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Scientific investigations in medicine and beyond
increasingly require observations to be described by
more features than can be simultaneously visualized.
Simply reducing the dimensionality by projections
destroys essential relationships in the data. Similarly,
traditional clustering algorithms introduce data
bias that prevents detection of natural structures
expected from generic nonlinear processes. We
examine how these problems can best be addressed,
where in particular we focus on two recent clustering
approaches, Phenograph and Hebbian learning
clustering, applied to synthetic and natural data
examples. Our results reveal that already for
very basic questions, minimizing clustering bias
is essential, but that results can benefit further from
biased post-processing.

This article is part of the themed issue
‘Mathematical methods in medicine: neuroscience,
cardiology and pathology’.

1. Introduction

The perception of the presence—or the absence—of
objects by means of the human senses is fundamental to
our existence. In everyday life, this task and the reliability
with which we are able to perform this task are of utmost
importance, e.g. when driving a car. Medical targets of
similar relevance are the identification of the presence of
malicious tissue in a part of our body, or the identification
and quantification of neuro-based behaviourally effective
disorders of the human brain, and more.

The great ability of the human mind in mastering
perceptional tasks when supported by the eyes has
led science and technology to approach such questions
mostly via vision. There is a whole branch of modern
imaging methods and analyses that, for example,
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improve the accuracy of localizing brain defects. Imaging procedures are among the best
validated methods for, for example, early diagnosis of Alzheimer’s disease, and imaging
techniques are used for the efficient therapy of heart diseases, even coupling of diagnostics
and therapy. Positron emission tomography, X-ray, computed tomography, magnetic resonance
imaging, optical coherence tomography and ultrasound imaging lead a very long list of
such methods. In general, these methods are considered just as tools, and the question of
what mathematical assumptions and principles underlie these methods is, from the user side,
seldom posed.

Recently, the efficacy and helpfulness of the visually based methods, however, seem to
approach their limitations. The main reason for this is the increased complexity of the objects that
we need or want to deal with, which renders three-dimensional vision insufficient. This becomes
apparent in the context of describing, evaluating and comparing different aspects of objects of
chemical or biological origin [1-3]. To describe such objects in a most unbiased way forces us to
take an extended number of descriptors or markers into account, which leads to a description
space the dimension of which greatly exceeds the three dimensions that our visual system
generally works in (hearing would offer a much refined approach, but due to the simplicity of
visual information, this path has not been followed and to date remains unexplored). In principle,
and under favourable circumstances, such high-dimensional complexity can be avoided if the
generators of the complexity itself can be accessed. This approach has been followed, for
example, in the realm of the dynamics of complex systems, where examples include fractal image
compression [4,5], periodic orbit expansion [6-10] and isospectral network reduction [11]. These
approaches are strongly based on the existence of simple generative elements of the complexity.
Unfortunately, it is generally difficult to detect such generators even if they exist.

One common tool to reduce dimensional complexity are linear and nonlinear projective
methods [12]. Often, these are used without rendering account of the fact that these methods
are designed to modify the relationships between the objects in the description space. This affects
in particular the distance notion underlying clustering (in all of its variants), which provides the
basis of the human perception of objects.

(a) How we perceive objects

Seen from the perspective of physics, humans observe the world primarily by measuring forces
(within themselves as well as related to the world around). Such measurements depend on
several primary given aspects: the properties of the human body itself (most importantly its
mass, the time that its existence covers and the nature of physical properties that the body’s
sensors provide). Common to all sources of information is that they can never account for the
world’s full complexity [13]—a statement that is not accidentally in close vicinity with Godel’s
theorem, or some ideas of Popper [14-16]. Put in different terms, our observation of the world
is always accompanied by a reduction of the potentially available information. The destruction
of information inherent in this process is the deeper nature of computation (we separate
computation from a mere mathematical reformulation of the problem); in a recent model of and
proposal of how to measure computation, this has been formalized [13,17]. Clustering is the next
step in how we perceive the world, in terms of objects. Conventionally, clustering is defined as the
division of a set of usually a large number of items into subsets that express, among themselves
and compared to items not in the subset, an increased degree of similarity. This similarity can be
expressed and measured in terms of a distance in a space of feature vectors. By attaching the same
symbol to all objects within the same subset, clustering provides the basis of cognition, which then
is needed as the input for supervised neural network learning. The awareness that we deal with
an object of a specific tag type then is at the heart of human object perception.

