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Abstract

Objectives—Characterization of urinary bacterial microbiome and antimicrobial peptides 

(AMPs) after burn injury to identify potential mechanisms leading to urinary tract infections 

(UTIs) and associated morbidities in burn patients.

Design—Retrospective cohort study using human urine from control and burn subjects.

Setting—University Research Laboratory.

Patients—Burn patients.

Interventions—None.

Measurements and Main Results—Urine samples from catheterized burn patients were 

collected hourly for up to 40 hours. Control urine was collected from “healthy” volunteers. The 

urinary bacterial microbiome and AMP levels and activity were compared with patient outcomes. 

We observed a significant increase in urinary microbial diversity in burn patients vs. controls, 

which positively correlated with a larger percent burn and with the development of UTI and sepsis 

post-admission, regardless of age or gender. Urinary psoriasin and β-defensin AMP levels were 

significantly reduced in burn patients at 1 and 40 hours post-admission. We observed a shift in 

AMP hydrophobicity and activity between control and burn patients when urinary fractions were 
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tested against Escherichia coli and Enterococcus faecalis UTI isolates. Furthermore, the AMP 

activity in burn patients was more effective against E. coli than E. faecalis. UTI-positive burn 

patients with altered urinary AMP activity developed either an E. faecalis or Pseudomonas 
aeruginosa UTI, suggesting a role for urinary AMPs in susceptibility to select uropathogens.

Conclusions—Our data reveal potential links for UTI development and several morbidities in 

burn patients through alterations in the urinary microbiome and AMPs. Overall, this study 

supports the concept that early assessment of urinary AMP responses and the bacterial 

microbiome may be used to predict susceptibility to UTIs and sepsis in burn patients.
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Introduction

Pathologic immunomodulation is a major complication of burns[1, 2]. This increases the 

susceptibility to UTIs, particularly in burn patients with indwelling urinary catheters, which 

can lead to pyelonephritis and sepsis, costing more than $425 million annually[3]. Recent 

evidence shows that dysregulation of the microbiome[4, 5] and AMPs[6-9] are associated 

with UTI susceptibility. Contrary to the previous dogma[10], the urinary tract is not sterile 

and comprises a diverse microbiome[5, 11]. The urinary microbiome likely stimulates, or is 

influenced by, innate immune molecules (e.g., AMPs).

AMPs are conserved components of the innate immune system which exhibit microbicidal 

activity, stimulate inflammation, and facilitate epithelial barrier homeostasis to protect 

against invading microbes[10, 12-14]. Production of urinary AMPs, including human β-

defensin-1 (hBD1), hBD2, psoriasin, lactoferrin, and hepcidin, is influenced by bacteria and 

inflammation[15-20]. Certain “protective” microbes induce select AMPs to control the 

pathogen colonization and/or growth[21]. Thus, urinary AMP dysregulation following burn 

injury could augment UTI susceptibility.

We reported that UTI risk in women undergoing pelvic floor surgery correlated with specific 

urinary bacteria and AMP levels[8], and that cutaneous burn injury in mice impairs AMP 

production in distal sites from the burn, including the urinary tract[13]. We further 

determined that AMP responses and the cutaneous microbiome in autologous donor skin 

significantly differs from unburned controls and correlates with infectious outcomes 

(unpublished results and [22]). Therefore, we hypothesized that burn injury would promote 

alterations in urinary AMP levels and activity, resulting in a more pathogenic urinary 

microbiome profile.

To our knowledge, the impact of burn injury on urinary AMPs and the microbiome in the 

context of UTI and sepsis risk has not been evaluated. This study determined that select 

urinary AMP production is impaired in human burn patients, which parallels a shift in AMP 

activity against common uropathogens. Furthermore, burn patients exhibit a rapid shift in the 

urinary microbiome to a more diverse bacterial profile. Finally, we determined that the 

changes in urinary AMPs and the bacterial microbiome statistically correlate with several 
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post-burn complications. These findings, along with our previous observations, suggest that 

the colonizing bacteria in the skin and urinary tract, may be used as a tool to predict 

morbidity in burn patients.

Materials and Methods

Human Patients and Urine Processing

All protocols were approved by the Loyola University Chicago Institutional Review Board. 

