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Reduced-cost linear-response CC2 method based on natural
orbitals and natural auxiliary functions
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A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has
been developed for the evaluation of excitation energies. The method is based on the simultaneous trun-
cation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation.
For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for
each excited state using the average of the second-order Møller–Plesset (MP2) and the corresponding
configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing
the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay,
J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a
triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis
can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of
the solution of the CC2 equations, which are in our approach about as expensive as the evaluation
of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of
magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated
excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate
that the new approach enables the efficient computation of CC2 excitation energies for excited states
of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis
sets. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983277]

I. INTRODUCTION

The excited states of molecular systems are important for
many areas of chemistry, biology, and physics. Not only well-
established disciplines, such as spectroscopy, photochemistry,
or photobiology, but also emerging fields like energy conver-
sion and storage utilize some phenomenon related to excited
states. Consequently, the development of efficient theoretical
methods for excited states is one of the major objectives of
modern quantum chemistry.

Nowadays the most accurate electronic structure theory
is the coupled-cluster approach introduced by Čı́žek a half
a century ago.1 The hierarchical coupled-cluster (CC) meth-
ods based on the exponential parameterization of the wave
function, that is, the CC singles and doubles (CCSD), the
CC singles, doubles, and triples (CCSDT), . . ., enable the
consideration of electron correlation with arbitrary accuracy.
The CC methods can also be generalized to excited states,
but it is not a trivial task. One option is to invoke linear-
response (LR) theory, which was first extended to CC theory
by Monkhorst and co-workers2,3 and later by Koch et al.4,5

An alternative approach, which is equivalent to LR-CC the-
ory for excitation energies, is the equation-of-motion (EOM)
CC method developed by Bartlett and co-workers.6,7 The the-
ory, implementation, and performance of the various LR-CC
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and EOM-CC methods are reviewed in several publications in
the literature.8–11 Concerning bigger molecules, even the rel-
atively cheap CCSD approach is too expensive, and further
approximations are required. A simple approximate CCSD
approach is the second-order CC (CC2) method proposed
and first implemented by Christiansen et al.12–14 and later
perfected by Hättig and co-workers.15–17 The CC2 method
supplies excitation energies and transition moments with a
moderate error, at least for valence states, with respect to
higher-order CC methods.18,19 It is also worth mentioning
the configuration interaction singles with perturbative dou-
bles [CIS(D)] approach introduced by Head-Gordon et al.,20

which can also be regarded as an approximate CC2 method.21

The CIS(D) approach improves the configuration interaction
singles (CIS) excitation energy with a perturbative correc-
tion for the double excitations and scales as the fifth power
of the systems size as the CC2 method, but, in practice, it
is considerably less expensive than CC2. Another closely
related approach is the second-order algebraic diagrammatic
construction [ADC(2)] method of Schirmer,22,23 which has
been recently extensively studied by Hättig21 and Dreuw and
co-workers.24 The ADC(2) approach can be regarded as an
iterative, Hermitized generalization of CIS(D), which is close
in accuracy to CC2.

Despite the excellent numerical results, the applicabil-
ity of CC methods is limited due to the steep scaling of
their costs with the system size. Thus, for excited states of
extended molecular systems, currently the time-dependent
density functional theory (TD-DFT)25 is the method of choice,
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even if the reliability of the TD-DFT results is frequently in
question,26,27 especially for Rydberg and charge transfer (CT)
excitations, just as for conjugated π-electron systems. An alter-
native solution is the reduction of computational expenses of
CC methods, such as CC2, which provides results consistently
better than TD-DFT.28–30 In the case of most reduced-cost
CC2 approaches, the bottleneck related to the processing of
four-center electron repulsion integrals (ERIs) is removed
exploiting density fitting (DF) or Cholesky-decomposition
(CD) techniques, which can also be combined with Laplace
transform (LT) approximations. In the DF approach intro-
duced by Shavitt and co-workers31 and further developed by
Whitten32 and Dunlap,33 the four-center ERIs are approxi-
mated as products of three- and two-center integrals with the
aid of an auxiliary (fitting) basis set. For electron correlation
methods, this significantly decreases the expenses of the inte-
gral transformation steps as well as the memory demand and
the number of input-output (I/O) operations for the correla-
tion calculations.15,34 The DF approximation was adapted for
CC2 by Hättig and co-workers,15 who also developed analytic
gradients for CC2 employing DF.16,17 In the tensor hyper-
contraction (THC) scheme of Sherrill, Martı́nez, and their
co-workers, which is a generalization of the DF technique, an
even lower-order representation of the ERI tensor is used.35–37

The method was also successfully applied to ground-38 and
excited-state39 CC2 calculations. In the CD approach proposed
by Koch et al.,40,41 the four-center ERI tensor is decomposed as
a product of triangular matrices neglecting the columns/rows
that give negligible contributions. The efficiency of the approx-
imation was also demonstrated for CC2.42–44 The LT approx-
imation developed by Almlöf and Häser45–47 eliminates the
orbital energy denominators appearing in many-body methods
like CC2. Together with the DF and further approximations,
it can be efficiently used for the scaling reduction of the CC2
method.48,49

The computational costs of CC2 calculations can also be
brought down by local approximations pioneered by Pulay and
co-workers.50,51 Although the literature of local correlation
methods is intensively growing, applications to excited states
are relatively scarce. The first excited-state local approach
was proposed by Crawford et al.,52,53 who generalized the
ground-state local CCSD method of Werner and co-workers54

to EOM-CCSD. Subsequently several excited-state CC meth-
ods utilizing local approximations were published by Korona,
Schütz, and their associates.49,55–60 First, a local EOM-CCSD
method was developed, in which the dominant configura-
tions contributing to the given excited state were identified
by analyzing the CIS wave function.55 In later publications,
the development of local CC2 methods was reported,56 which
was also extended to the calculation of molecular properties57

and combined with LT techniques.49,58–60 It is also worthwhile
mentioning the local CC2 methods of Hättig et al. utilizing pair
natural orbitals61–63 and the recent local framework for calcu-
lating excitation energies (LoFEx) approach of Baudin and
Kristensen,64 as well as the chain of spheres exchange65 and
pair natural orbitals66 CCSD method of Izsák et al.

A widely used technique for decreasing the costs of CC
calculations, the frozen natural orbital (NO) approach, is based
on the reduction of the size of the molecular orbital (MO) space

where the corresponding equations are solved. In this method,
a one-particle density matrix is constructed using a more
approximate correlation method, the matrix is diagonalized,
and the orbitals with small occupation number, i.e., eigen-
value, are dropped from the resulting NO basis.67–69 While
the approach is extensively used for ground-state CCSD and
higher-order CC calculations,70–73 only a couple of applica-
tions have been reported for excited states,53,74 and, to the best
of knowledge, no attempt has been made so far to accelerate
CC2 calculations with frozen NO approximations. Motivated
by the NO technique, a related approach was recently put for-
ward by one of us for the reduction of the auxiliary function
basis set employed in DF methods.75 The so-called natural
auxiliary function (NAF) approach constructs a fitting basis
that is optimal for the given integrals and thereby allows
us to shrink the basis to as small as possible. It was suc-
cessfully applied to the cost reduction of the second-order
Møller–Plesset (MP2) method and the direct random-phase
approximation (dRPA)75 also in combination with local cor-
relation approximations.76–78 Although it was anticipated in
Ref. 75 that significant speedup can also be achieved for CC2
calculations, the NAF technique has not yet been utilized for
the CC2 method.

