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Robust evidence exists that certain extreme weather and climate events,

especially daily temperature and precipitation extremes, have changed in

regard to intensity and frequency over recent decades. These changes have

been linked to human-induced climate change, while the degree to which

climate change impacts an individual extreme climate event (ECE) is more

difficult to quantify. Rapid progress in event attribution has recently been

made through improved understanding of observed and simulated climate

variability, methods for event attribution and advances in numerical model-

ling. Attribution for extreme temperature events is stronger compared with

other event types, notably those related to the hydrological cycle. Recent

advances in the understanding of ECEs, both in observations and their rep-

resentation in state-of-the-art climate models, open new opportunities for

assessing their effect on human and natural systems. Improved spatial resol-

ution in global climate models and advances in statistical and dynamical

downscaling now provide climatic information at appropriate spatial and

temporal scales. Together with the continued development of Earth System

Models that simulate biogeochemical cycles and interactions with the bio-

sphere at increasing complexity, these make it possible to develop a

mechanistic understanding of how ECEs affect biological processes, ecosystem

functioning and adaptation capabilities. Limitations in the observational net-

work, both for physical climate system parameters and even more so for

long-term ecological monitoring, have hampered progress in understanding

bio-physical interactions across a range of scales. New opportunities for asses-

sing how ECEs modulate ecosystem structure and functioning arise from

better scientific understanding of ECEs coupled with technological advances

in observing systems and instrumentation.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction and motivation
A recent publication by the National Academy of Sciences [1] is the latest addition

to a series of focused summary reports [2–4] that highlight mounting evidence

that extreme weather and climate events have been changing in regard to inten-

sity, frequency and duration in the last few decades. Daily temperature and

precipitation extremes in particular have been observed to increase in frequency

and intensity, which has been linked to human-induced climate change [5–7].

By contrast, the degree to which climate change impacts an individual

extreme weather or climatic event is more difficult to determine and quantify.

This applies especially when considering that a variety of natural and anthropo-

genic factors, such as internal modes of climate variability, various man-made

emissions, land-use change, and so on, need to be taken into account when attri-

buting individual weather or climate events to causal factors. Solow [8] cautioned

that the concept of attributable risk for single events in a climate change context is

inherently difficult given the rarity of extreme climatic events (ECEs) and the lim-

ited reliable climatic record. Extreme events by definition are rare occurrences and

in most places few examples of past events are seen in the observational record [1].
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However, recent rapid progress in event attribution has

been made through improved understanding of observed

and simulated climate variability, increasing observational

capabilities, methods for event attribution and advances in

numerical modelling. The American Meteorological Society’s

annual report of extreme events that occurred in the previous

year was first published in 2012 with six extreme event studies

for the year 2011 [9]. The number of studies rose sharply to

32 extreme events last year [10], covering all continents and

much broader types of events and impacts during 2014 [7].

The National Academy of Sciences report thus concluded

that ‘in many cases, it is now often possible to make and

defend quantitative statements about the extent to which

human-induced climate change (or another causal factor,

such as a specific mode of natural variability) has influenced

either the magnitude or the probability of occurrence of specific

types of events or event classes [1, p. 16]’.

There has also been substantial progress made recently in

assessing ECEs according to the latest Intergovernmental

Panel on Climate Change (IPCC) assessment report 5 (AR5),

compared with the previous AR4 report [3,11]. Recent

advances in the understanding of ECEs, both in observations

and their representation in state-of-the-art climate model simu-

lations, open new opportunities for assessing the effect of ECEs

on human and natural systems at relevant scales. In particular,

improved spatial resolution in global climate models combined

with advances in statistical and dynamical downscaling

(e.g. regional model configurations) now provide climatic

information at the appropriate spatial and temporal scales:

with these, it is possible to develop a mechanistic understand-

ing of how ECEs in the physical climate system affect biological

processes, ecosystem functioning and adaptation capabilities.

It is evident that ECEs, especially large-scale events such as

subcontinental-scale drought or heatwaves, can have profound

effects on ecosystems [12]. This was shown for example for arid

and semi-arid ecosystems in response to hydroclimatic disturb-

ances associated with El Niño-Southern Oscillation (ENSO)

events in Australia and the Americas ([13] and references

therein): more specifically, ECEs can trigger ecosystem-level

disturbances through changing species composition and diver-

sity (i.e. organization) and functional attributes [14]. For

marine ecosystems, ECEs are also considered a key driver of

biodiversity patterns (e.g. [15]). Addressing how such episodic

events affect species distribution is regarded as crucial to

advance predictive models of species distribution and ecosys-

tem structure in the future, beyond their current basis on

gradual warming trends [16]. However, when assessing 238

widespread species in England, Palmer et al. [17] found

extreme biological responses linked individualistically to cli-

mate, but long-term trends of widespread species were not

(yet) simultaneously dominated by ECEs.

