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T he impact of climate variability on health has become 
increasingly relevant given the global rise in air tempera-
tures over the past century.1,2 Extreme weather patterns 

can adversely influence health — directly, as in the case of hyper- 
or hypothermia — and indirectly, by triggering respiratory exacer-
bations, infectious outbreaks, water-borne diseases and injuries.3 
However, there is also growing evidence supporting a link 
between air temperature, metabolic function and energy expen-
diture. Brown adipose tissue aids with acclimatization to cold 
through its unique ability to generate heat by uncoupling cellular 
respiration from mitochondrial adenosine triphosphate (ATP) 
synthesis.4–6 Based on findings from studies involving animals and 
humans, the effects of brown adipose tissue activation extend 
beyond thermogenesis, by influencing whole-body metabolism 
and possibly overall body weight.7–18 Small intervention trials 
involving humans have suggested that even mild exposure to 
ambient cold  — such as lowering a thermostat from 24°C to 

19°C — can increase activity of brown adipose tissue by 30%–40%, 
resulting in substantial improvements in insulin sensitivity.15–18 In 
theory, greater insulin sensitivity should improve glucose han-
dling, but whole-population studies evaluating the potential for 
cold exposure to reduce glucose mishandling are lacking.

We examined the impact of variation in outdoor air tempera-
ture on the risk of gestational diabetes mellitus, a transient form 
of diabetes arising by midpregnancy. Placental hormones lead to 
a temporary state of insulin resistance, starting in the second tri-
mester of pregnancy and continuing until delivery.19 Gestational 
diabetes mellitus arises when the compensatory increase in insu-
lin production fails to maintain normal blood glucose levels. This 
condition affects more than 15  million pregnancies worldwide 
each year20 and can have serious consequences for mother, baby 
and the delivery process.21–23 Hence, gestational diabetes melli-
tus offers an opportunity to study the short-term effect of ambi-
ent outdoor temperature on human metabolism.
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ABSTRACT
BACKGROUND: Cold-induced thermo-
genesis is known to improve insulin sen-
sitivity, which may become increasingly 
relevant in the face of global warming. 
The aim of this study was to examine 
the relation between outdoor air tem-
perature and the risk of gestational dia-
betes mellitus.

METHODS: We identified all births in the 
Greater Toronto Area from 2002 to 2014 
using administrative health databases. 
Generalized estimating equations were 
used to examine the relation between 
the mean 30-day outdoor air tempera-
ture before the time of gestational dia-
betes mellitus screening and the likeli-
hood of diagnosis of gestational 

diabetes mellitus based on a validated 
algorithm using hospital records and 
physician service claims.

RESULTS: Over the 12-year period, there 
were 555 911 births among 396 828 
women. Prevalence of gestational dia-
betes mellitus was 4.6% among women 
exposed to extremely cold mean out-
door air temperatures (≤  –10°C) in the 
30-day period before screening and 
increased to 7.7% among those exposed 
to hot mean 30-day temperatures 
(≥  24°C). Each 10°C increase in mean 
30-day temperature was associated 
with a 1.06 (95% confidence interval [CI] 
1.04–1.07) times higher odds of gesta-
tional diabetes mellitus, after adjusting 

for maternal age, parity, neighbourhood 
income quintile, world region and year. 
A similar effect was seen for each 10°C 
rise in outdoor air temperature differ-
ence between 2 consecutive pregnan-
cies for the same woman (adjusted odds 
ratio 1.06, 95% CI 1.03–1.08).

INTERPRETATION: In our setting, there 
was a direct relation between outdoor 
air temperature and the likelihood of 
gestational diabetes mellitus. Future cli-
mate patterns may substantially affect 
global variations in the prevalence of 
diabetes, which also has important 
implications for the prevention and 
treatment of gestational diabetes 
mellitus.
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Methods

Setting
We used administrative health databases to identify all births to 
women living in the Greater Toronto Area (including urban and sub-
urban areas of Burlington, Oakville, Mississauga, Brampton, Rich-
mond Hill, Vaughan, Markham, Pickering, Ajax, Whitby and Oshawa, 
Ontario).24 This region — one of the largest metropolitan areas in 
North America (about 6 million people) — has a humid continental 
climate with cold winters and hot summers. All permanent residents 
of Ontario receive health care under a single government-funded pro-
vincial health plan (Ontario Health Insurance Plan [OHIP]). Therefore, 
anonymized health records — including hospital, physician and labo-
ratory services — are available for more than 99% of the population.