All included patients had a urinary catheter inserted upon arrival to the burn intensive care 

unit (BICU). See Supplementary Methods for exclusion criteria, clinical characteristics and 

post-burn complications. Discarded catheter urine was collected hourly for up to 40 hours in 

burn subjects; voided volunteer urine served as control. Specimens were centrifuged at 

5000xg for 20 minutes, and supernatants sterile-filtered and stored at -80°C.

Microbiome Analyses

DNA was isolated from urine cell pellets, and 16S rDNA amplified and sequenced (see 

Supplementary Methods).

ELISAs and AMP Analyses

AMP protein levels were analyzed by ELISA (see Supplementary Methods). Antimicrobial 

activity was analyzed using established radial diffusion assays[8, 23], against UTI isolates of 

Escherichia coli and Enterococcus faecalis, two common uropathogens in our patient 

population. Zones of bacterial growth inhibition were quantified using ImageJ Software.

Statistical Analyses

All quantitative data are described as mean±standard error of the mean (SEM). Comparisons 

were performed by Mann-Whitney test. P values <0.05 were considered statistically 

significant. Microbial diversity indices were computed as described in Supplementary 

Methods.

RESULTS

Clinical Assessments and Patient Demographics

Urine samples from 30 BICU patients aged 20-80 years (median age: 45 years) were 

evaluated. Control urine samples were obtained from 8 non-burned volunteers aged 27-63 

years (median age: 41 years) (Supplementary Digital Content-Table 1). 10 patients (33%) 

developed a culture-positive UTI. Of these 10 patients, 60% developed positive blood 

cultures during their hospitalization. Only 4 patients without a UTI (20%) developed 

positive blood cultures (Supplementary Digital Content-Table 1). The mortality rate was 

20% for all patients in the study group; and those who succumbed to their injury were >66 

years old and exhibited a burn total body surface area (TBSA) of >43%.

Burn Injury Augments Microbial Diversity and Correlates with Clinical Outcomes

To identify whether burn injury shifts the urinary bacterial microbiome to a more 

“pathogenic” profile, we assessed whether urinary bacterial diversity (e.g., the number of 
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unique bacterial species and/or how diverse the population is relative to each cohort) was 

significantly different between controls and burn patients. Using a non-metric 

multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity plot (Figure 1A), we 

observed that control patients clustered together, whereas the burn patients clustered away 

from the controls, indicating that the urinary microbiome from burn patients was 

significantly different from controls (PERMANOVA test p<0.001, either with or without 

age, gender, and ethnic group as confounding factors). To assess the relationship between 

specific bacteria and patient cohorts, we identified the 8 most abundant bacterial genera 

(Figure 1B). In control patients, Lactobacillus and Streptococcus genera were highly 

abundant, with a relative abundance of 72.28% and 8.59% of total 16S rRNA reads, 

respectively. Enterococcus (42.36%), Aeribacillus (18.03%), Nesterenkonia (10.06%), 
Propionibacterium (3.99%) and Halomonas (3.64%) were the most abundant genera in urine 

from burn patients at either 1 or 40 hours post-admission. Table 1A shows a summary of the 

genera determined to be statistically more or less abundant in controls vs. burn patients.

We then determined that a larger TBSA positively correlated with greater urinary microbial 

diversity 1 hour post-admission (Supplementary Digital Content-Table 2), and subsequently 

compared this data with several clinical parameters. We further identified a significant 

positive correlation between greater urinary microbial diversity and the development of a 

UTI 1 hour post-admission, as well as sepsis development at 1 hour post-admission, with 

greater significance occurring over time (Supplementary Digital Content-Table 2). Thus, the 

larger the urinary microbial diversity, the more likely the burn patient was to develop a UTI 

and/or sepsis post-admission, regardless of age or gender. Tables 1B and 1C show a 

summary of the genera determined to be statistically more or less abundant in UTI-positive/

UTI-negative and sepsis-positive/sepsis-negative burn subjects 1 hour post-burn, 

respectively.