(b) Feature selection and the curse of dimension

In this way, every model that we have for any aspect of the world is already based on an
unavoidable upstream computation. A model can be appropriate or inappropriate, depending
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Figure 1. K-means clustering based on a Gaussian-like data distribution assumption is largely unsuccessful for other shapes
of data clouds. Only if the two objects move further away from each other can they be considered as Gaussian clouds and be
properly separated. Dashed line denotes separating the computed cluster boundaries; filled dots, cluster centres.

on the degree to which the result of this computation proves to be useful to us: the computation
must be chosen in accordance with the nature of the object and the purpose of the computation.
On an abstract level, this answers our primary question about which clustering algorithm is
the best one. The answer depends both on the goal of the clustering, and the nature of the
object. This poses the question of which properties to select for achieving optimal clustering.
One idea that seemingly circumvents this question is to carry along as many properties as is
computationally feasible. While this appears to avoid a bias by feature selection, it leads to high-
dimensional spaces in which the clustering then needs to be performed, which not only increases
the computational expense.

The ‘curse of dimension’ comprises the belief, based on apparent common observational
evidence, that clusters appear to rarely persist (or are hard to detect) in sufficiently high-
dimensional feature spaces. While on a general level, the verification of such a statement is a
difficult task, the statement seems to be guided by the belief that (sub)clusters should generically
have the form of Gaussian-like clouds. For such data, with increasing dimension, the distances
between feature vectors may tend to identical values, so that the contrast between close and
far neighbouring data points, which is at the basis of all clustering, is lost. The assumption
of Gaussian data clouds or clusters is closely connected to the idea that the dispersion of the
points is mostly due to a random deviation of the data itself or the measuring process around
the ‘true’ value. Such an assumption results in an unnecessary bias, in particular, when dealing
with complex data, where the data distribution is generally not random, but expresses the
process underlying the generation of the data (see below). This Gaussian property assumption
underlies one of the most prominent clustering algorithms, and leads in applications to severe
problems (figure 1).

In addition to intrinsic or measurement noise, Gaussian-like data distributions can emerge
in high dimensions if irrelevant properties are included in the feature vector. Measures
that correspond to such properties are then, by standard procedure, rescaled to the whole
representation space (e.g. the unit interval), in which they become random variables. It is clear
that such features can dominate and fail the next neighbour distance measurement on which
clustering is essentially based. To control, monitor and mend such problems, projection methods
from higher to lower dimensions are applied. These procedures are extreme steps of computation
themselves, and the content of the complexity reduction obtained strongly depends on what
aspects vanish upon the applied projection. An illustration of the resulting problems is exhibited
in figure 2. A more theoretical instructive example is the projection of the two-dimensional skinny
baker map onto a one-dimensional system perpendicular to the expanding direction, which
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Figure 2. Projections in feature space destroy data distance relations.

yields a non-trivial Lyapunov spectrum, but an entirely trivial fractal dimension spectrum; only a
projection along the expanding direction yields a non-trivial fractal dimension spectrum [18].
While random projections can be used to avoid projection deficits, they corrupt the distance
measures that are fundamental for clustering.

To avoid these difficulties, it has been suggested to follow the data’s local manifold structures
and to include a few local dimensions only. Popular algorithms for nonlinear dimensionality
reduction are local linear embedding [19], kernel principal component analysis [20-22],
ISOMAP [23] and t-SNE [24]. A major problem in doing so is points where manifolds split, such as
in the context of shrimp-shaped domains of similar dynamical stability [25]. However, even the
most advanced projection methods in use today have great difficulty in providing appropriate
projections (figure 3).

(c) Sampling model genericity

The important shape feature that we need to be able to take appropriate care of is the following.
From simple reasoning, most elements of a cluster will be the result of the same generating
process, obtained via slightly changed parameters of the generative process. Such generative
processes lead to distributions that strongly differ from Gaussians [3,26]: whenever two or more
parameters are involved in a nonlinear generative process, a shrimp-shaped domain collects
the items that have similar properties (figure 4).