The representation of large-scale to regional-scale ECEs is

within the capabilities of current-generation climate models,

while ECEs on local and subgrid scale (on the order of

metres to dozens of kilometres) still pose challenges. The speci-

fics of the ecosystem response, including initial resistance,

evolution of the response and the system’s resilience to

return to its original condition, depend on the characteristics

of the biological system and the level of the disturbance [14].

When considering ECEs as disturbances, these include fre-

quency, intensity, duration, seasonality and preconditioning.

Recent improvements have been made in the observational net-

works to evaluate ECE characteristics with regard to data
homogeneity [11], as well as spatial and temporal coverage

and resolution through advanced technologies. Remotely

sensed datasets of the climate system with short return inter-

vals at identical locations and near-global coverage [18]

provide major advances in understanding changes by quanti-

fying processes and spatio-temporal states of the atmosphere,

land and oceans [19]. This applies to biological systems for

example through global satellite monitoring of climate-

induced vegetation disturbances [20] or ocean colour remote

sensing for phytoplankton blooms since the 1970s [21]. As

such, satellite-based datasets are becoming long enough to be

used in detection–attribution studies for ECEs [22].

This review provides an overview of the current under-

standing of changes in ECEs and how they are quantified.

For a detailed assessment of ECEs, the reader is referred

to recent papers providing an in-depth review of various

aspects of changes in ECEs, their detection and attribution

(e.g. [11,22–24]). Here, particular focus is on ECEs with eco-

logical relevance and covering different realms of the climate

system and across a range of spatial and temporal scales. It is

by no means meant as an exhaustive accounting of changes

in ECEs or their ecological impacts, but focuses mostly on eco-

systems and community ecology. The remainder of the review

is structured as follows: §2 defines ECEs and highlights how

their definition might affect the assessment of changes, while

§3 reviews detection and attribution of events. Section 4 details

observed and simulated changes in ECEs with ecological rel-

evance, along with examples from the terrestrial/atmosphere

and ocean realms. Section 5 discusses current challenges and

opportunities in understanding how ECEs affect biological

systems, followed by conclusions provided in §6.
2. Extreme climatic events
Different definitions for ECEs exist, such as those detailed in

table 1 in van de Pol et al. [25] in this issue. In this review, we

follow the climatological definition used by the IPCC Special

Report on Extreme events [2] for a climate extreme (extreme

weather or climate event; figure 1): i.e. the occurrence of a

weather or climate variable above (below) a threshold value

near the upper (lower) end of the range of observed records

of the variable. Definitions of thresholds can vary, but are typi-

cally 10%, 5% or 1% relative to a reference period, though

absolute thresholds are also sometimes considered (e.g. for criti-

cal threshold temperatures for physiological responses; [27]).

However, in absolute terms, what is considered an extreme

event will vary in different locations: ECE characteristics are

intimately tied to a location’s mean climatic condition and its

variability. For example, a record daily maximum temperature

in the Sahara is higher than for Alaska; for the latter, the absol-

ute value for this record temperature will also exhibit much

greater seasonal dependence given the temperature range

between winter and summer at higher latitudes.

Several characteristics of extreme events are of interest.

These include the magnitude of ECEs, the probability or

return frequency, the duration of the ECE, the spatial extent,

timing, onset date or seasonality, and preconditioning [27]. Pre-

conditioning in this context refers to antecedent conditions that

facilitate or enable a certain extreme event to occur or modify

its characteristics. For example, antecedent soil moisture deficits

that accumulate over the course of several months in winter/

spring have been shown to exacerbate summer heatwave and
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Figure 1. Schematic highlighting the effect of changes in the temperature
distribution on ECE occurrence between present and future climate conditions:
(a) effects of a simple shift of the entire distribution toward a warmer
climate; (b) effects of an increase in temperature variability with no shift
in the mean; (c) effects of an altered shape of the distribution, in this
example a change in asymmetry toward the hotter part of the distribution.
Reproduced from IPCC [26].
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drought conditions (e.g. [28]), as dry soils may amplify extreme

maximum temperatures through feedback with evapotranspira-

tion [29,30]. Changes in these ECE characteristics have been

investigated in climate change studies, though the majority of

research has focused on ECE changes with regard to magnitude

and probability/return frequency.