In this paper, we report the development of an efficient
and robust reduced-cost LR-CC2 method which is based on
the combination of the NO and NAF approaches. The errors
introduced are analyzed in detail, and the applicability of the
method is demonstrated for representative examples.

II. THEORY
A. The linear-response CC2 approach

The CC2 correlation energy for a restricted Hartree–Fock
(HF) reference can be expressed as

∆ECC2 =
∑
aibj

[2(ai|bj) − (aj |bi)](tab
ij + ta

i tb
j ), (1)

where i, j, . . . (a, b, . . .) denote the occupied (virtual) spatial
orbitals, and (ai|bj) is a two-electron integral in the Mulliken
notation. The equations for the ta

i single and tab
ij double exci-

tation amplitudes were derived retaining the CCSD singles
equations, while approximating the doubles equations to be
correct through first order with assuming the singles to be
zeroth-order parameters.12 The resulting equations read as

Ωµ1 = 〈µ1 |Ĥ + [Ĥ, T2]|HF〉 = 0, (2)

Ωµ2 = 〈µ2 |Ĥ + [F, T2]|HF〉 = 0, (3)

where Ω is the CC2 residual, |HF〉 denotes the HF deter-
minant, and |µn〉 stands for n-fold excited determinants. T2

= 1
4

∑
aibj tab

ij a+b+i−j− is the cluster operator of double excita-
tions with a+ and i� as the creation and annihilation operators
corresponding to MOs a and i, respectively. For convenience,
the T2 operator together with the single excitation cluster oper-
ator, T1 =

∑
ai ta

i a+i−, will be denoted in a general form as
Tn = 1

(n!)2

∑
µn

tµnτµn , where tµn is the cluster amplitude associ-

ated with the τµn excitation operator. In the above equations, F
is the Fockian, while Ĥ is the similarity-transformed Hamil-
tonian, which is obtained from the original Hamiltonian H
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as
Ĥ = e−T1 HeT1 . (4)

The T1-transformed two-electron MO integrals can be
expressed in a closed form as

(pq |̂rs) =
∑
tuxy

(1 − tT
1 )tp(1 + t1)uq(1 − tT

1 )xr(1 + t1)ys(tu|xy),

(5)
where p, q, . . . are the generic orbital indices, and t1 is an
nb × nb matrix with nb as the size of the basis. The elements of
matrix t1 are zero except for its virtual-occupied block, where
they are equal to the tµ1 amplitudes.

The simple equations for the doubles amplitudes, Eq. (3),
can be regarded as the doubles equations of the MP2 method
with an effective Hamiltonian, and the doubles amplitudes can
simply be expressed as

tab
ij =

(ai |̂bj)
εi + εj − εa − εb

=
(ai |̂bj)

Dab
ij

, (6)

where εp is the corresponding orbital energy. Substituting
these into Eq. (2), it is obvious that the doubles amplitudes can
be calculated on-the-fly, and their storage can be avoided.15 In
practice, the equations for the single excitation amplitudes,

Ωai =
∑
bjc

(jb |̂ac)t̂cb
ij −

∑
bjk

(jb |̂ik)t̂ab
kj +

∑
bj

F̂jb t̂ab
ij + F̂ai

+ (εa − εi)t
a
i = 0, (7)

are iterated, where t̂ab
ij = 2tab

ij − tab
ji , and the matrix elements of

the similarity-transformed Fock-operator can be calculated as

F̂jb =
∑

ai

[2(bj |ai) − (aj |bi)]ta
i , (8)

F̂ai =
∑

bj

[2(ai|jb) − (ab|ji)]tb
j −

∑
bjk

[2(bj |ik) − (bk |ij)]ta
k tb

j

+
∑
bjc

[2(bj |ca) − (ba|cj)]tb
j tc

i

−
∑
bjck

[2(ck |bj) − (bk |cj)]tc
k tb

i ta
j . (9)

Introducing the DF approximation, the four-center ERIs
can be written in the

(pq|rs) =
∑
PQ

(pq|P)(P |Q)−1(Q|rs) (10)

form, where P and Q stand for the elements of the auxiliary
basis, whereas (pq|P) and (P|Q) are the three- and two-center
Coulomb integrals, respectively, and (P|Q)�1 is a simplified
notation for the corresponding element of the inverse of the
two-center Coulomb integral matrix. In practice, the latter
inverse matrix is factorized and rewritten, e.g., as the prod-
uct of the inverse square root matrices. The four-center ERIs
can then be recast in the

(pq|rs) =
∑

Q

JQ
pqJQ

rs (11)

form with
JQ

pq =
∑

P

(pq|P)(P |Q)−1/2. (12)

Alternatively, we can also use the CD of the inverse matrix
for the factorization. The similarity-transformed two-electron
integrals, (pq |̂rs), can also be written in a form similar to
Eq. (11) since the singles amplitudes can be absorbed into
the elements of the J list as

ĴQ
pq =

∑
rs

(1 − tT
1 )rp(1 + t1)sqJQ

rs . (13)

Note that the occupied-virtual block of Ĵ is not affected by
the similarity transformation, that is, ĴP

ia = JP
ia, while the other

blocks loose their permutational symmetries because ĴP
pq , ĴP

qp
any more.

Our implementation of the ground-state CC2 equations
is based on the algorithm of Hättig and co-workers.15 Since
our intention is to decrease the costs of the CC2 method
partly by reducing the MO space, the important difference
is that our implementation uses MO integrals as opposed to
the atomic orbital-based algorithm of Ref. 15. This required
the slight modification of the working equations and the algo-
rithm, which are presented in Table I together with the scaling
of the various steps given in terms of the number of occupied
(nocc) and virtual (nvirt) orbitals and the number of auxiliary
functions (naux). The rate-determining step of the procedure is
still the construction of the (ai |̂bj) integral list (step 6) and the
contraction of the doubles amplitudes (step 7), the operation
count of which scales as n2

occn2
virtnaux.

Concerning excited states, the CC LR theory calculates
the excitation energies as the eigenvalues of the Jacobi-matrix
which is defined by the derivative of the residual with respect
to the cluster amplitudes as

Aµi ,νj =
∂Ωµi

∂tνj

=

(
〈µ1 |[Ĥ, τν1 ] + [[Ĥ, τν1 ], T2]|HF〉 〈µ1 |[Ĥ, τν2 ]|HF〉

〈µ2 |[Ĥ , τν1 ]|HF〉 δµ2ν2εµ2

)
,

(14)

where εµ2 =−Dab
ij . Similar to the ground-state problem, the

storage of the doubles amplitudes can also be avoided at the
solution of the eigenvalue equation of matrix A if an effective
Jacobian,

Aeff
µ1ν1

(ωCC2) = Aµ1ν1 −
Aµ1γ2 Aγ2ν1

εγ2 − ωCC2
, (15)

is introduced, whereωCC2 is the CC2 excitation energy.15 The
pseudo-eigenvalue equation of matrix Aeff,

σ(ωCC2, r) = Aeff (ωCC2)r = ωCC2r, (16)

is only solved in the space spanned by the single excita-
tions, whose coefficients are included in vector r. The working
equations for the σ vector can be derived by straightforward
differentiation of Eq. (7) with respect to tµ1 . The structure of
the resulting expressions is very similar to that of the corre-
sponding ground-state terms, thus, the excited-state equations
can be solved by defining intermediates of the same type. Only
the number of intermediates will be higher since each term in
Eq. (7) including n pieces of tµ1 amplitudes results in n terms of
similar structure upon differentiation. Consequently, the algo-
rithm presented in Table I is also applicable mutatis mutandis
to the evaluation of the σ vector.
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TABLE I. Working equations and their scaling for the CC2 algorithm.