Study population and data sources
We used existing linked databases for the province of Ontario, all 
housed at the Institute for Clinical Evaluative Sciences (ICES,  
www.ices.on.ca). Individual obstetric deliveries were identified in 
the Discharge Abstract Database (DAD) of the Canadian Institute 
for Health Information (CIHI) using previously validated codes 
from the International Statistical Classification of Diseases and 
Related Health Problems, 10th revision, Canadian version (ICD-
10-CA), and patient service and case-mix groups.25,26 The 
MOMBABY Database at ICES includes all inpatient admission 
records from the Discharge Abstract Database for mothers and 
their newborns delivered from Apr. 1, 2002 onward (capturing 99% 
of all births in Ontario), and deterministically links a mother and 
newborn.27 Each record in the MOMBABY Database contains the 
gestational age at birth, maternal parity and up to 25 diagnoses. 

This study included all women living in the Greater Toronto Area 
who gave birth between Apr. 1, 2002, and Mar. 31, 2014. Women with 
an extreme preterm (< 28 wk gestation) or postterm (> 42 wk gesta-
tion) birth were excluded, as were those with pre-gestational diabetes 
(type 1 or type 2).The latter was ascertained using records from the 
Ontario Diabetes Database, which has a high sensitivity (86%) and 
specificity (97%) for identifying individuals with nongestational diabe-
tes.28 Women who entered the Ontario Diabetes Database more than 
120 days before the index birth were considered to have pregesta-
tional diabetes and were excluded from the study. We also excluded 
women who moved to Ontario after their 20th week of gestation to 
ensure those with pregestational diabetes were not included.

Laboratory claims data were used to identify a date for gesta-
tional diabetes mellitus screening, based on the presence of a fee 
code for a 50-g glucose challenge test (codes L103 or L111). 
Among a subsample of women who underwent screening for 
gestational diabetes mellitus at Mount Sinai Hospital, Toronto, 
we also had results for blood glucose challenge tests.

Records for each woman were linked anonymously across 
multiple databases using a unique identifier created from 
encrypted versions of their health card number.

Study exposure
Our main exposure was mean outdoor air temperature during the 
30-day period before a woman’s 27th week of pregnancy, the usual 
time of screening for gestational diabetes mellitus. Historical 

weather data from Environment Canada was used to derive a 
30-day average of each daily high and low air temperature, in 
degrees celsius, captured at a single weather station at Toronto 
Pearson International Airport.

Study outcomes
We followed the participants from the time of their 30-day exposure 
to outdoor air temperature to the date of obstetrical birth, and 
assessed for a diagnosis of gestational diabetes mellitus based on a 
validated algorithm using administrative claims data. We based a 
diagnosis of gestational diabetes mellitus on the presence of one or 
more diagnostic codes for diabetes from hospital discharge 
abstract records (ICD-10-CA codes E10, E11, E13, E14 or O24), or 2 or 
more physician fee-for-service billing claims bearing a diagnosis of 
diabetes in the last 120 days of pregnancy (i.e., from 23 wk gesta-
tion onward). This algorithm was found to have a sensitivity of 94% 
and specificity of 98% for identifying confirmed cases of gestational 
diabetes mellitus based on laboratory glucose measurements in 
response to an oral glucose load. The latter included women who 
had positive results for 50-g glucose challenge screening tests 
(≥ 7.8 mmol/L) followed by 2 or more abnormalities on an oral glu-
cose tolerance test, or a glucose concentration of 10.3 mmol/L or 
more for the 50-g glucose challenge test alone, in accordance with 
Canadian guidelines for diagnosing gestational diabetes melli-
tus.29,30 These performance characteristics are similar to other pub-
lished algorithms using administrative claims.31

Baseline covariates
Maternal age, parity and postal code of residence were derived 
from hospital discharge abstracts for the index pregnancy. 
Neighbourhood income level was derived from the Canadian 
Census and assigned to each woman using her postal code of 
residence at the time of delivery. The Immigration, Refugees and 
Citizenship Canada database was used to derive the country of 
birth for women born outside of Canada who were granted per-
manent residency in Canada as of January 1985.32,33 Information 
on prepregnancy body mass index (BMI) was available for a sub-
set of 36 935 births between 2006 and 2011, linked to the Better 
Outcomes Registry and Network (BORN) data set at ICES. 