This example demonstrates that generically, natural objects cluster within convex—concave
boundaries. Whereas the property has been shown to hold for maps, it also holds for differential
equations, via Poincare sections (upon which the time scale of a system’s behaviour or that
related to a feature becomes irrelevant). This is illustrated in figure 5 for the mathematically
more involved biochemical reaction differential equation of Decroly & Goldbeter [27], where the
emergent dynamics dependent on two of the several parameters are investigated [3].

Moreover, the shrimp-like shape is inherited into spaces of features. Figure 6 illustrates this
on a theoretical level, when the fundamental parameters of the generative process are mapped
into several other features resulting in a higher-dimensional feature space. In figure 7, we
demonstrate using the purely phenomenological Rulkov model of neuronal spiking [28] that also
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Figure 3. Projection ambiguities of t-SNE. A two-dimensional dataset (a) was first transformed into eight dimensions (see §2)
and then projected back into two dimensions using t-SNE ((b—d) three different runs of t-SNE). Point colours are the same in all
subfigures. For these parameter settings (perplexity = 30) originally connected clusters may be separated into disconnected
subsets. Similar effects are also seen in the presence of noise (see the electronic supplementary material).

in feature spaces that are entirely detached from the generative process, shrimp-shaped clusters
are abundant.

This demonstrates that the Gaussian shape assumption is a severe handicap for clustering.
Building on the proven relevance of shape bias for clustering, we will address in the next section
the question of how the formulation of the search for clusters should be as unbiased as possible.

2. Searching for minimally biased clusters

In the following, we compare and discuss two promising approaches that are fully based on
local k-nearest neighbour information and are therefore promising candidates for unbiased
clustering: the Phenograph approach (a recently published leading algorithm in the clustering
of mass cytometry data with a view to medical application [29]); and a current implementation
of our previously described Hebbian learning clustering (HLC) [26,30]. Both algorithms begin
by representing data points as nodes of a k-nearest neighbour graph, with distances encoded as
graph edge weights. Beyond the graph representation, these algorithms substantially differ. HLC
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Figure 4. Shrimp-shaped clusters of similar dynamical behaviour (orange, period 1; blue, period 2; white, higher periodic
or divergent behaviour) in the (a, b) parameter space of the Hénon map, which is the prototype for all generic properties
of nonlinear processes [18]. Two parabolas depict the ‘skeleton’ representing the lowest approximating nonlinearity of the
generative nonlinear process [3,25]. K-means, but also the hierarchical Ward-type clustering, cannot properly deal with
such shapes.
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Figure 5. Shrimp-shaped clusters of stable dynamical response of a biochemical model by Decroly & Goldbeter [27], for two
selected parameters, o1 and o. Stable solutions dwell upon black/white parameter shrimp-shaped domains, where the
white lines code for extreme stability of the reqular dynamical behaviour and correspond to the parabolas of figure 4. Colours
correspond to emergent unstable solution evolution, detected by calculation of the largest Lyapunov exponent [3,18].
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Figure 6. Shrimp in feature space obtained by transforming the data underlying figure 4 according to (x, y) — (x +y, x +
In(1 + [y]), xy) (other than that it maps parameter into feature space, there is nothing particular about this transformation).
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Figure 7. Shrimp domains of a purely phenomenological model of neuronal firing [3,28]. Black denotes domains of stable firing,
while red denotes domains of unstable response, expressed in terms of the value of largest Lyapunov exponent A [18].