Step Scaling

1 Construct intermediates X̂Q
ai and X̂Q

ij

X̂Q
ai =

∑
b JQ

abtb
i noccn2

virtnaux

X̂Q
ij =

∑
a JQ

ai t
a
j n2

occnvirtnaux

2 Compute the ĴQ
ji and ĴQ

ai lists and the contribution of one term in F̂ai to Ωai

ĴQ
ij = X̂Q

ij + JQ
ij n2

occnaux

Ωai ← −
∑

Qj X̂Q
aj Ĵ

Q
ji n2

occnvirtnaux

ĴQ
ai = X̂Q

ai + JQ
ai −

∑
j ĴQ

ij ta
j 2noccnvirtnaux + n2

occnvirtnaux

3 Construct intermediate XQ

XQ =
∑

ai JQ
ai t

a
i noccnvirtnaux

4 Compute further contributions of F̂ai to Ωai

Ωai ←
∑

Qj(
∑

k X̂Q
jk ta

k )ĴQ
ji 2n2

occnvirtnaux

Ωai ←
∑

Q ĴQ
aiX

Q + ta
i (εa − εi) noccnvirtnaux + noccnvirt

5 Calculate F̂jb

F̂jb =
∑

Q ĴQ
bjX

Q −
∑

Qi X̂Q
ji JQ

bi noccnvirtnaux + n2
occnvirtnaux

6 Construct the (ai |̂bj) list

(ai |̂bj) =
∑

Q ĴQ
ai Ĵ

Q
bj n2

occn2
virtnaux

7 Compute and contract t̂ab
ij , calculate the contributions of F̂jb to Ωai

t̂ab
ij = [2(ai |̂bj) − (aj |̂bi)]/Dab

ij n2
occn2

virt

ŶQ
ai =

∑
bj t̂ab

ij JQ
bj n2

occn2
virtnaux

Ωai ←
∑

bj t̂ab
ij F̂jb n2

occn2
virt

8 Calculate further contributions of t̂ab
ij to Ωai

Ωai ←
∑

Qb(
∑

j JQ
bj t

a
j + JQ

ba)ŶQ
bi =

∑
Qb ĴQ

baŶQ
bi 2noccn2

virtnaux + n2
virtnaux

Ωai ← −
∑

Qj ĴQ
ji ŶQ

aj n2
occnvirtnaux

9 Calculate CC2 correlation energy

∆ECC2 =
∑

Qai(Ĵ
Q
ai + XQta

i −
∑

j X̂Q
ij ta

j )ŶQ
ai 4noccnvirtnaux + n2

occnvirtnaux

An important feature of matrix Aeff is that it also depends
on the excitation energy of the given excited state, and hence,
the eigenvalue equation cannot be solved simultaneously for
all the considered states using the conventional Davidson-type
diagonalization techniques. We implemented a modified ver-
sion of the algorithm proposed by Hättig and co-workers.15 In
the first step, an integral direct, multi-state DF-CIS calculation
is run, and the corresponding CIS excitation energies and vec-
tors will be used as initial guess in the subsequent calculations.
Then, for each excited state, the eigenvector is preoptimized
by a modified Davidson algorithm using the root-following
technique79 to avoid convergence to a wrong solution. Finally,
the non-linear problem is solved by a direct inversion in the
iterative subspace (DIIS) algorithm, which is also applied to
solve the ground-state CC2 equations. Our experience showed
that in particular cases, the above algorithm finds the wrong
root, that is, we arrive at the same CC2 solution starting from
different CIS eigenvectors. We could overcome this prob-
lem by projecting out the single excitation part of the CC2
eigenvectors converged previously from the initial guess CIS
vectors.

B. Natural orbitals

In the NO approximation, a lower-level wave function is
chosen, let us denote it by Ψ, and the virtual-virtual block of
the one-particle density matrix,

Dab = 〈Ψ|a
+b− |Ψ〉, (17)

as well as the occupied-occupied block of the hole density
matrix,

Dij = 〈Ψ|i
−j+ |Ψ〉, (18)

are constructed. The eigenvectors of these matrices are referred
to as the virtual (VNOs) and occupied NOs (ONOs), respec-
tively, whereas the corresponding eigenvalues are interpreted
as the occupation numbers of the orbitals. It is supposed that
the orbitals of low population give a small contribution to the
correlation and can be dropped. The corresponding truncation
thresholds for the virtual and occupied NO sets will be denoted
by εVNO and εONO, respectively.

For the construction of the NOs for ground-state CC2 cal-
culations, the MP2 density matrix is a plausible choice. For
excited states, the selection of an appropriate wave function Ψ
is less trivial. Here the CIS(D) approach seems to be a good
choice since it is an excited-state generalization of the MP2
method and accounts for about the same amount of correlation
for the excited state as the MP2 method does for the ground
state. Moreover, the calculation of CIS(D) density matrices is
relatively cheap, and the computation time required is simi-
lar to that of a CC2 iteration. Of course, we should keep in
mind that the ground-state CC2 amplitudes are also necessary
to solve the equations for the excited states, and it is highly
desirable to solve both equations in the same MO basis. For this
reason, we construct a state-specific MO basis for each excited
state in which both the ground- and excited-state equations are
solved. Consequently, a single, “state-averaged” (hole) density
matrix is required for each excited state for the construction
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of the NOs. For this purpose, we simply take the average of
the MP2 (DMP2) and CIS(D) (DCIS(D)) densities, i.e., we diag-
onalize the D = (DMP2 + DCIS(D))/2 density matrices, and the
similar expression holds for the hole densities. After the diag-
onalization of the (hole) density matrices and the selection of
the NOs of sufficiently high occupation number, the truncated
NO basis is canonicalized so that we will be able to employ
the equations derived for canonical MOs. The elements of the
latter basis will be denoted by ã, ĩ, . . ., and J̃ will stand for
the J list, the MO indices of which are transformed to the
canonicalized NO basis.

The required blocks of the one-particle MP2 (hole) density
matrices can be calculated as

D
MP2
ij =

∑
kab

(
2Tab

ik Tab
jk − Tab

ik Tba
jk

)
, (19)

DMP2
ab =

∑
ijc

(
2T ca

ij T cb
ij − T ca

ij Tbc
ij

)
, (20)

where Tab
ij is a first-order doubles amplitude defined as

Tab
ij =

(ai|bj)

Dab
ij

. (21)

The algorithm for the construction of MP2 densities is pre-
sented in Table II. The bottleneck is the assembly of the (ai|bj)
integral list, which scales as n2

occn2
virtnaux. There are two other

fifth-power scaling operations in the algorithm. The evalua-
tion of the virtual-virtual block of the density matrix scaling
as n2

occn3
virt is also relatively expensive, while the computation

time needed for the calculation of the occupied-occupied block
of the hole density matrix is in general considerably shorter.
Please note that the MP2 densities must be constructed only
once, independently of the number of excited states.