Statistical analysis
We plotted the prevalence (95% confidence interval [CI]) of ges-
tational diabetes mellitus per 1°C increase in the mean 30-day 
temperature before a woman’s 27th week of pregnancy.

We then used generalized estimating equations (PROC GENMOD, 
SAS/STAT software), using the logit link function, to examine the 
odds ratio (OR) for gestational diabetes mellitus per 10°C rise in 
mean temperature in the 30-day period before a woman’s 27th week 
of pregnancy. We adjusted this main model for maternal age, parity, 
world region of origin, neighbourhood income and fiscal year that 
the child was born. The generalized estimating equations model 
accounted for the potential clustering of more than 1 pregnancy 
from the same woman during the study period. We then reran the 
main model using the mean 30-day temperature exposure based on 
the actual date of the 50-g glucose challenge test, which was known 
for a subgroup of women screened at a nonhospital laboratory.
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In our next analysis, we used a generalized estimating equa-
tions model restricted to a subset of women with 2 or more con-
secutive pregnancies in the study period and, again, excluded 
those who developed diabetes between pregnancies. In this 
analysis, only the first 2 pregnancies were evaluated, enabling 
each woman to serve as her own control. We calculated an OR for 
developing gestational diabetes mellitus in relation to each 10°C 
rise in the temperature difference between pregnancies based on 
the 30-day period before screening: first, assuming screening 
occurred at the 27th  week of gestation, and second using the 
known date of screening for gestational diabetes mellitus. Odds 
ratios were adjusted for maternal age and parity for each preg-
nancy. In these analyses, ORs were calculated irrespective of the 
order of each pregnancy or which had a warmer mean outdoor 
air temperature. Because pregnancy order was a statistically sig-
nificant covariate in the latter, we then ran an unconditional 
logistic regression model and assessed the OR for developing 
gestational diabetes mellitus in the second pregnancy — in rela-
tion to the 30-day mean temperature before screening in the sec-
ond pregnancy  — adjusting for gestational diabetes mellitus in 
the first pregnancy, as well as both maternal age and parity in 
the second pregnancy.

We reran the main generalized estimating equations model 
for a subsample of women who underwent screening for gesta-
tional diabetes mellitus at Mount Sinai Hospital. However, in this 
analysis, diagnosis of gestational diabetes mellitus was based on 
results with highly abnormal serum glucose concentrations of 
10.3 mmol/L or more on the 1-hour 50-g glucose challenge test — 
the threshold at which women do not require further confirma-
tory testing with an oral glucose tolerance test.34

Additional analyses
We examined the prevalence (95% CI) of gestational diabetes 
mellitus per 1°C increment in mean outdoor air temperature 
stratified by whether the woman was born in a hotter-climate 
country or not (Appendix  1, available at www.cmaj.ca/lookup/
suppl/doi:10.1503/cmaj.160839/-/DC1). We also added prepreg-

Births among women in the 

Greater Toronto Area*

(April 2002 to March 2014)

n = 579 248 (411 695)

Excluded:
• Births to mothers aged < 15 yr or

> 50 yr n = 178 (133)

• Births to mothers with pregestational

diabetes  n = 12 608 (7891)

• Births at < 28 wk or > 42 wk

gestation  n = 2934 (1456)

• Births to mothers with OHIP† eligibility 

at > 20 wk gestation  n = 6777 (4836)

• Births to mothers with missing

parity  n = 96 (41)

• Births to mothers with missing 

neighbourhood income  n = 689 (472)

• Births to mothers with missing 

world region of birth†  n = 55 (38)

Births included in the 

study cohort

n = 555 911 (396 828)

Figure 1: Creation of the study cohort.*Restricted to urban and suburban 
areas in Toronto and surrounding communities (Burlington, Oakville, 
Mississauga, Brampton, Richmond Hill, Vaughan, Markham, Pickering, 
Ajax, Whitby and Oshawa). †Among women who immigrated to Canada in 
1985 or later. Values in brackets reflect the no. of women who gave birth. 
OHIP = Ontario Health Insurance Plan. 