To define ECEs, thresholds, percentiles or return values are

defined with respect to a reference period, which is often his-

torical, i.e. 1961–1990. The choice of reference period can

affect the assessed changes and whether it is considered to be

static or transient [27,31]: if ECEs are defined based on a per-

centile of the probability distribution, shifts in the mean

(without any change in the shape of the distribution) will not

lead to a relative change in the frequency of the extremes.

Sippel et al. [31] cautioned, though, that standardization to a

reference period can introduce an inhomogeneity when calcu-

lating temperature variability and extremes, with a risk of

arbitrarily inflating extremes, and suggested an analytical cor-

rection. A series of studies demonstrate that observed changes

in the frequency of extremes are consistent with overall shifts in
the distribution (e.g. [32–34]). While counts of threshold excee-

dance, such as frequency and duration, closely follow mean

changes, variations in intensity or severity are considerably

more sensitive to changes in the shape of the probability distri-

bution (figure 1; e.g. [33,35]). There is also ongoing debate

about the role of changes in the variance and higher order

moments, such as skewness, in addition to the mean [33]. Fur-

thermore, the statistics of ECEs are particularly sensitive to data

availability, quality and consistency.

Some limitations were previously noted with regard to

defining ECEs as probability-based or threshold-based [27]:

events from the extreme tails of the probability distribution

do not necessarily have to be extreme in terms of impact.

Impact-related thresholds are variable in space and time,

such that definitions for ECEs need to be modified for differ-

ent locations and time periods (e.g. seasons). To account for

this, ECEs can be defined quantitatively in two ways:

(i) related to a specific threshold (possibly impact-related);

or (ii) related to their probability of occurrence [27]. These

definitions are not necessarily diametric; impacts on society

or ecosystem responses are often extreme, irrespective of

whether a probability or threshold definition has been used.
3. Detection and attribution of extreme climate
events

Reliable detection and attribution of changes in specific cli-

matic events and their impacts are key for understanding the

scientific basis of climate change and for successful decision-

making to enable adaptation and mitigation [22,36]. Similarly,

to assess how ECEs impact structure and functioning of popu-

lations, individual species or entire ecosystems, detection and

attribution approaches are crucial.

Detection refers to the process of demonstrating that an

ECE characteristic (or climate variable more broadly) has

changed with respect to some previous period in a defined

statistical sense; however, no reason for that change is pro-

vided [22,36]. In observations, such a change is identified if

its likelihood of occurrence by chance due to internal variabil-

ity alone is considered to be small [5]. By contrast, attribution

is the process of assessing the relative contributions from

multiple causal factors to an ECE change or event; it also

assigns a statistical confidence to this conclusion. Attribution

is thus more complex than detection, as it combines statistical

analysis with physical understanding [5,37]. One can attri-

bute an observed ECE change to a specific causal factor

through demonstrating that the change is consistent with a

process-based model that includes this factor and is inconsist-

ent with an alternate model that is otherwise identical, but

excludes the factor. This assessment also needs to take into

account internal chaotic variability and uncertainties in

observations and responses to external causal factors [5].

Approaches for detection and attribution for a particular

event can be classified into two categories [3]: (i) studies that

use the observational record to assess whether a change in

the probability or magnitude of an ECE has occurred;

(ii) studies based on climate model simulations (coupled or

using a subset of components only) to compare characteristics

of the event in simulations with and without anthropogenic cli-

mate change; a combination of both approaches is also often

used [3]. Stott [7] further divides the latter into two types of

methods as follows: (i) exceeding a certain climate index in
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extended coupled climate model simulations with and without

climate change; (ii) using a large ensemble of atmosphere-only

simulations that use observed boundary conditions, such as sea

surface temperatures (SST), to evaluate if the climate index of

interest, with or without the factor included, occurs at a chan-

ged frequency [7,24]. This approach is not limited to

atmosphere-only configurations, where an atmospheric model

is forced by observed boundary conditions (e.g. SST), but

could also be applied to ocean models forced with atmospheric

boundary conditions (e.g. winds, precipitation, heat fluxes).