The CIS(D) density matrix can be split up as the sum
of the CIS density matrix and the contribution of the pertur-
bative (D) correction, DCIS(D) = DCIS + D(D). The CIS density
matrices read as

D
CIS
ij =

∑
a

ca
i ca

j , (22)

DCIS
ab =

∑
i

ca
i cb

i , (23)

TABLE II. Working equations and their scaling for the evaluation of MP2
density matrices.

Step Scaling

1 Assemble (ai|bj) list

(ai |bj) =
∑

Q JQ
aiJ

Q
bj n2

occn2
virtnaux

2 Compute Tab
ij

Tab
ij = (ai |bj)/Dab

ij n2
occn2

virt

3 Compute intermediate Xab
ij

Xab
ij = 2Tab

ij − Tba
ij n2

occn2
virt

4 Compute density matrices

D
MP2
ij =

∑
kab Tab

ik Xab
jk n3

occn2
virt

DMP2
ab =

∑
ijc T ca

ij Xcb
ij n2

occn3
virt

where ca
i is a CIS coefficient, while we define D(D) analogously

to its MP2 counterpart as

D
(D)
ij =

∑
kab

(2cab
ik cab

jk − cab
ik cba

jk ), (24)

D(D)
ab =

∑
ijc

(2cca
ij ccb

ij − cca
ij cbc

ij ) (25)

with cab
ij as a CIS(D) doubles coefficient. The latter were given

by Head-Gordon and co-workers20 in a spin-orbital basis. The
corresponding expression for spatial orbitals can easily be
derived by spin-integration and exploiting the relationships
of doubles amplitudes80 and reads as

cab
ij =

∑
c[(ac|bj)cc

i + (ac|bi)cc
j ] −

∑
k[(kj |ai)cb

k + (kj |bi)ca
k ]

Dab
ij + ωCIS

,

(26)

where ωCIS stands for the CIS excitation energy. The calcula-
tion of CIS(D) densities follows the route shown in Table III.
As it can be seen, similar to the evaluation of the MP2 den-
sities, the rate-determining operation is the construction of a
four-index intermediate as a product of three-index quantities,
which scales as n2

occn2
virtnaux. However, in addition to the inex-

pensive CIS contribution, there are two further fourth-power
scaling terms (step 2) in contrast to the MP2 density matrices,
where the occupied-occupied and virtual-virtual blocks of the
three-center integral list are contracted with CIS coefficients.
Since the CIS(D) coefficients, and thus the density matrices,
are state-dependent, these quantities have to be evaluated for
each excited state.

Our numerical experience showed that further approxi-
mations can be introduced at the construction of the DMP2 and
DCIS(D) matrices. As it will be demonstrated in Sec. III B, the
calculated excitation energies hardly change if we neglect the
exchange-like contributions to the density matrices, that is,
instead of Eqs. (19), (20), (24), and (25), we define the density

TABLE III. Working equations and their scaling for the evaluation of CIS(D)
density matrices.

Step Scaling

1 Construct CIS contribution to density matrices

D
CIS(D)
ij ←

∑
a ca

i ca
j n2

occnvirt

DCIS(D)
ab ←

∑
i ca

i cb
i noccn2

virt
2 Compute intermediate YQ

ai
YQ

ai ←
∑

c JQ
accc

i noccn2
virtnaux

YQ
ai ← −

∑
j JQ

ij ca
j n2

occnvirtnaux

3 Compute intermediate Vab
ij

Vab
ij =

∑
Q YQ

ai J
Q
bj n2

occn2
virtnaux

4 Calculate cab
ij coefficients

cab
ij = (Vab

ij + Vba
ji )/(Dab

ij +ωCIS) n2
occn2

virt

5 Compute intermediate Xab
ij

Xab
ij = 2cab

ij − cba
ij n2

occn2
virt

6 Compute density matrices

D
CIS(D)
ij ←

∑
kab cab

ik Xab
jk n3

occn2
virt

DCIS(D)
ab ←

∑
ijc cca

ij Xcb
ij n2

occn3
virt
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matrices as
D

MP2
ij =

∑
kab

2Tab
ik Tab

jk , (27)

DMP2
ab =

∑
ijc

2T ca
ij T cb

ij , (28)

D
(D)
ij =

∑
kab

2cab
ik cab

jk , (29)

D(D)
ab =

∑
ijc

2cca
ij ccb

ij . (30)

The advantage of these equations is that the evaluation of inter-
mediates Xab

ij (see Tables II and III) can be avoided, and the
calculation of the density matrices can be reduced to the mul-
tiplication of a matrix with its transpose, whose operation can
be efficiently performed. Furthermore, a simple and fast algo-
rithm can be designed for the evaluation of the above equations
if the Tab

ij or cab
ij list does not fit into the memory. In this case,

at the construction of the MP2 densities (see Table II), one of
the virtual indices of the doubles amplitudes is split up into
blocks, hereafter denoted by A, so that the amplitudes with
the remaining three indices can be kept in the memory. The
outmost loop in the algorithm runs over A, and in the inner
loops, the doubles amplitudes with one virtual index in the
given index range are calculated, and their contribution to the
density matrices is computed.

The evaluation of the CIS(D) density matrices deserves
somewhat more attention (see Table III) since the size of the
JQ

ab list can also easily exceed the size of the available mem-
ory. In this case, the list is blocked according to its auxiliary
index so that the JQ

ab integrals with Q in a block can be held

in the memory, and the first contribution to intermediate YQ
ai

(step 2) is evaluated within a loop performed over the blocks.
Analogously to the MP2 algorithm, one of the virtual indices
of the four-index intermediates is also restricted, and the sub-
sequent steps (steps 3 to 6) are carried out in a loop running
over the corresponding A blocks. A further difficulty is that
the symmetrization of intermediate Vab

ij is necessary to obtain

the cab
ij coefficients (step 4), and it requires the recalculation

of particular Vab
ij matrix elements if the out-of-core algorithm

is executed.

C. Natural auxiliary functions

With the aid of the NAF approach,75 the size of the aux-
iliary basis set can be reduced in a way reminiscent of the
NO technique via a rank reduction of the corresponding three-
center integral matrix J. If the latter is regarded as a two-index
matrix with composite row index pq and column index Q,
we can, in principle, perform its singular value decomposition
(SVD) as

J =MΣNT, (31)

where M and N are the matrices composed of the left and right
singular vectors (SVs), and Σ is a diagonal matrix with the
singular values on its diagonal. In practice, we only need the
singular values and right SVs of J, which are identical, respec-
tively, to the square root of the eigenvalues and eigenvectors
of matrix

W = JJT (32)

and can be more efficiently obtained by diagonalizing W than
by performing the SVD of matrix J. The eigenvectors of matrix
W, that is, the right SVs of J, can be considered as the linear
combination coefficients of new auxiliary functions, which we
call the NAFs. Similar to the NO approach, the NAFs with
eigenvalues lower than a threshold (εNAF) are dropped, and the
remaining naux pieces of eigenvectors are collected in matrix N.
If the auxiliary function index of matrix J is now transformed
by matrix N as

J = JN, (33)

the resulting J matrix is the best rank naux approximation of J
in the least-squares sense.