Burn Injury Decreases Urinary AMPs

To identify whether burn injury promotes alterations in urinary AMP production, we 

quantified several urinary AMPs by ELISA, which were normalized to total urinary protein 

(Figure 2). Psoriasin levels were significantly decreased at 1 and 40 hours post-admission in 

burn patients compared to controls (p<0.001 and p<0.0001, respectively), and exhibited the 

most robust changes as compared to the other AMPs (Figure 2A). Lactoferrin levels were 

not significantly different (Figure 2B). In burn patients, hBD1 levels were reduced by over 

50% both 1 and 40 hours post-admission (p<0.05 and p<0.001, respectively; Figure 2C), 

while hBD2 levels were reduced by ~70% at 40 hours post-admission (p<0.05; Figure 2D). 

HMGB1 levels were evaluated as a urinary biomarker for UTI susceptibility in burn patients, 

as blood measurements serve as a marker for tissue necrosis and late sepsis[24, 25] and was 

recently found to correlate with cystitis-associated bladder pain[26], but no significant 

differences were observed (Figure 2E). No statistically significant differences were observed 

for hepcidin concentrations in controls vs. burn patients (Figure 2F). We further determined 

that the urinary microbial diversity at the genus level (inverse Simpson test:Shannon, 

p=0.032), significantly correlated inversely with urinary hepcidin levels at 40 hours post-

admission, indicating that higher hepcidin values correlate with a more diverse urinary 
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microbiome. Other AMPs (e.g., psoriasin, hBD1, hBD2, lactoferrin) did not correlate with 

urinary microbial diversity.

Burn Injury Impairs Urinary Bactericidal Activity

We next assessed the capacity of urinary AMPs to limit the growth of typical uropathogens 

by radial diffusion assay (RDA)[8, 23]. HPLC was used to purify peptides from urine 

specimens based upon hydrophobicity, as peptide hydrophobicity can dictate bactericidal 

capacity of AMPs[27]. Fractions from each randomly selected urine specimen (6 control 

specimens and 12 specimens from 6 burn patients: 1 hour and 40 hours post-admission) 

were normalized to the same peptide concentration and then tested in RDAs to assess their 

capacity to inhibit growth of two of the most prevalent bacteria cultured from urine of our 

institution’s burn patients, E. coli and E. faecalis[28]. Select urine fractions demonstrated 

distinct AMP activity against E. coli when comparing controls vs. burn patients at 1 or 40 

hours post-admission (Figure 3A and 3B). For example, AMP activity in fractions 10-11 was 

elevated in urine from select burn patients 1 hour post-admission (median:~18mm2) vs. 

controls (median:0-0.16 mm2), which may represent secreted AMPs in response to urothelial 

barrier defects induced by the systemic response to burn injury[13]. In contrast, minimal 

change in AMP activity in fractions 17-20 was observed at 1 hour when comparing burn 

patients (median: 0.08-0.35 mm2) vs. controls (median 0.16-0.89 mm2). When comparing 

AMP activity between controls and burn patient samples collected at 1 hour or 40 hours hour 

post-admission, we observed a robust increase in AMP activity in fractions 2, 13, and 17-20 

(Figure 3B). The majority of fractions from burn patients at either 1 or 40 hours post-

admission exhibited greater AMP activity compared to controls. Fractions from burn 

patients also exhibited a more diverse range of AMP activity overall. Differences in AMP 

activity were also seen between fractions taken at hour 1 compared to hour 40, as a robust 

decrease in AMP activity was observed for fraction 10 (median: 18.33 vs. 0.89 mm2), 

suggesting progressive changes in urinary AMP activity over time.

When incubated with E. faecalis, fractions from burn patients exhibited a different profile 

than E. coli, with some burn fractions exhibiting lower AMP activity compared to those 

from controls. For example, the AMP activity of fraction 9 (Figure 4A) was much more 

robust in controls (median: 17.07 mm2) than burn patients at 1 or 40 hours (median: 

0.33-0.62 mm2). In addition, fractions 15-17 and 20 from controls (median: 2.6-5.26 mm2) 

exhibited greater AMP activity than burn patients (median: 0.62-5.63 mm2). In fractions 1-7, 

there was a greater increase in the bactericidal capacity of urine from burn patients, as 

compared to later fractions where the controls exhibited greater AMP activity (fractions 

9-10, 15-17, 20) (Figure 4B). Collectively, the shift in AMP activity seen in early fractions 

compared to that observed in later fractions suggests that AMP hydrophobicity may change 

over time after burn injury, and that susceptibility of urinary pathogens may be mediated by 

altered AMP activity.