Table 1: No. of births to women who underwent screening 
for gestational diabetes in the Greater Toronto Area in 
Ontario (2002–2014), by maternal characteristic

Maternal characteristic
No. of births (%)*
n = 555 911†

Age, mean ± SD; yr 30.9 ± 5.4

No. of previous births

    0 259 258 (46.6)

    1 198 578 (35.7)

    ≥ 2 98 075 (17.6)

World region of birth

    Canada 307 254 (55.3)

    Western Nations and Europe 32 312 (5.8)

    Hispanic America 18 350 (3.3)

    Caribbean 15 872 (2.9)

    Sub-Saharan Africa 17 795 (3.2)

    Middle East and North Africa 19 737 (3.6)

    East Asia and Pacific 62 352 (11.2)

    South Asia 82 239 (14.8)

Neighbourhood income

    Q1 (lowest) 150 727 (27.1)

    Q2 123 193 (22.2)

    Q3 102 297 (18.4)

    Q4 91 686 (16.5)

    Q5 (highest) 88 008 (15.8)

Year child was born‡

    2002 33 594 (6.0)

    2003 37 844 (6.8)

    2004 49 696 (8.9)

    2005 49 599 (8.9)

    2006 49 597 (8.9)

    2007 50 140 (9.0)

    2008 48 416 (8.7)

    2009 47 965 (8.6)

    2010 47 103 (8.5)

    2011 47 466 (8.5)

    2012 47 807 (8.6)

    2013 46 684 (8.4)

Note: Q = quintile, SD = standard deviation.
*Unless specified otherwise.
†Total no. of births to 396 828 women.
‡Fiscal year, from Apr. 1 of the indicated year to Mar. 31 of the subsequent year, as 
defined by Ontario’s Ministry of Health and Long-Term Care.
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nancy BMI to our main generalized estimating equations model, 
by using a smaller subsample of 36 935 pregnancies linked to the 
BORN data set at ICES.

Ethics approval
This study received ethical approval from ICES and the Research 
Ethics Board of Sunnybrook Health Sciences Centre, Toronto, Ont.

Results

The creation of the study cohort is outlined in Figure 1. Between 
Apr. 1, 2002, and Mar. 31, 2014, there were 555 911 births among 
included women (n = 396 828) living in the Greater Toronto Area. 
Among these, 133 500 women had 2 or more births during the 
observation period. For 345 853 births (62%), screening for gesta-
tional diabetes mellitus was conducted at a nonhospital labora-
tory, and screening for 44 110 births (8%) was specifically under-
taken at Mount Sinai Hospital, Toronto. 

The mean age of participants at the time of child birth was 
30.9 years in the overall sample, and nearly one-half of all births 
were to women born outside of Canada (Table 1). The characteris-
tics of women with 2 or more births during the observation period 
(n = 133 500) were similar to those of the entire cohort (Appendix 2, 
available at  www.cmaj.ca/lookup/suppl/doi:10.1503/
cmaj.160839/-/DC1); however, women who underwent screening 
at Mount Sinai Hospital were somewhat older and more likely to 
be of higher socioeconomic status (Appendix 3, available at www.
cmaj.ca/lookup/suppl/doi:10.1503/cmaj.160839/-/DC1).

Among all pregnancies (n  = 555 911), we determined (using 
hospital and laboratory claims data) that gestational diabetes 

mellitus occurred in 35 879 (6.5%). We observed a similar preva-
lence of gestational diabetes mellitus (6.3%) among the cohort of 
women with 2 or more births during the observation period. 
Among pregnancies for which screening occurred at Mount Sinai 
Hospital (n = 44 110), 859 (1.9%) fulfilled the diagnostic criterion 
of a very high 1-hour glucose concentration of 10.3  mmol/L or 
more for the 50-g glucose challenge test.

We found a direct relation between ambient temperature and 
prevalence of gestational diabetes mellitus (Figure 2). Prevalence 
of gestational diabetes mellitus among women exposed to a mean 
outdoor air temperature of –10°C or lower in the preceding 30 days 
was 4.6% (95% CI 3.5%–5.3%), whereas prevalence of gestational 
diabetes mellitus among those exposed to a mean 30-day outdoor 
air temperature of 24°C or higher was 7.7% (95% CI 7.2%–8.2%) — 
an absolute difference of 3.1% (95% CI 2.2%–4.0%).