preserves data distance relationships by using an edge weighting that decays with true distance,
whereas Phenograph uses the proportion of nearest neighbours shared by the two nodes to define
the weight of an edge [29] (Jaccard distance). The clustering procedures themselves are also
different. HLC uses the idea of cluster synchronization, modifying edge weights through Hebbian
learning [26,30]. Phenograph takes the view that clustering can be achieved by performing
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Figure 8. Phenograph performance on two-dimensional data. (a) F-measure (red, unweighted; blue, weighted) as a function
of the only algorithm parameter, the number of nearest neighbours k. Dashed lines indicate the F-measure obtained
if all points belong to the same cluster. (b) Example clustering result for k = 320. Retrieved clusters are distinguished
by colours.
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Figure 9. HLC performance on two-dimensional data. (a) F-measure (red, unweighted; blue, weighted) as a function of
algorithm parameter, the number of nearest neighbours k. Dashed lines indicate the F-measure obtained if all points belong to
the same cluster. (b) Example clustering result for k = 40. Retrieved clusters are distinguished by colours. (The weight threshold,
as the second parameter of the algorithm, was set to the mean of the final edge weights.)

community detection as on any other graph, for which a popular and fast, existing algorithm [31]
can be used.

For the discovery of unknown relationships in natural data, the most basic requirement for
clustering is that it should not impose an a priori bias on the shape of clusters. We scrutinize
this aspect using a simple two-dimensional dataset, consisting of two uniform density concentric
clusters separated by a thin, low-density ring (figures 8 and 9). The inner disc is a small convex
set, while the outer ring is larger, and convex—concave. Any algorithm with reasonable density
sensitivity and without an inherent cluster shape bias should be able to essentially separate the
inner disc from the outer ring.
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Figure10. Phenograph performance on higher dimensional data. For display reasons, the clusters obtainedin eight dimensions
are shown here on the original two-dimensional data. (a) F-measure (red, unweighted; blue, weighted) as a function of the only
algorithm parameter, the number of nearest neighbours . Dashed lines indicate the F-measure obtained if all points belong
to the same cluster. (b) Example clustering result for k = 80. (c) Example clustering result for k = 1280. Retrieved clusters are
distinguished by colours.

Moreover, a valuable algorithm should also be able to deal with varying data densities, and
varying dimensionality. To provide a first, simple challenge, we construct a synthetic dataset
in two dimensions composed of test cluster shapes (figures 10 and 11). These data are then
transformed into eight dimensions, using the polynomial transformation

(5, y) = (x+y,x —y, 22,7, xy, 2y, 12, pP). 2.1)

This places the original two-dimensional dataset on a two-dimensional manifold within an eight-
dimensional space, and imparts slight density variations within the clusters. While the first
two coordinate transformations represent a simple rotation (so that a there exists a projection
preserving the original structure), this a priori knowledge will not be available to the algorithms.

In contrast to the considered synthetic datasets, real-world data are acquired through ‘noisy’
data measurement processes, and can therefore not be expected to display sharp boundaries.
In the presence of noise, sets pertaining to different generative processes may even overlap. In
such a case, there is no clear way to divide points into their ‘true’ clusters without introducing a
model, and thereby introducing a bias. The MNIST dataset of handwritten digits [32] provides
an example that is high dimensional, of natural origin and where occasionally two similar
generative processes (e.g. the generators of ‘4’ and ‘Y, figure 12), upon parameter variation and
enhanced by measurement noise (pixel conversion), generate data clouds that partially overlap.
While each person’s handwriting may be self-consistent in that different digits can be easily
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Figure 11. HLC performance on higher dimensional data. For display reasons, the clusters obtained in eight dimensions are
shown here on the original two-dimensional data. (a) F-measure (red, unweighted; blue, weighted) as a function of algorithm
parameter, the number of nearest neighbours k. Dashed lines indicate the F-measure obtained if all points belong to the same
cluster. (b) Example clustering result for k = 50. Retrieved clusters are distinguished by colours. (A weight threshold value of
0.7 was used.)

Figure 12. Examples of ‘4" and ‘9" digits from the MNIST test dataset [32] that are difficult to classify. Top row: ‘4" Bottom
row: ‘9.

distinguished, across a population we see a set of data points spreading between the sets of
‘clearly distinguishable” items. Each MNIST sample has, however, an agreed upon label which
suggests this dataset as a reasonable ‘gold standard’ for high-dimensional clustering. We use here
a 10000 digit subset of the MNIST training set, without any additional pre-processing.