Overall, the evidence for detecting a human influence on

temperature extremes has strengthened since the IPCC Special

Report on Extreme events [2]. Global-scale daily temperature

extremes have increased in frequency and intensity since the

1950s, very likely due to anthropogenic influences, and heat-

wave probabilities have doubled in some locations [3]. Stott

[7] also highlights that specific event attribution for extreme

temperature events, such as record daily temperatures or heat-

waves, is stronger compared with other types of events,

notably those related to changes in the hydrological cycle.

Despite substantial recent improvements in models, rea-

nalyses1 and satellite records, detection and attribution of

human influence on the water cycle and in particular regional

precipitation remains challenging [6,11,24,39]. To disentangle

the complex regional-scale changes in precipitation, a highly

noisy variable, several factors are likely to affect the anthro-

pogenic response: (i) how external forcing affects internal

modes of climate variability, which can alter the frequency

or amplitude of the mode or in turn modify its precipitation

teleconnections; (ii) responses to different external drivers

(e.g. aerosols, ozone) vary for precipitation; and (iii) the spatial

expression of the precipitation response to external forcing con-

tains signals that are due to thermodynamic as well as dynamic

changes, which arise due to altered atmospheric energetics,

moisture content and large-scale circulation [39].
4. Changes in extreme climate events with
ecological relevance

Robust changes in many ECEs have been observed in the

second half of the twentieth century. Shifts in the frequency

of ECEs can arise due to different changes, as highlighted

exemplarily for a temperature distribution in figure 1: ECEs

can occur more frequently due to a shift in the mean, be associ-

ated with shifts in the variability of the distribution, as well as

changes in its symmetry or skewness (figure 1; [26]).

(a) Terrestrial/atmosphere
(i) Temperature extremes
For temperature, changes in the distribution are especially

pronounced for increases in maximum and minimum tempera-

tures [40]. There is robust evidence across multiple datasets

that minimum temperatures across the globe are rising faster,

which could lead to a decline in the daily temperature range

[3]. Globally, a decrease in the number of cold days and nights

is considered very likely, while the number of warm days and

nights increased. Regional variations exist, with Europe and

Asia exhibiting especially pronounced decreases in cold nights

[40–42]. For North America, it is projected that the total area

experiencing freezing days will contract by approximately 6%

by 2070, with the number of freezing days declining by 10–90
days depending on the region [43]. It has been shown for the

USA [44,45], Australia [46] and Europe [47] that the ratio of

daily record high temperatures to daily record low temperatures

has been increasing, with the average for the first decade of

the twenty-first century for these regions being about two

to one (i.e. two daily record highs are set for every one daily

record low). The shift in the chances for more record

highs than record lows relates to the increase in average temp-

eratures over this time period in these locations. This ratio is

projected to increase in the future as the climate continues to

warm [30,44,47].

Confidence in trends in temperature extremes is high for

North and Central America (e.g. [48]), Europe (e.g. [49]), Asia

(e.g. [41]), Southeast Asia and Oceania (e.g. [50]). Trends in

the climate models with regard to the frequency of extreme

warm and cold days and nights since the 1950s are consistent

with observations and are projected to continue to change

into the twenty-first century [3]. A decrease of frost days, an

increase in growing season length, an increase in the number

of warm nights, and an increase in heatwave intensity over

the USA have been attributed mostly to increases in human-

produced greenhouse gases [51]. Heat-related extremes and

some precipitation extremes have also been attributed to

human influences on climate [52]. Changes in regional temp-

erature extremes have been associated with changing global

and regional atmospheric circulation and SST patterns

[33,53]. High temperature extremes have been shown to sub-

stantially affect individual species, as shown for example for

negative effects on clutch size for a particular bird species

[54] and on overwintering success of butterfly species in

the UK [55], or ecosystems through overall contractions or

shifts in the distribution range of species habitat, as critical

temperature thresholds are exceeded [56,57].
(ii) Precipitation extremes
According to theoretical thermodynamic understanding,

the water-holding capacity of the atmosphere scales with

temperature and an intensification of extreme precipitation is

expected in a warming world (e.g. [33,58–63]). According to

the well-known Clausius–Clapeyron relationship, the satur-

ation-specific humidity increases by approximately 7% per 8C
of warming, with higher levels of moisture available and inten-