We found that each 10°C increase in mean 30-day outdoor air 
temperature was associated with a 1.06 (95% CI 1.05–1.07) times 
higher adjusted odds of gestational diabetes mellitus when 
screening was assumed to have occurred at 27 weeks gestation 
(Table 2 and Figure 3, top). Results were remarkably similar using 
the mean 30-day outdoor air temperature before the known 
screening test date (Figure 3, second from top).

Among women with 2 consecutive pregnancies (n = 133 500), 
we found a 1.06 times higher adjusted odds of having gestational 
diabetes mellitus per 10°C increase in the temperature difference 
between pregnancies (Figure 3, middle), irrespective of the order 
in which the pregnancy during warmer weather occurred 
(adjusted OR 1.06, 95% CI 1.05–1.08). Furthermore, the influence 
of temperature on the odds of gestational diabetes mellitus in 
the second pregnancy remained unaltered after adjusting for 
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Figure 2: Mean daily outdoor air temperature over the 30-day period before screening for gestational diabetes mellitus (GDM) and corresponding crude 
prevalence (95% confidence interval [vertical bars]) of GDM. Data are shown for pregnancies (n = 555 911) that occurred in the Greater Toronto Area in 
Ontario, from 2002 to 2014. Crude and age-adjusted prevalences for GDM per 1°C rise in 30-day mean temperature were highly correlated (R2 = 0.997). 
Coldest (blue) to moderate (green) to hottest (red) temperatures are shown on the solid line. CI = confidence interval.



RE
SE

AR
CH

E686	 CMAJ  |  MAY 15, 2017  |  VOLUME 189  |  ISSUE 19	

gestational diabetes mellitus in the first pregnancy (adjusted 
OR 1.06, 95% CI 1.03–1.09).

Among the subsample of women who underwent screening 
for gestational diabetes mellitus at Mount Sinai Hospital, we 
calculated an adjusted OR of 1.09 (95%  I 1.04–1.13) per 10°C 
temperature increment, when defining gestational diabetes 
mellitus based on glucose concentrations following a 50-g glu-
cose challenge test (Figure 3, bottom).

We found a positive relation between mean 30-day outdoor 
air temperature and prevalence of gestational diabetes melli-
tus among women born in hotter-climate or less hot countries, 
although rates of gestational diabetes mellitus were about 4% 
higher among the former (Appendix 4, available at www.cmaj.
ca/lookup/suppl/doi:10.1503/cmaj.160839/-/DC1).

We restricted the main model to a small subsample of just 
36 935 pregnancies with known prepregnancy BMI and found 
an unadjusted OR per 10°C increase of 1.03 (95% CI 0.99–1.07), 
which did not change upon adding BMI to the full model 
(adjusted OR 1.03, 95% CI 0.99–1.08).

Interpretation

We observed a direct relation between outdoor air temperature 
and the risk of gestational diabetes mellitus among nearly 
400 000 women residing in a single urban area in Canada. Within 
this confined geographical region, where there are wide fluctua-
tions in temperature across seasons, the absolute difference in 
the rate of gestational diabetes mellitus was more than 3% 
between the hottest and coldest outdoor air temperatures. After 
adjusting for influential risk factors, each 10°C increase in mean 
30-day outdoor air temperature was associated with a 6%–9% 
relative increase in the risk of gestational diabetes mellitus.

Our study design represents a natural experiment, in which 
observed variations in outdoor air temperature were linked to 
gestational diabetes mellitus. One strength of our study was our 
use of population-level data within a universal health care sys-
tem, thereby minimizing selection bias. Furthermore, all 
included women were at a similar stage of pregnancy (i.e., at the 
transition from the second to third trimester, a period charac-
terized by greater insulin resistance). Moreover, our findings 
were robust, whether we used validated administrative health 
records or actual serum glucose concentrations at the time of 
the standard 50-g glucose challenge test, and consistent among 
women born in hotter and colder climates. Although we studied 
a single geographical region, our findings are likely to be gener-
alizable to other regions in North America and worldwide.