The most computation-intensive operation of a CC2 cal-
culation scales as n2

occn2
virtnaux (see Table I), but the scaling of

the other expensive terms is also linear in naux. Furthermore,
the storage requirements also grow linearly with the num-
ber of fitting functions. Consequently, using a NAF basis, the
decrease in the computation time is expected to be proportional
to the naux/naux ratio.

An important question is at what stage the NAF basis
should be constructed and what J should be used for that pur-
pose. In principle, we can change for a NAF basis right at the
beginning of the calculation, prior to the evaluation of the MP2
and CIS(D) density matrices. The advantage of this strategy
would be that the expenses of the latter steps would also be
reduced. However, as it is discussed in Ref. 75, the NAF basis
is an auxiliary basis that is optimal for the given MO basis, and
hence, it is expedient to construct the NAFs from the J matrix
whose MO indices are already transformed to the final MO
basis, in our case from matrix J̃. The second question is what
block of J̃ is to be used for the determination of the NAFs. Of
course, the NAFs constructed from the entire J̃ will be the exact
right SVs of the matrix. However, we can also build approxi-
mate NAF bases from particular blocks of J̃, for instance, we
can compute matrix W only from the J̃Q

ai or J̃Q
pi integrals. In

this way, we can reduce the time spent on the construction of
the NAF basis, but probably more NAFs have to be retained
to obtain results of similar accuracy as the NAFs computed,
e.g., from the J̃Q

ai list will be lower-quality fitting functions for
the (ab|ij)-type integrals. These aspects will be analyzed in
Sec. III B.

D. General algorithm

To conclude this section, we overview our general algo-
rithm for the present reduced-cost LR-CC2 approach, which
is as follows:

1. Solve HF equations
2. Solve CIS equations for all the excited states using a

multi-state, integral-direct algorithm
3. Loop over excited states

3.a. Compute state-averaged one-particle density
matrices (Tables II and III)

3.b. Transform the MO indices of J to the pseudo-
canonical NO basis

3.c. Evaluate matrix W from J̃ [Eq. (32)], select NAFs
to be retained
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3.d. Transform the auxiliary function index of J̃ to the
NAF basis [Eq. (33)]

3.e. Save integral list J to disk
End loop

4. Loop over excited states
4.a. Retrieve integral list J from disk
4.b. Solve the ground- and excited-state CC2 equa-

tions (Table I)
End loop

Note that the CC2 equations are solved in a different loop
than the one in which the densities, the NAF basis, and the
transformed integrals are constructed. The rationale behind
this is that, in the first loop, it enables the design of an algo-
rithm where the original J list is read from a disk or recalculated
only once for the integral transformation. The transformed J
integral list is saved to the disk and retrieved in the second loop.
However, the size of the J lists is significantly, by more than an
order of magnitude smaller than that of matrix J, thus the read-
ing and processing of the J list do not cause any complication
in the CC2 calculations.

III. RESULTS
A. Computational details

The proposed reduced-cost CC2 approach has been imple-
mented in the Mrcc suite of quantum chemical programs and
is available in the current release of the package.81

For the test calculations, Dunning’s correlation consistent
basis sets augmented with diffuse functions (aug-cc-pVXZ,
where X = D, T, Q) were used,82–84 and the corresponding aux-
iliary bases developed by Weigend et al. were employed in both
the HF and the subsequent calculations.85–87 In the CIS and
CC2 calculations, the core orbitals were kept frozen.

For monitoring the convergence of the excitation energies
with the truncation thresholds, a test set of small molecules
was assembled including acetone, acetamide, benzene, buta-
diene, formaldehyde, and formamide from the benchmark
set of Thiel and co-workers,88,89 as well as the ethylene-
tetrafluoroethylene system (at separations of 5 and 10 Å) from
Dreuw et al.90 We endeavored to consider all important types
of excitations. The valence excited states (n→ π∗, σ→ π∗,
and π→ π∗, including also the π→ π∗ states of the conjugated
butadiene and the aromatic benzene) were those identified by
Thiel and co-workers;88,89 to consider CT excitations, the ones
assigned by Dreuw et al.90 for the ethylene-tetrafluoroethylene
system were chosen, whereas the Rydberg states of formamide
and acetamide were selected by us.

To also gain some insight into the performance of the
new method for medium-sized molecules, another test set was
also used, which is representative of all the important excita-
tions types as well. The geometries of 6,6′-difluoro-indigo,91 a
bithiophene derivative,28 and N-methyl-2,3-benzcarbaxole28

were taken from the literature, while those for the remain-
ing azobenzene, diphenylamine, hydrazone dye, and 4-(N,N-
dimethylamino)-3-hydroxyflavone molecules were optimized
with the Mrcc program at the DFT level applying the
B3LYP92 functional and the cc-pVDZ basis set. Further
benchmark calculations were carried out for even larger

systems to demonstrate the applicability of the approach. In
these calculations, the bisimide derivative studied by Grimme
and co-workers91 as well as the phenothiazine-isoalloxazine
dyad,56 two borondipyrromethene-flavin derivatives [Flv(a)
and Flv(b)],57 and the cyanoacrylic acid derivative (D21L6)58

test system of Schütz et al. was considered. The structural for-
mulas of the molecules and the coordinates for the molecules
optimized by us are available in the supplementary material.

The reported computation times are wall-clock times mea-
sured on a computer with 128 GB of main memory and a 6-core
3.5 GHz Intel Xeon E5-1650 processor.

B. Convergence with the truncation thresholds

First, we analyze the convergence of the CC2 excita-
tion energies with the cutoff parameters, εVNO and εNAF, of
the VNOs and NAFs for the small-molecule test set using
the aug-cc-pVTZ basis. The effect of the truncation of the
ONO space will be studied later for bigger systems because
even for the largest molecules (benzene and the ethylene-
tetrafluoroethylene model) considered here the number of
occupied orbitals is rather small and cannot be decreased.
We focus on the results obtained with the aug-cc-pVTZ basis
since at least triple-ζ basis sets including diffuse functions are
required for semi-quantitative excitation energies, while the
quadruple-ζ and bigger basis sets are usually not worth using
together with the simplistic CC2 approach and are not practi-
cal for large molecules. Nevertheless, results calculated with
double- and quadruple-ζ basis sets will also be presented later.

To study the convergence with the number of virtual
orbitals, the VNO space constructed by diagonalizing the
density matrices including (Eqs. (20) and (25)) or excluding
(Eqs. (28) and (30)) the exchange-like terms were gradually
decreased, and the error with respect to the canonical CC2
excitation energy was calculated. The results are visualized in
Fig. 1. Inspecting the plots we can observe that the error intro-
duced by dropping the VNOs is moderate and only slightly
increases in most cases up to a truncation of about 60%, where
the mean absolute error (MAE) obtained with density matrices
including (excluding) the exchange-like terms is only 0.016
(0.019) eV, and the maximum absolute error (MAX) still does
not exceed 0.044 (0.060) eV. For the π → π∗, Rydberg, and
CT excitations, the error starts increasing steeply at around
60%, while for the excited states of other types, the results
deteriorate more slowly. The increase of the errors, apart from
small fluctuations on the meV scale, is monotonic up to 60%;
however, the sign of the errors can differ even for different
states of the same molecule or different excited states of the
same type. The difference of the results obtained with and
without the exchange contributions is very small. The average
difference is 2 to 3 meV for any truncation of the VNO space
with the S2 state of acetamide exhibiting the largest deviation,
0.030 eV, at the truncation of 73%, which causes too large
error anyway to be used in practical applications. As a conse-
quence, the exchange-excluding density matrices can safely be
employed.