Discussion

The importance of AMPs and the cutaneous microbiome has been consistently demonstrated 

in acute trauma and chronic wounds[13, 29, 30]. However, no studies to date have addressed 
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the impact of cutaneous burn injury on AMP responses in the urothelium, although UTI and 

subsequent urosepsis is frequently observed in burn patients[10, 13, 29, 31]. The present 

study is the first to identify potential mechanisms by which burn patients exhibit a greater 

UTI susceptibility after injury, in part, via shifts in the urinary microbiome and AMPs. The 

parallel reduction in urinary AMPs and shift in the microbiome positively correlated with 

the propensity to develop a UTI and sepsis in burn patients.

We conclude that burn injury potentiates a systemic effect on epithelial AMP production, as 

supported by our previous studies in mice[13], which may facilitate a reduction in 

“protective” urinary microorganisms and overgrowth of uropathogens after burn injury. We 

recently found that the cutaneous microbiome of autologous donor skin of burn patients 

significantly differs from non-burned controls (Plichta et al., submitted). These data indicate 

that the tissue-specific mechanisms for microbiome and AMP regulation may be altered 

after burn injury, but also that a burn injury elicits a systemic effect on epithelial innate 

immune and microbial responses.

Our assessment of the urinary bacterial microbiome in burn patients is the first to 

demonstrate that burn injury promotes a rapid change in the urinary bacterial microbiome, 

which likely influences and is regulated by changes in endogenous urinary AMPs. We 

identified several statistical correlations between the diversity of the microbiome and the 

development of both UTIs and sepsis, which may be used to predict morbidity among burn 

patients. Extensive studies are necessary to further determine whether the identified 

uropathogens/microbial shifts are related to the type of injury, patient response/

comorbidities, and/or the magnitude of the injury, as well as the specific mechanisms that 

regulate their responses.

In our study population, we observed that the microbiome in the controls was composed 

primarily of Lactobacillus, as compared to burn urine, which was comprised of multiple 

other genera. These results parallel our[8] and other urinary studies, which demonstrate a 

predominance of Lactobacillus in the “healthy” or control (i.e. non-diseased) cohort[32, 33]. 

We speculate that the abundance of these other genera (e.g. Enterococcus, Staphylococcus), 

as well as the rapid change in the urinary microbial diversity after burn injury, is the result of 

increased gut epithelial barrier permeability, which requires further scrutiny. Recently, a 

meta-analysis showed that following UTI, patients given a vaginal suppository of 

Lactobacillus probiotic were significantly less likely to develop a recurrent infection[34], 

illustrating the possible role of a “protective” microbiome in preventing UTIs[35, 36]. Our 

colleagues previously determined that urinary bacteria detected by 16S rRNA sequencing is 

not due to specimen contamination or due to the method of collection (catheterized vs. 

clean-catch)[5]. However, it must be determined whether the observed bacterial microbiome 

is a part of intracellular bacterial communities or biofilms [37, 38] within the urothelium, or 

whether the bacteria are planktonic in nature.

Intriguingly, we observed that several unique bacterial taxa were enriched in burn subjects 

overall, and more so in UTI-positive and sepsis-positive burn subjects (Table 1): 

Aeribacillus, Nesterenkonia, Halomonas, and Caldalkalibacillus. These taxa are related as 

they are characterized as halophilic or thermophilic (e.g. extremophiles), and tend to be 
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isolated from water and soil sources[39-41]. We surmise that enrichment of these taxa may 

be derived, in part, from cutaneous absorption following exposure to hospital steam sources 

during wound debridement procedures, as we previously determined that skin barrier 

permeability increases after burn injury[13, 22]. Alternatively, changes in urinary 

osmolarity/salt concentrations, caused by a disturbance of the local ionic environment (e.g. 

renal insufficiency; urea production; hormone secretion) following burn injury[42, 43], may 

enable their proliferation by providing key metabolites that are normally limited in the urine. 

A more detailed assessment of these potential mechanisms are necessary to better elucidate 

the positive correlation between these taxa and the development of UTI and sepsis in our 

burn population.