A growing body of research supports the biological plausibil-
ity of our findings. Studies using positron emission tomography 
and involving small numbers of participants have shown the 
presence of stores of functional brown adipose tissue in humans 
that can be stimulated by even brief exposure to cold tempera-
tures, with an exposure to cold as short as 2 hours augmenting 
insulin sensitivity.6–15 In small trials involving humans, cold accli-
matization over weeks or months was associated with an expan-
sion of volume of brown adipose tissue and increases in both 
energy expenditure and insulin sensitivity.16–18 Furthermore, 

Table 2: Odds ratios for gestational diabetes mellitus, by 
characteristics of the index pregnancy among included 
births to women who underwent screening in the Greater 
Toronto Area in Ontario (2002–2014)* 

Characteristic
Unadjusted OR

(95% CI)
Adjusted OR

(95% CI)†

Mean outdoor air temperature 
over the 30-day period before 
27th wk of pregnancy per 10°C 
increment

1.07 (1.06–1.08) 1.06 (1.05–1.07)

Age per 1-yr increment 1.08 (1.07–1.08) 1.09 (1.09–1.10)

Parity

    0 1.00 (ref) 1.00 (ref)

    1 1.12 (1.09–1.14) 0.87 (0.85–0.89)

    ≥ 2 1.45 (1.41–1.49) 0.92 (0.89–0.94)

Neighbourhood income

    Q1 (lowest) 1.00 (ref) 1.00 (ref)

    Q2 0.90 (0.87–0.92) 0.93 (0.90–0.96)

    Q3 0.79 (0.77–0.82) 0.85 (0.82–0.88)

    Q4 0.66 (0.64–0.69) 0.73 (0.71–0.76)

    Q5 (highest) 0.51 (0.49–0.53) 0.55 (0.53–0.58)

World region of birth

    Canada 1.00 (ref) 1.00 (ref)

    Western Nations and Europe 0.94 (0.88–1.00) 0.89 (0.85–0.95)

    Hispanic America 1.55 (1.46–1.65) 1.49 (1.40–1.60)

    Caribbean 1.42 (1.32–1.52) 1.42 (1.32–1.53)

    Sub-Saharan Africa 1.50 (1.40–1.60) 1.27 (1.19–1.36)

    Middle East and North Africa 1.47 (1.38–1.56) 1.38 (1.30–1.47)

    East Asia and Pacific 2.04 (1.97–2.12) 1.70 (1.64–1.76)

    South Asia 2.80 (2.72–2.89) 2.95 (2.85–3.04)

Year child was born‡

    2002 1.00 (ref) 1.00 (ref)

    2003 1.05 (0.98–1.13) 1.02 (0.95–1.09)

    2004 1.33 (1.25–1.41) 1.21 (1.14–1.29)

    2005 1.40 (1.32–1.49) 1.26 (1.18–1.33)

    2006 1.51 (1.42–1.60) 1.33 1.25–1.41)

    2007 1.47 (1.39–1.56) 1.27 (1.19–1.35)

    2008 1.78 (1.68–1.89) 1.53 (1.44–1.62)

    2009 1.84 (1.74–1.95) 1.56 (1.46–1.65)

    2010 1.76 (1.66–1.87) 1.46 (1.37–1.56)

    2011 1.79 (1.68–1.90) 1.48 (1.39–1.57)

    2012 1.86 (1.75–1.97) 1.53 (1.44–1.62)

    2013 1.62 (1.52–1.72) 1.33 (1.25–1.41)

Note: CI = confidence interval, OR = odds ratios, Q = quintile, ref = referent.
*No. of included births, n = 555 911; no. of included women, n = 396 828.
†Odds ratios are adjusted for all variables listed in the table.
‡Fiscal year, from Apr. 1 of the indicated year to Mar. 31 of the subsequent year, as 
defined by Ontario’s Ministry of Health and Long-Term Care. 
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there appears to be an inverse relation between activity of brown 
adipose tissue and both BMI and visceral adiposity.10–14 Seasonal 
fluctuations in dysglycemia were observed among a sample of 
pregnant women (n = 997) living in in a small region of Australia.35

Limitations
Although our study focused on outdoor rather than indoor air tem-
peratures, the latter are about 5°C higher at hotter times of the 
year.36 In a study carried out in Greater Boston, Massachusetts — a 

region with a similar climate to the Greater Toronto Area — there 
was a strong correlation between average indoor and outdoor air 
temperature when outdoor temperatures rose above 13°C.37 As 
outdoor temperature fell below 13°C, the average indoor tempera-
ture remained steady at 18°C. Therefore, our use of outdoor warm 
temperature as a reflection of personal temperature exposure was 
likely valid; however, on cooler days, we may not have optimally 
captured personal temperature exposure, an effect that would 
have biased our findings toward the null.