The behavior of the excitation energies as a function of the
size of the NAF basis was analyzed similarly, first without any
truncation of the VNO space. The NAFs constructed from the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-026719
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FIG. 1. Error of CC2 excitation ener-
gies as a function of the number of
VNOs dropped with the aug-cc-pVTZ
basis set. Dashed (solid) line: results
obtained with density matrices includ-
ing (excluding) the exchange-like con-
tributions.

JQ
ai , JQ

pi , and JQ
pq lists were tested, however, the results calculated

using the first integral list are relatively poor and not discussed
here. The errors of the approximate CC2 excitation energies
with respect to the canonical ones are displayed in Fig. 2. As it

can be seen, in contrast to the VNOs, the NAF approximation
introduces a very small error up to 40% truncation, where the
MAE (MAX) is 0.002 (0.004) eV with NAFs derived from
the JQ

pi list, while the corresponding value for the case of the

FIG. 2. Error of CC2 excitation ener-
gies as a function of the number of NAFs
dropped with the aug-cc-pVTZ basis
set. Dashed (solid) line: results obtained
with W matrices calculated from the JQ

pi

(JQ
pq) lists.
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JQ
pq list is just 0.001 (0.002) eV. Dropping further NAFs, the

approach based on the JQ
pq integrals is obviously more robust,

with the exception of the n→ π∗ excitations, and the error for
the latter scheme is significantly lower than with the approach
using the JQ

pi list. At the truncation of 60%, the MAE (MAX)

is 0.005 (0.011) eV with the JQ
pq-based and 0.010 (0.024) eV

with the JQ
pi-based approach. Beyond 60%, the quality of the

results drops rapidly for most types of excited states, espe-
cially with the latter scheme. These results suggest that it is
worthwhile constructing the NAF basis from the JQ

pq list even if
n2

virtn
2
aux additional operations are required to calculate matrix

W [Eq. (32)] with respect to the case when W is computed
just from the JQ

pi integrals.
Since our intention is to combine the NO and NAF

approaches, it is also important to study their joint effect, which
also facilitates the selection of reliable default values for our
truncation thresholds. As it is discussed in Sec. II C, if the
NO and NAF approximations are applied simultaneously, it is
more beneficial to construct first the NO basis then the NAFs.
Accordingly, taking into account the above results, we first
calculate the VNOs from the density matrices excluding the
exchange terms and truncate the VNO space using threshold
εVNO. Then, we construct the NAF basis with the J̃Q

p̃q̃ integral
list and truncate it according to εNAF. At the determination
of the default truncation threshold, our main purpose was to
develop a robust method and to keep the MAE of the approach
about an order of magnitude smaller than the intrinsic error of
the CC2 method, that is, 0.2 to 0.3 eV.93,94 We tested numer-
ous combinations of the εVNO and εNAF thresholds with the
considered values corresponding close to 60% truncations in
Figs. 1 and 2. Relying on the results of these numerical experi-
ments, which are presented in the supplementary material, we
propose εVNO = 7.5 × 10−5 and εNAF = 0.1 a.u. as the default
values of the cutoff parameters.

The errors of the computed excitation energies and the
number of the neglected VNOs and NAFs with the default
thresholds are presented in Table IV for the small-molecule
test. Looking at the results we can conclude that the MAE
(MAX) of the joint NO and NAF approach is 0.023 (0.052) eV,
which is considerably lower than the error of the CC2 method
itself. The percentage of the dropped VNOs is rather sys-
tem independent and falls in the narrow range of 56% to
65%. The ratio of the neglected NAFs is even more stable,
and it fluctuates in an interval of about 5%. As expected, in
the truncated NO basis, considerably fewer auxiliary func-
tions are necessary, and in average, 82.3% of the NAFs
can be removed. Being aware of these results, we can
envisage a speedup of about 35 for the rate-determining

TABLE IV. Canonical CC2 excitation energies (in eV), the error of CC2
excitation energies computed with the present approach (in eV), and the per-
centage of VNOs and NAFs dropped using the default thresholds with the
aug-cc-pVTZ basis set for small molecules.

Dropped Dropped
Molecule Character State ωCC2 Error VNOs NAFs

Acetamide n→ π∗ S1 5.605 �0.033 63.6 82.9
Rydberg S2 5.917 �0.031 61.5 82.7
Rydberg S3 6.456 0.034 61.8 82.6

Acetone n→ π∗ S1 4.454 �0.001 65.0 83.4
σ → π∗ S13 9.110 �0.007 64.7 83.6
π → π∗ S14 9.212 0.052 62.4 83.4

Benzene π → π∗ S1 5.220 �0.017 63.4 84.0
π → π∗ S3 6.452 0.035 63.9 84.5

Butadiene π → π∗ S1 6.134 �0.009 63.2 83.7
π → π∗ S5 7.064 �0.004 63.8 84.6

Formaldehyde n→ π∗ S1 3.996 0.041 58.8 80.3
σ → π∗ S6 9.191 0.010 59.2 80.6
π → π∗ S13 10.698 0.022 57.7 81.2

Formamide Rydberg S3 6.697 0.034 58.5 80.9
CTa at 5Å CT S1 6.728 0.013 56.1 79.5
CTa at 10Å CT S1 6.740 0.020 56.8 79.7

Average 0.023b 61.3 82.3
Maximum 0.052c 65.0 84.6
Minimum 0.001d 56.1 79.5

aEthylene-tetrafluoroethylene model.
bMean absolute error.
cMaximum absolute error.
dMinimum absolute error.

step of the CC2 calculations scaling as n2
occn2

virtnaux, and a
reduction of also about 35-times is foreseen in the size of
the largest quantity to be stored, the virtual-virtual block of
matrix J.

To gain some impression of the basis set dependence of
the results, we also performed test calculations for the small-
molecule test set with the aug-cc-pVDZ and aug-cc-pVQZ
basis sets using the default thresholds (εVNO = 7.5 × 10−5 and
εNAF = 0.1 a.u.). The error measures, such as the MAE, MAX,
and the minimum absolute error (MIN), for the excitation ener-
gies are summarized in Table V, while the detailed results
can be found in the supplementary material. As we can pre-
sume, with the double-ζ basis in average, a smaller number of
VNOs are dropped (32.9%) than with the triple-ζ one (61.3%),
while with the quadruple-ζ basis, more VNOs are neglected
(78.5%). The tendency is similar but not so pronounced for the
NAFs, where the average number of dropped functions only
changes with a couple of percents when increasing the cardi-
nal number of the basis set. The MAE and MAX are about

TABLE V. Error measures for the CC2 excitation energies (in eV) and the average, maximum, minimum
percentage of VNOs and NAFs dropped using the default thresholds with various basis sets for small molecules.