AMPs participate in the regulation of epithelial microbiota and maintenance of epithelial 

barrier integrity by directly killing microbes and stimulating innate and adaptive immune 

responses[8, 13, 23, 29, 30]. Although the protein levels of urinary AMPs have been 

assessed in a limited number of urinary pathologies[8, 44, 45], no studies to date have 

assessed changes in urinary AMP levels or activity as a mechanism for the development of 

post-burn UTIs. In our studies, we observed a significant reduction in specific AMPs, rather 

than global suppression. Psoriasin exhibits its antimicrobial activity against E. coli by zinc 

sequestration[46]. The significant psoriasin decrease following burn injury could indicate an 

attenuated activity against E. coli, possibly due to changes in urinary ion composition, as 

fluid balance and ionic homeostasis are critical after burn injury[45]. Reportedly, hBD1 may 

encourage bacterial tolerance in the urinary tract and limit growth of pathogenic 

microbes[47, 48]. We previously demonstrated that hBD1 was critical in protecting women 

with pelvic organ prolapse from UTI[8], suggesting an essential role for hBD1 in protection 

from uropathogens. In contrast, hBD2 is known to be upregulated in pyelonephritis[48], 

while our observed reduction suggests impairment of this AMP induction. Alternatively, 

stress mediator (e.g. acetylcholine or glucocorticoid) production following traumatic burn 

injury may suppress urothelial AMP production, as this mechanism has been demonstrated 

in models of epithelial injury and infection[23, 49], and requires further exploration.

Our studies also determined that urinary AMP activity from burn patients exhibited robust 

changes in AMP hydrophobicity, as indicated by greater AMP activity in later fractions 

against E. coli, and greater AMP activity in earlier fractions against E. faecalis. These 

changes in peptide hydrophobicity and AMP activity dictate how well urinary AMPs exert 

their activity[12, 14] against pathogenic microbes and influence local inflammation in the 

urinary tract[8, 50]. Furthermore, we observed that AMP activity from burn patients was 

more effective against E. coli vs. E. faecalis. Both of our UTI-positive burn patients (2 of 6) 

developed either an E. faecalis or Pseudomonas aeruginosa UTI. These clinical data suggest 

that reduced urinary AMP activity may directly increase one’s susceptibility to specific 

uropathogens, and that testing of urinary AMP activity early after admission may predict 

UTI. Of note, none of our burn patients received systemic antibiotics during the urine 

collection period; thus, none of the urinary AMP activity could be attributed to excreted 

systemic antibiotics.

In summary, our data demonstrate significant alterations in host urinary AMPs and the 

urinary bacterial microbiome soon after burn injury. These changes likely have direct or 
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indirect implications for UTI and sepsis development in burn patients. Further evaluation of 

the mechanisms by which burn injury modulates the urinary AMP and bacterial 

microenvironment will be critical to our understanding of the host-pathogen interactions 

after traumatic injury.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Burn injury significantly alters the diversity of the urinary microbiome
A) NMDS using Bray-Curtis Dissimilarity analysis comparing the bacterial diversity at the 

Genus level within the urinary microbiome of controls (black squares) and burn patients (red 

circles). The letter represents the subject identification, while the number represents the time 

(hours) post-admission for each subject. The patients within the black dotted circle represent 

control patients, which cluster away from burn patients within the red dotted circle at all 

time-points. B) The most abundant bacterial genera in controls and burn patients are 

indicated in horizontal bar graphs. Controls are indicated by blue bars. Burn subjects are 

indicated by red bars. All genera shown are significantly different between the 2 cohorts 

(p<0.05).
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Figure 2. Urinary protein levels of AMPs after burn injury
A) Psoriasin levels are significantly decreased after burn injury at 1 and 40 hours post-

admission. B) Lactoferrin levels are not significantly different after burn injury. C) hBD1 

levels are significantly decreased after burn injury at hour 1 and 40 hours post-admission. D) 

hBD2 levels are significantly decreased at 40 hours post-admission. E) HMGB-1 levels are 

not statistically different at either time-point. F) Hepcidin levels are not statistically different 

at either time-point. * = p<0.05 and # = p<0.001 with Mann Whitney test, n = 8-24.
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Figure 3. Bacterial growth inhibition of E. coli with urine fractions from control patients 
compared to the same fractions of burned patients at 1 hour and 40 hours post-admission
A) Areas of clearing in E. coli bacterial lawns in fractions 7-12 from urine samples of a 

representative control and burn patient at 1 and 40 hours post-admission. B) Antimicrobial 