1.00 1.05 1.10 1.15

859/44 110 (1.9)

4703/69 387 (6.8)

8442/133 500 (6.3)

24 128/345 853 (7.0)

35 879/555 911 (6.5)

OR (95% CI)
per 10°C increase in temperature*

No. with GDM/no. at risk
(% with GDM)

30-day period 

Before 27 wk gestation,
comparing all women

Before GDM screening date,
comparing all women

Before 27 weeks gestation,
comparing temperature 

di�erence between 2 consecutive 
pregnancies for the same woman

Before GDM screening date,
comparing temperature 

di�erence between 2 
consecutive pregnancies for

the same woman 

Before GDM screening date,
comparing all women with a 
recorded glucose challenge 

test result ≥ 10.3 mmol/L

Figure 3: Relative odds of gestational diabetes mellitus (GDM; unadjusted [black squares] and adjusted [red circles] odds ratios [95% CI]) per 10°C increase in 
mean daily outdoor air temperature over a 30-day period before screening for GDM. The top 2 models (green text) include all pregnancies, by the 30-day period 
before 27 weeks gestation and the 30-day period before the actual date of screening, adjusted for maternal age, parity, income quintile, world region and year. 
The middle 2 models (blue text) include only women with 2 consecutive pregnancies, adjusted for maternal age and parity for each pregnancy. The bottom 
model (orange text) includes only the subgroup of women with serum glucose results for the 50-g glucose challenge test, adjusted for maternal age, parity, 
income quintile, world region and year. CI = confidence interval, OR = odds ratio.
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There are several other limitations to our study that merit dis-
cussion. We had information on prepregnancy BMI for only 6.6% of 
births, and no information on weight gain during pregnancy, activ-
ity level or diet.38,39 In Canada, levels of physical activity are gener-
ally lower in colder winter months, with less daylight than in the 
summer;40,41 yet, we found that the rate of gestational diabetes mel-
litus was lowest with cold outdoor air temperatures. It is possible 
that some women with pregestational diabetes may have been 
misclassified as having gestational diabetes mellitus owing to 
incomplete capture of such cases by the Ontario Diabetes Data-
base. However, such misclassification would have minimally 
affected our findings, given the low prevalence of diabetes in 
women of reproductive age and no indication for screening for ges-
tational diabetes mellitus in women with pregestational diabetes.22 

Although cold exposure has been shown to have direct effects 
on brown adipose tissue and insulin sensitivity,7–12,15–18 neither 
could be measured in our population. The relation between tem-
perature and gestational diabetes mellitus persisted when com-
paring 2 consecutive pregnancies within the same woman, which 
suggests a lack of influence of unmeasured confounding. 
Although our findings are not easily explained by competing 
hypotheses, the biological mechanism for the association we 
observed requires further investigation.

Conclusion
Our findings have implications for the prevention and management 
of gestational diabetes mellitus. If the association between air tem-
perature and risk of gestational diabetes mellitus is real, then modi-
fying the thermal environment (e.g., lowering the setting on a home 
thermostat or spending more time outdoors in cooler weather) 
may reduce risk of gestational diabetes mellitus. Moreover, it raises 
some broader questions. Climate change models forecast that the 
earth’s surface temperature will rise by 1–2°C by the year 2050, with 
the greatest increase in colder climate regions.1,2 If these assump-
tions are correct, and our current findings are valid, then we would 
expect an increase in the number of cases of gestational diabetes 
mellitus worldwide. Although changes in temperature of this size 
may lead to a small relative increase in the risk of gestational diabe-
tes mellitus, the absolute number of women affected in Canada 
and elsewhere may be substantial.
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