sifying rainfall. This was also found in observed annual

maximum daily rainfall rate increases of 5.9–7.7% for globally

averaged surface temperatures [64]. However, in their review of

subdaily extreme rainfall changes, Westra et al. [23] described

observed and simulated rates of extreme precipitation increases

double of that suggested by Clausius–Clapeyron at tempera-

tures below 208C. Short-duration (less than 1 day) storms

were most likely to occur more often, which might increase

the frequency and magnitude of flash floods [23]. Since the

1950s, heavy precipitation events have probably increased in

frequency over land globally, especially over North America

and Europe, while confidence in heavy precipitation over

other land areas was only medium [3]. A shift to more extreme

precipitation patterns with more heavy rainfall and longer dry

intervals [65] has been shown to decrease the rain use efficiency

across biomes. This is most pronounced for arid grasslands and

Mediterranean forests (16–20%), due to higher water stress con-

ditions and reduced vegetation production [66]. Feng et al. [67]

also highlighted changes in the rainfall seasonality in the

tropics over the twentieth century: they observed increasing
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interannual variability of seasonality over large parts of the dry

tropics (arid and semi-arid regions), with shifts in seaso-

nal magnitude, timing and duration, all factors that are of

importance for local ecological processes.

Changes in regional precipitation can arise due to both a

thermodynamic as well as a dynamic contribution (i.e. including

changes in circulation, modes of variability and teleconnections;

[39]). Westra et al. [23] highlighted the importance of research

efforts focusing on improving our understanding of local-scale

thermodynamic effects and large-scale atmospheric circulation

in modulating subdaily extreme rainfall intensity. A series of

studies have recently found that regional SST warming played

a role in intensifying extreme precipitation events [68–71]. For

example, Australia experienced extreme rainfall conditions

during the 2010/2011 La Niña event that led to extensive flood-

ing in the northeast of the country ([71] and references therein).

As demonstrated in atmospheric circulation model experiments

based on 2010/2011 ocean conditions with and without long-

term warming included, both dynamic and thermodynamic

factors led to the intensification of the rain-producing atmos-

pheric circulation conditions [71]. The resultant widespread

wet conditions in the interior of the Australian continent,

which included a rare filling of Lake Eyre [72], led to unusually

high growth of the semi-arid vegetation, accounting for record

global terrestrial carbon uptake in 2010/2011 [73].
(iii) Heatwaves and droughts
Heatwaves over large areas of Europe, Australia and Asia have

probably become more frequent, with droughts more intense

and/or longer in many regions since the 1970s [3]. Severe heat-

waves, such as the one in Europe in 2003 [28,74–76], Australia

in 2009, Russia in 2010 [77–79] and the USA in 2010/2011 [80],

are often associated with persistent blocking high pressure sys-

tems [81]. These circulation regimes are projected to become

more frequent, intense and persistent in the twenty-first cen-

tury, leading to an intensification of heatwaves in Europe

and North America [81]. Summers like 2003 over Europe are

likely to occur twice a decade in the late twenty-first century

[82]. Assessing seasonal temperature and circulation regime

changes over Europe for 1960–2000, Cassou & Cattiaux [83]

found an earlier onset of summer: they related this to an earlier

disappearance of winter snow in Eastern Europe that hastened

the typical summertime formation of a blocking high pressure

system over Europe. This was associated with more clear-sky

days with increased incoming short-wave radiation and anom-

alous easterly advection of warm air from the continental

interior earlier in the year [83].

During the 2003 heatwave, unprecedented reduction in

Europe’s gross primary productivity occurred that reversed

the effect of 4 years of net ecosystem carbon sequestration,

with a 30% reduced primary productivity and lower ecosystem

respiration [84]. Several recent reviews [18,85] investigated

how ECEs affect terrestrial ecosystems and, in particular, the

carbon cycle. ECEs, such as droughts and heatwaves, severely

affect forests and grasslands through changes in plant physi-

ology, phenology and carbon allocation. They also lead to

increased tree mortality, shifts in vegetation composition,

degradation and desertification, along with erosion [85].

Advances have been made recently in understanding how

droughts affect tropical forests on molecular, cellular, individ-

ual, species, community and landscape level [86]. In a review

on ecological impacts of droughts on the Amazon, Asner &
Alencar [87] found the hydrological function of floodplains

significantly affected by droughts and fires, and burn scars

were more frequent during drought years; they also high-

lighted the importance of integrating multiple lines of

evidence from remote sensing of hydrological, disturbance-

fire and physiological impacts with field measurements, to

reduce uncertainty of basin-level responses to drought [87].

Droughts are most likely to have the largest and most long-last-

ing impacts globally due to large indirect and lagged impacts

and long recovery especially for forest ecosystems [18].