Error Dropped VNOs Dropped NAFs

Basis MAE MAX MIN Avg. Max. Min. Avg. Max. Min.

aug-cc-pVDZ 0.051 0.100 0.022 32.9 39.2 25.0 81.4 83.1 80.0
aug-cc-pVTZ 0.023 0.052 0.001 61.3 65.0 56.1 82.3 84.6 79.5
aug-cc-pVQZ 0.047 0.106 0.004 78.5 81.0 75.8 88.6 90.5 86.7

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-026719
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-026719
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FIG. 3. Error of CC2 excitation energies as a function of the number of ONOs
dropped with the aug-cc-pVTZ basis set using εVNO = 7.5 × 10−5 and εNAF
= 0.1 a.u. thresholds.

twice as large with aug-cc-pVDZ and aug-cc-pVQZ basis sets
than with aug-cc-pVTZ but are still moderate and remarkably
lower than the intrinsic error of CC2. We note that with the
aug-cc-pVQZ basis set, the truncation of the VNO and NAF
spaces is expected to result in a speedup of about 190 for the
most expensive operations and a reduction of about 190-times
in the size of the integral list.

We also investigated the truncation of the ONO basis. To
this intent, we selected two bigger molecules, 6,6′-difluoro-
indigo and 4-(N,N-dimethylamino)-3-hydroxyflavone, for
which the number of correlated occupied orbitals is sufficiently
high, 53 for both molecules. Fixing the VNO and NAF trunca-
tion thresholds to their default values, the number of neglected
ONOs was systematically varied. The errors of the CC2 exci-
tation energies with respect to the canonical ones are shown
in Fig. 3. The error that arose at the 10% reduction of the
ONO space is in average as large as the combined error of
the VNO and NAF approximations (0.02 eV, see Table VI)
even if the latter spaces are much more aggressively truncated.
Thus, at around 10%, the overall error of the three approxi-
mations is about 0.05 eV, but it starts growing rapidly after
the truncation of 15%. It means that only a couple of occu-
pied orbitals can be dropped, and unfortunately the gain in
the computation time is rather limited. The approximation is
probably more efficient for large systems, for which, how-
ever, CC2 calculations are currently not feasible even with the
present reduced-cost scheme. Therefore, in the following test
calculations, the occupied MO space will not be truncated.

C. Representative examples

Our approach was further tested for bigger molecules
to check if the conclusions drawn for the small systems are
also valid in the general case. The set includes dye molecules
which are well-established test molecules from the litera-
ture.30,95,96 The 6,6′-difluoro-indigo, the bithiophene deriva-
tive, and the N-methyl-2,3-benzcarbaxole molecules stem
from the test suite of Grimme and co-workers;28,91,97 the
azobenzene, the diphenylamine, and the hydrazone dye were
collected from the work of Matsuura et al.;98 whereas the 4-
(N,N-dimethylamino)-3-hydroxyflavone molecule featuring a
dominant CT excited state was taken from the studies of Mély
and co-workers.99,100 Applying our default settings, for each
molecule the six lowest singlet states were considered, among

which all important types of excited state can be found includ-
ing several Rydberg and two CT states. The numerical results
are collected in Table VI.

The MAE (MAX) of the computed excitation energies
with respect to the canonical results is 0.022 (0.048) eV,
which is practically identical to the corresponding value, 0.023
(0.051) eV, obtained for the small-molecule test set. The same
holds for the average number of the neglected VNOs and
NAFs, which are 61.1% and 82.6%, respectively, for these
molecules, while for the smaller ones, the 61.3% and 82.3%
values were found. The spread of the results is also similar
for the smaller and the bigger systems: the deviations of the
minimum and maximum number of dropped VNOs and NAFs
are 6% and 4%, respectively, which should be compared to
the differences of 9% and 5% obtained for the small-molecule
test set. These data support that the errors introduced by our
approximations are rather stable and independent of the sys-
tem size, and our approach with the default settings can be
applied as a black-box method for arbitrary excited states of
extended systems.

As it has been discussed above, a theoretical speedup of
35 can be expected in the most expensive step of a CC2 iter-
ation with the aug-cc-pVTZ basis, however, the overhead due
to evaluation of the density matrices is notable. To estimate
the overall speedup factors for our approach, we measured the
wall-clock times for the canonical CC2 calculations including
the CIS iterations, the solution of the ground-state CC2, and
the six response equations. These values were divided by the
wall times measured for the entire reduced-cost CC2 calcula-
tions excluding the solution of the HF equations, that is, the
wall time spent on the CIS calculation, the construction of the
MP2 and the six CIS(D) density matrices, the integral trans-
formations, reading and writing of the J integral list, and the
solution of the ground- and excited-state CC2 equations for
each excited state. The calculated speedups are also reported
in Table VI. The average speedup with respect to the canonical
run is about 18, but in particular cases much larger increase
in the speed of the calculation can be observed. Of course, we
would await that the speedup factors vary in a tighter inter-
val since the number of the neglected VNOs and NAFs does
so. However, the number of iterations needed to converge the
CC2 equations can significantly change when working in the
reduced spaces. Anyway, the computation time is reduced by
an order of magnitude even in the worst cases, and it is easy
to see that the speedup is even better if more excited states are
targeted.

To further demonstrate the applicability of our approach,
benchmark calculations were carried out for even larger
systems. The considered molecules, that is, the bisimide
derivative;28,91,96 the flavin derivatives, Flv(a) and Flv(b);57

the phenothiazine-isoalloxazine dyad;49,56,58,64 and the
cyanoacrylic acid derivative D21L658,59 were previously stud-
ied in the literature at the CC2 level using small bases, however,
CC2 calculations with the aug-cc-pVTZ or similar basis sets
have not been possible so far. The results are compiled in
Table VII.

The computed excitation energies and the assignation of
the excited states are in line with the results available in the
literature. The percentage of the VNOs and NAFs dropped
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TABLE VI. Canonical CC2 excitation energies (in eV), the error of CC2 excitation energies computed with the present approach (in eV), and the percentage
of VNOs and NAFs dropped using the default thresholds with the aug-cc-pVTZ basis set for bigger molecules.

Number of Number of basis Dropped Dropped
Molecule atoms functions State Character ωCC2 Error VNOs NAFs Speedup

Hydrazone dye 21 828 S1 π → π∗ 3.562 �0.012 58.1 80.7 14.1
S2 CT 3.924 �0.016 59.0 80.9
S3 n,σ → π∗ 3.947 �0.015 58.9 80.8
S4 π → π∗ 4.180 �0.019 57.8 80.4
S5 n,σ → π∗ 4.527 �0.011 58.9 80.8
S6 n,σ → π∗ 4.543 �0.006 58.8 80.8

Diphenylamine 24 851 S1 π → π∗ 4.334 �0.015 63.3 83.9 17.9
S2 π → π∗ 4.460 �0.024 63.3 83.7
S3 Rydberg 4.627 0.014 63.4 83.8
S4 Rydberg 4.994 0.048 63.3 83.9
S5 Rydberg 5.084 0.037 63.2 84.0
S6 Rydberg 5.229 0.026 63.2 83.9

Azobenzene 24 874 S1 n,σ → π∗ 2.785 0.014 63.7 83.6 12.3
S2 π → π∗ 4.071 �0.018 62.6 83.3
S3 π → π∗ 4.427 �0.029 62.5 83.2
S4 π → π∗ 4.435 �0.029 62.6 83.3
S5 π → π∗ 5.155 �0.042 62.2 83.1
S6 Rydberg 6.057 0.021 62.0 83.5