3. Test results

When dealing with unknown data, it is essential that good clustering results can be achieved over
a wide range of algorithm parameters. To assess clustering quality, we use the F-measure [33,34]
(also known as Fp score). This measure is based upon taking the binary harmonic mean between
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‘precision” and ‘recall” of a given cluster i (the correct labelling) with respect to any retrieved
cluster j (the clustering result), i.e.
-

fo+fe!
where the precision f;, is the proportion of points in the retrieved cluster j that belong to the given
cluster 7, and the recall f; is the proportion of points in the given cluster i that have been assigned
to the retrieved cluster j. From these measures, the global F-measure is obtained by averaging
the maximal F-measures obtained for clusters i, F; = max;F;;, as F = (1/n) 3_; F; (unweighted) or
Fw =Y _i(li|/N)F; (weighted), where n is the number of given clusters i, |i] is the number of points
in cluster 7, and N is the total number of data points.

We use these statistical measures for the assessment of the clustering algorithms investigated,
though it is worth noting that they place algorithms capable of rejecting points as noise, like HLC,
at a disadvantage, as the concept of ‘no label’ is not inherent in the F-measure, unless such points
are explicitly excluded (see below).

3.1)

(a) Artificial data
(i) Two dimensions

Surprisingly, Phenograph does not solve our simple two-dimensional clustering task in a
satisfactory manner (figure 8). Over a very wide range of its only parameter (the number of
nearest neighbours k), we find that Phenograph fails to connect the outer ring of the dataset into
a single cluster. Moreover, long before the outer ring becomes connected, the inner disc begins
to join the outer ring. Why such an algorithm, apparently based on local information, might
exhibit this behaviour will be discussed in detail in §3b. The same dataset, however, can be easily
clustered by HLC (figure 9), with stable results over a wide parameter range.

(ii) Higher dimensions

Returning to our eight-dimensional dataset (cf. equation (2.1)), we find the same performance
issue of Phenograph. In figure 10, we observe a tendency for Phenograph to divide the clusters
into sections. For large k, more global artificial boundaries are inserted. Similar effects are seen also
in the presence of noise (see the electronic supplementary material). HLC is able to successfully
cluster these data, for a reasonable range of k (figure 11).

(b) Natural data

The 784 dimensional MNIST subset poses a substantial challenge for both Phenograph (figure 13)
and HLC (figure 14). The F-measure for Phenograph shows a defined peak of around 0.8
for k=40; HLC shows a generally lower F-measure across the tested parameter range and is
seemingly outperformed by Phenograph. Looking closer at individual Phenograph clustering
results, we see that across almost an order of magnitude of its parameter k, it partitions
many of the digits into two or three large sections. The sizes of these partitions grow with
increasing k; for very large k they span across different digits. Around k =40, where the highest
F-measure is located, some of the partitions are almost the same size as the true clusters. The
individual clustering results for HLC are of a fundamentally different nature. Although most
clustering algorithms show a tendency to assign points to major clusters, HLC does not have this
property [26,30]. HLC generates many clusters also of small size that in an interpretive step can be
discarded as noise. For the calculation of the F-measure, this does not favour HLC. The majority
of its misclassified data is due to the merging of data labelled as {3,5, 8} and {4,7, 9}, respectively,
where this same cluster merging pattern has been observed in the t-SNE representation of MNIST
digits [24], and is consistent with some of the common misclassifications of digits on the MNIST
test dataset (e.g. figure 12). This misclassification might be caused by ‘data bridges’ that in human
perception are abolished.
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Figure 13. Phenograph, MNIST data (10 000 digits from the MNIST ‘training set’). (a) Unweighted (red) and weighted (blue)
F-measure as a function of parameter k. Dashed lines indicate F-measures for case where all points assigned to the same cluster.
Clustering results for (b) k = 20, (c) k = 40, (d) k = 150. Results shown as stacked bars where colours depict the different
clusters to which each digit has been assigned by the clustering (original classes ‘0" to “9’ do not contain an identical number of
elements). Inset in (b)—(d) shows distinct cluster colour labels.

4. Discussion

(a) Importance of data ‘bridges’

To scrutinize the data bridges that we suspect to be the origin of the observed merging of digits
{3,5,8} and {4,7,9}, we add after the HLC algorithm a controllable interpretive step. Consider
the situation depicted in figure 15, where the edges connected to data points in the bridges are
characterized by an increased betweenness centrality, compared to edges in the bulk. Pruning
the highest betweenness centrality edges from the graph may therefore separate the centres
(figure 15). This basic idea is also used in some community detection algorithms [35].