activity against E. coli demonstrates notable changes in multiple fractions, primarily in 

fractions 2, 10-11, and 17-20. Arrow to the right indicates increasing peptide 

hydrophobicity. The median is shown for all groups: open circles=controls; grey 

circles=burn patients at 1 hour post-admission; black circles=burn patients at 40 hours post-

admission. Fractions were assessed in duplicate with wells containing 1μl of sterile water 

and 1 μl LL-37 (100 μM; GeneScript) as negative and positive controls, respectively.
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Figure 4. Bacterial growth inhibition of E. faecalis with urine fractions from control patients 
compared to the same fractions of burned patients at 1 hour and 40 hours post-admission
A) Zones of bacterial growth inhibition of E. faecalis present in fractions 7-12 withcontrol 

urine and fractions from burn patients 1 and 40 hours post-admission. B) Antimicrobial 

activity against E. faecalis is altered following burn injury in the majority of urine fractions 

and antimicrobial activity against E. faecalis demonstrates notable changes in multiple 

fractions. Arrow to the right indicates increasing peptide hydrophobicity. The median is 

shown for all groups: open circles: controls; grey circles: burn at 1 hour post-admission; 

black circles: burn at 40 hours post-admission. Fractions were assessed in duplicate with 

wells containing 1μl of sterile water and 1 μl LL-37 (100 μM; GeneScript) as negative and 

positive controls, respectively.
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Table 1

A. Significant differences between genera within the urinary bacterial community structure of control urine or 

urine from burn subjects (1hr or 40hr post-burn).

Control vs. 1hr 
Post-Burn

Genera Corrected P value % in Control % in 1hr Post-Burn

Lactobacillus 6.94E-10 74.72% 1.62%

Propionibacterium 3.95E-05 0.15% 3.99%

Caldalkalibacillus 0.000172604 0.13% 2.61%

Nesterenkonia 0.000177684 0.55% 10.06%

Aeribacillus 0.000424733 0.90% 18.03%

Staphylococcus 0.004739377 0.35% 4.34%

Halomonas 0.012388841 0.74% 5.09%

Flavobacterium 0.012388841 0 1.23%

Enterococcus 0.014662622 0 1.73%

Control vs. 40hr 
Post-burn

Genera Corrected P value % in Control % in 40hr Post-burn

Lactobacillus 7.35E-163 74.96% 1.52%

Streptococcus 7.94E-20 8.59% 0.81%

Enterococcus 5.66E-18 0 42.36%

Halomonas 4.73E-15 0.74% 3.64%

1hr vs. 40hr Post-
burn

Genera Corrected P value % in 1hr Post-burn % in 40hr Post-burn

Anaerococcus 0.010707066 0.29% 1.12%

B. Significant correlations between genera within the urinary bacterial community structure of UTI positive (UTI+) and UTI negative (UTI-) 
burn subjects at 1 hour post-burn, after accounting for age and gender.

UTI+ vs. UTI- in 
1hr Post-burn

Genera Corrected P value % in UTI+ % in UTI-

Corynebacterium 1.65E-77 4.83% 0.87%

Veillonella 1.72E-15 0 12.82%

Aeribacillus 4.85E-12 18.72% 14.26%

Nesterenkonia 7.00E-11 11.89% 8.76%

Bifidobacterium 2.12E-05 1.20% 0

Diaphorobacter 0.002093995 0 2.20%

Gardnerella 0.004108313 0.02% 0.32%

Atopobium 0.031680484 0 0.21%

C. Significant correlations between genera within the urinary bacterial community structure of Sepsis positive (Sepsis+) and Sepsis negative 
(Sepsis-) burn subjects at 1 hour post-burn, after accounting for age and gender.

Sepsis+ vs. 
Sepsis- in 1hr 

Post-burn

Genera Corrected P value % in Sepsis+ % in Sepsis-

Aeribacillus 1.62E-29 22.17% 13.53%

Nesterenkonia 2.23E-16 14.42% 8.20%

Lactobacillus 5.54E-14 0.99% 1.80%
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Control vs. 1hr 
Post-Burn

Genera Corrected P value % in Control % in 1hr Post-Burn

Corynebacterium 1.37E-12 0.92% 2.83%

Halomonas 8.61E-12 6.26% 3.92%

Gardnerella 1.36E-10 0 0.29%
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