6,6′-difluoro-indigo 28 1150 S1 π → π∗ 2.952 �0.016 58.3 80.9 12.8
S2 π → π∗ 3.436 �0.018 58.2 80.8
S3 π → π∗ 3.684 �0.027 58.2 80.9
S4 π → π∗ 3.725 �0.027 58.2 80.9
S5 π → π∗ 4.274 �0.023 58.1 80.9
S6 π → π∗ 4.775 �0.037 58.1 80.9

Bithiophene derivative 29 1135 S1 π → π∗ 3.843 �0.026 59.4 82.3 17.8
S2 π → π∗ 4.631 �0.025 59.4 82.3
S3 π → π∗ 4.940 �0.034 59.2 82.2
S4 π → π∗ 5.446 0.002 59.2 82.4
S5 Rydberg 5.538 0.009 59.1 82.3
S6 π → π∗ 5.602 �0.027 59.2 82.3

N-methyl-2,3-benzcarbaxole 31 1127 S1 π → π∗ 3.332 �0.013 63.3 83.6 20.5
S2 π → π∗ 4.062 �0.021 63.4 83.6
S3 Rydberg 4.468 0.020 63.1 83.8
S4 π → π∗ 4.510 �0.037 63.1 83.6
S5 Rydberg 4.835 0.011 63.2 83.9
S6 Rydberg 4.898 �0.017 63.2 83.9

Hydroxyflavone derivative 36 1311 S1 CT 3.382 �0.022 63.0 83.1 28.1
S2 π → π∗ 4.124 �0.030 63.0 83.1
S3 n,σ → π∗ 4.154 �0.020 63.0 83.2
S4 π → π∗ 4.227 �0.010 63.1 83.2
S5 Rydberg 4.330 0.018 62.7 83.3
S6 Rydberg 4.866 �0.037 62.6 83.3

Average 0.022a 61.1 82.6 17.6
Maximum 0.048b 63.7 84.0 28.1
Minimum 0.002c 57.8 80.4 12.3

aMean absolute error.
bMaximum absolute error.
cMinimum absolute error.

is still close to what we obtain for the smaller molecules but
seems to slightly increase with the size of the system. The basis
set includes at least 2000 atomic orbitals for all the molecules,
and the number of basis functions far exceeds 3000 for the
most extended system. Looking at the wall times required for
the CIS and CC2 iterations, we can see that the expenses of the
solution of the CC2 equations in the reduced spaces are similar

to those of the initial canonical CIS calculation. In addition
to the calculation of the state-averaged density matrices, two
integral transformations and, for the construction of the NAF
basis, the evaluation of matrix W are required. The time of
these operations amounts to 10% to 15% of the computation
time spent on the calculation of the densities. Our timings
show that the excitation energy of a single excited state can be
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TABLE VII. CC2 excitation energies computed with the present approach (in eV), the percentage of VNOs and NAFs dropped, and computation times (in min)
using the default thresholds with the aug-cc-pVTZ basis set for big molecules.

Number of Number of basis Dropped Dropped
Molecule atoms functions State Character ωCC2 VNOs NAFs tCIS

a tJ
b tCC2

c

Flv(a) 51 2001 S1 π → π∗ 2.750 60.9 82.1 15.5 81.6 3.7
S2 π → π∗ 2.995 60.8 82.0 81.6 3.6
S3 n,σ → π∗ 3.339 61.1 82.1 81.6 3.4
S4 π → π∗ 3.613 60.9 82.0 81.6 3.5

Dyad 53 2051 S1 π → π∗ 3.063 61.4 82.7 15.4 84.1 3.5
S2 CT 3.373 61.7 82.8 84.1 3.5
S3 π → π∗ 3.506 61.2 82.6 84.1 3.4
S4 CT 3.826 61.2 82.7 84.1 3.5

Bisimide derivative 60 2346 S1 π → π∗ 2.543 61.5 82.5 24.6 179.3 7.0
S2 π → π∗ 3.438 61.5 82.6 178.7 6.7
S3 π → π∗ 3.707 61.5 82.6 179.2 6.4
S4 π → π∗ 3.793 61.5 82.6 178.9 6.4

Flv(b) 78 2829 S1 π → π∗ 2.603 63.8 83.3 53.9 416.3 12.9
S2 π → π∗ 2.978 63.9 83.3 416.2 12.9
S3 n,σ → π∗ 3.279 64.0 83.4 416.2 13.0
S4 π → π∗ 3.329 63.8 83.3 415.9 13.0

D21L6 98 3412 S1 CT 2.622 65.2 84.4 42.8 1093.2 29.1
S2 π → π∗ 3.442 65.1 84.3 1092.9 30.0

Average 62.3 82.9
Maximum 65.2 84.4
Minimum 60.8 82.0

aAverage wall time for a CIS iteration using a multi-state, integral-direct algorithm.
bAverage wall time for the construction of the J integral list. The calculation of the MP2 density is distributed equally among the excited states, that is, tJ = tCIS(D) + tMP2/n + tW + tInt ,
where tCIS(D), tMP2 , and tW are the wall times required for the evaluation of the CIS(D) and MP2 density matrices and the W matrix, respectively, n stands for the number of excited
states, and tInt is the wall time required for the integral transformations.
cAverage wall time for a CC2 iteration.

computed within less than a day for a molecule of more than
80 atoms with around 3000 basis functions.

IV. CONCLUSIONS

An efficient approach has been presented for the calcu-
lation of CC2 excitation energies. Our scheme successfully
combines the natural orbital and natural auxiliary function
approximations. For the calculation of the NOs, state-averaged
density matrices are constructed using approximate MP2 and
CIS(D) densities for the ground and excited state, respectively.
For the calculation of NAFs, the use of the entire integral list
turned out to be the most advantageous choice.

The errors introduced by the various approximations have
been analyzed for a representative test set including all impor-
tant types of excitations. The thresholds for the selection of
NOs and NAFs have been determined. Our results suggest that
the average error obtained with the proposed cutoff parameters
is low, 0.02 eV, with a triple-ζ basis and practically indepen-
dent of the system size. In average, 60% and 80% of the virtual
NOs and NAFs can be dropped, respectively, and these num-
bers also seem system-independent. For these calculations, the
CC2 iterations are by about a factor of 35 faster, and even if
the evaluation of the density matrices requires some extra time,
the overall speedup is of more than an order of magnitude.

Our results demonstrate that the proposed approach
enables the routine use of the CC2 method for molecules
of more than 50 atoms with basis sets including more than

2000 basis functions. We have also carried out CC2 excita-
tion energy calculations with reliable basis sets for systems of
about 100 atoms on a single workstation computer. Such cal-
culations were previously not possible within an acceptable
time frame.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular structures and
geometries and excitation energies computed with various
thresholds and basis sets.
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77P. R. Nagy, G. Samu, and M. Kállay, J. Chem. Theory Comput. 12, 4897

(2016).
78T. Kjærgaard, J. Chem. Phys. 146, 044103 (2017).
79W. Butscher and W. E. Kammer, J. Comput. Phys. 20, 313 (1975).
80G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice, and H. F. Schaefer III,

J. Chem. Phys. 86, 2881 (1987).
81MRCC, a quantum chemical program suite written by M. Kállay, Z. Rolik,
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