For the MNIST dataset, this procedure breaks down most of the grouped clusters into the
desired sets. Primarily only the {4,9} cluster remains connected (figure 16). However, in the
process, numerous points have been moved into very small clusters, which makes it difficult
to quantify the quality of the obtained clustering using an F-measure.

To compensate for this effect, we re-calculate the F-measure after disregarding points assigned
to clusters below a minimum size K. (This is similar to the effect of disregarding points with no
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Figure 14. HLC, MNIST data (10000 digits from the MNIST ‘training set’). (a) Unweighted (red) and weighted (blue)
F-measure as a function of parameter k. Dashed lines indicate F-measures for case where all points assigned to the same cluster.
(b) Clustering result for k = 15. Result shown as stacked bars where colours depict the different clusters to which each digit has
been assigned by the clustering (original classes ‘0'="9" do not contain an identical number of elements). Inset in (b) shows
cluster colour labels used; white corresponds to points assigned to clusters of size less than 50. (The weight threshold was set
to the mean of the final edge weights.)

clear label, e.g. [29].) By following this approach, we see that the F-measure of the betweenness
centrality pruned HLC result rises sharply as a function of K, saturating at K=80 (figure 16).
The best Phenograph result contains only larger clusters, so discarding such small clusters has no
effect (figure 16). Using HLC, a cleaner and more complete separation may be possible following
this approach, but this is not our focus here.

We have seen that the two apparently closely related algorithms considered here give
completely different outcomes on our test datasets. The behaviour of HLC and how this can be
exploited for clustering has been elucidated in the previous section and elsewhere [26,30]. In the
following, we would like to contribute an analysis of the behaviour of Phenograph.

(b) Understanding community-based clustering

We believe the cluster splitting behaviour we observed from Phenograph when applied to
our nearly constant density synthetic data may arise from the community detection algorithm
underlying Phenograph. The particular algorithm used by Phenograph, from [31], searches for the
partition of the graph that maximizes modularity. Graph modularity Q [35] measures the trade-
off between intracluster connections and intercluster connections with respect to a partitioning of
the nodes into clusters, and can be written as [31]

1 kik;
0=5->" (Az-,- - 27;) 5(ci ), @)

ij

where Aj; is the (weighted) adjacency matrix of the graph, 2m = Zi,]- Ajj, ki = Z]- Ajj, ¢ is the label
assigned to point #, and §(c;, ¢;) =1 if ¢; = ¢j, and 0 otherwise. Maximizing the modularity on a
k-nearest neighbours graph, however, can have unexpected consequences, when the spatial extent
of the clusters exceeds the range of the k-nearest neighbour connections.

Consider, for illustration, a one-dimensional dataset of uniform density, containing L points.
Intuition suggests that all L points should be assigned to the same cluster. Suppose instead that
the set of points were to be broken up into equally sized clusters of size ¢, and that the k-nearest
neighbour graph is unweighted. Under these assumptions, we can evaluate the modularity as a
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Figure 15. Effect of betweenness centrality pruning on a single ‘dumbbell’ shaped cluster. (a) HLC clustering result F-measure
versus k for example dataset in (b)—(d). (b) HLC clustering result for k = 50. (c) HLC clustering result for k = 10. (d) HLC
clustering result for k =10 after betweenness centrality pruning of top 2% of edges. (¢) Phenograph clustering result
(k =1000).

function of cluster size c. Within each cluster C, for even k, we have

> Aj=ck—aq, (4.2)
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Figure 16. Effect of disregarding small clusters. MNIST dataset as a function of the cluster size K below which clusters are
disregarded. HLC (k =15, edges with highest betweenness centrality have been discarded): solid lines (unweighted, red;
weighted, blue). Phenograph (k = 40): dashed lines (unweighted, red; weighted, blue). Inset: HLC clustering (k = 15) after
betweenness centrality clipping, with clusters smaller than K = 80 displayed white.

