downs

Uncentered correlation (cosine-angle) Identifies similar patterns of ups and downs and also magnitude

Absolute correlation Identifies similar patterns of ups or downs

City Block (Manhatten) distance Corresponds to the sum of differences across dimensions. Yields diamond shaped clusters and is less 
sensitive to outliers

Euclidean distance Corresponds to the geometric distance in multidimensional space. Identifies similar patterns of ups and 
downs and also the magnitude of the patterns. Yields spherical shaped clusters

(B) Measures of distance between clusters

Single (minimum) linkage Shortest distance between members of clusters. Yields elongated clusters and is sensitive to outliers

Compact (maximum) linkage Largest (outside) distance between members of clusters. Yields compact clusters and is sensitive to 
outliers

Average (Mean) linkage Average distance between members of clusters. Generates “in between” sized clusters and is 
insensitive to outliers
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Table 4.4

Resources for biological interpretation

Resource Function URL

Metabolic pathways

KEGG Kyoto Encyclopedia of Genes and Genomes database providing a 
metabolic pathway viewer for overlaying gene expression data

http://www.genome.jp/kegg/

EcoCyc Model organism database for E. coli providing a metabolic 
pathway viewer for overlaying gene expression data

http://biocyc.org/ecocyc/

Functional categories

GO Gene Ontology website provides gene functional classification and 
tools to analyze overrepresentation among lists of genes

http://www.geneontology.org/

Protein–protein interactions

EcoCyc Model organism database for E. coli providing experimentally 
verified protein–protein interaction networks

http://biocyc.org/ecocyc/

Transcriptional networks and motif-finding algorithms

EcoCyc Model organism database for E. coli providing experimentally 
verified transcription networks

http://biocyc.org/ecocyc/

BioProspector Motif-finding algorithm suited for two-block motifs http://ai.stanford.edu/~xsliu/BioProspector/

Consensus Motif-finding algorithm http://bifrost.wustl.edu/consensus/

Gibbs Motif Sampler Motif-finding algorithm http://bayesweb.wadsworth.org/gibbs/gibbs.html

MEME Motif-finding algorithm http://meme.sdsc.edu/meme/intro.html
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