where

ZZ(K—Q, ifc>5+1
a={="\2 2 (4.3)

ck—c(c—1), otherwise,

corrects for the edges outside each cluster. Noting that 2m = Lk, and that there are approximately
L/c clusters, this gives

_ 12
Q%i<0k a_c(c 1)k>+f}

Lk 12k2 Lk
a c—1 B
—-1- = _ e 4.4
ck L + Lk’ (44
where
k/2
k k
> 2(5—1‘), ife>5+1
ﬁ = i=max(0,k+1—c) (4-5)

0, otherwise

is a correction for the two clusters at the ends of the set, 1 <c<L and 1 <k <L — 1. Keeping L
and k fixed, Q is a function of ¢ with a maximum at ¢ <L (figure 17). Thus, even in this very
simple case, maximizing modularity leads to an artificial partitioning of the set. This observation
is independent of the method used to maximize Q. As a consequence, any community detection
algorithm based on modularity maximization can be expected to show a similar effect.

The assumption of unweighted edges should lead to an overestimate (i.e. a conservative
estimate) of the value of ¢ maximizing Q. This is because any spatial weighting scheme for
clustering will assign lower weights to longer edges. Simulations with Phenograph of a line of
500 equally spaced points reveal cluster sizes consistent with our prediction of the value of ¢, until
the equal cluster size assumption breaks down at large k (figure 17). In more than one dimension
for clusters of uniform density, a similar situation may occur. In high dimensions, for clusters
with a single dominant density peak, this may not be a problem, but for extended clusters with
low-density contrast some caution may be needed.
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Figure 17. Maximizing modularity on a one-dimensional set. Plots of Q(c) according to our approximation, for L = 500, k as
indicated. Filled circles indicate Q(c) at points L /j,j € {1, . . ., 500}, rounded down to the nearest integer. Below the c-axis of
each plot is an example Phenograph clustering result for the same value of k, with colours denoting different clusters.

5. Outlook and conclusion

The focus of this paper has been on where bias enters clustering analysis, and how to deal with
it. Our thesis is that bias must be well understood, and be appropriately and carefully controlled,
at every step of the data analysis. Even before starting a clustering procedure, the most relevant
and informative features must be selected. This selection naturally introduces bias, that must be
consistent with the question to be addressed. A poor selection of features cannot be compensated
by nonlinear transformations or clustering algorithms. Selection of irrelevant features, in addition,
can destroy our ability to detect data structures. In our synthetic data examples, which contain
only ‘relevant’ information, appropriate feature selection has been sidestepped. Instead, these
examples demonstrate the importance of keeping bias to the lowest reasonable level in the
clustering step. As clustering is a strong computation that destroys information, only careful
application of algorithms with minimal bias towards cluster form can provide a rich data canvas
on which further interpretation can be performed. We see this deferral of delicate interpretive
decisions as a service that clustering algorithms should offer. In HLC, for example, the cluster
graph structure can be preserved, permitting graph theoretical tools to be applied, to incorporate
specific extra information, biasing the outcome towards the kind of ‘true’ clustering result that we
are looking for. The specific example using betweenness centrality on the MNIST training digits
given above was only provided for illustration purposes. In general, a bias must be carefully
chosen that permits the desired question to be answered on the one hand, and on the other hand is
general enough to be reliably applicable beyond the specific example on which it is calibrated. On
that basis, the discrimination of ‘noise’ by HLC (that might seem at first view to speak against our
minimal clustering bias view) can be seen as follows: extracting the major data features in a first
step provides a useful structural skeleton in feature space, to which minor and more subtle data
features can be related. This could be achieved, for example, by a sequential clustering approach,
or a distance-based label reassignment; decisions that would, of course, be specific to the objects
of interest in the data.

Requiring that generally applicable clustering algorithms should directly answer specific
questions of high-dimensional natural data may be simply asking too much. Questions such as,
‘what are the different cell types present in these data?’ are difficult to separate from the bias
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imposed by historical developments of the field. By minimizing clustering bias, new viewpoints
on old assumptions may become accessible, opening the door to gaining novel insight potentially
beyond, and in contrast to, commonly used data categories.
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