Examples include the rapid subcontinental die-off of woody

plants during the 2000–2004 drought in the Southwest

United States, when more than 90% of the dominant pine

species died as a consequence of 15 months of soil water con-

tent deficits [88,89]; the intense 2005 drought affecting the

Amazon forest ecosystem to a degree that reversed its role as

a long-term carbon sink [90]; and a global overview of drought

and heat-induced tree mortality studies from the Americas,

Australia, Europe and Asia, indicating that no forest type or cli-

mate zone is invulnerable to ECEs even in environments not

normally considered water-limited [91].

Focusing on the 2003 European summer, Garcia-Herrera

et al. [76] concluded that a northward displacement of the

North Atlantic subtropical high and anomalous Mediterra-

nean SST contributed to the heatwave. Investigating the

role of soil moisture–atmosphere interactions, Fischer et al.
[28] found an early spring soil moisture deficit to be instru-

mental in accounting for the severity of the summer

heatwave in Europe. They linked the decrease in springtime

soil moisture to a precipitation deficit along with strong posi-

tive radiative anomalies and early vegetation green-up [28].

Similarly, Wolf et al. [92] found increased vegetation growth

and carbon uptake during the record-breaking warmth and

early arrival of spring 2012. Increased carbon uptake in

spring could have enhanced depletion of soil water through

higher evapotranspiration and exacerbated summer drought

conditions, highlighting the importance of land-atmosphere

feedback during ECEs [93]. For the Great Plains in the Midwest

US, enhanced local land–atmosphere feedback are likely

associated with an amplification of future heatwaves due to

stronger subseasonal summertime temperature variability [94].

Droughts can also affect freshwater ecosystems, such as

streams, rivers, lakes and wetlands, stressing and depleting

both fauna and flora as shown for the so-called Big Dry or

Millennium Drought for Southeast Australia ([95] and refer-

ences therein), floodplains in the Amazon [87] and in a

review based on studies from the US, Europe and Australia,

while impacts particularly in Asia, Africa, and South America

have not been documented in the published literature [96].

Droughts can result in poor water quality, habitat loss and

changed biotic interactions, which will impact aquatic biota

and ecosystem functioning in both flowing and standing

water systems, where the effects of drought on population

and community structure are better understood than impacts

on ecosystem processes [95].
(iv) Wildfires
The frequency of wildfires is related to temperature, moisture

and fuel loads, which in turn are affected byspecies composition

and age structure [14]. Littell et al. [97] found antecedent climatic

conditions, such as winter precipitation for shrub and grassland

ecosystems and summer droughts in forests, to be an important
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factor accounting for trends in the areal extent burned in

the western US. Extended periods of drought, especially if

they are followed by extreme heat and low humidity, provide

ideal conditions for wildfires, often incited by lightning associ-

ated with thunderstorms at the end of the drought [14].

Assessing changes in fire severity in the western US, Miller

et al. [98] found substantial increases in mean and maximum

fire size and the annual area burned since the 1980s, indicating

that forest fuels were no longer a limiting factor for fire occur-

rence. Sudden changes in wildfire activity in forests in the

northern Rocky Mountains in the mid-1980s, with more fre-

quent large-scale fires, longer-lasting wildfires and a longer

wildfire season, were associated with earlier spring snowmelt

and increased spring and summer temperatures [99]. In the

light of warming regional temperatures and changing pre-

cipitation, along with current trends in increasing wildfire

severity, it is important to address the implications of ongoing

fire suppression. This is especially so as severe wildfires can

have extensive ecological impacts, including on forest fragmen-

tation, erosion rates, carbon sequestration, wildlife habitat

availability and post-fire seedling recruitment [98]. Several

studies emphasized the importance of the interaction of the

physical climate system and biological processes across tem-

poral and spatial scales to explain climate–wildfire

interactions: Marlon et al. [100] ascertained that improved

understanding of the causes and consequences of forest wild-

fires in the western US is crucially dependent on integrated

information of climate change and human activity across a

range of temporal scales. Parisien & Moritz [101] advocated

further work for improved understanding of direct causal fac-

tors that control wildfires across a range of spatial scales.

Alencar et al. [102] linked increased fire incidence in dense for-

ests in the Amazon basin to severe, ENSO-related droughts,

when the end of the dry season was delayed by a month, result-

ing in larger burn scars and overall extent of the area burned; by

contrast, open and transitional forests with higher deforestation

rates burned more frequently, suggesting that climate-mediated

forest flammability was exacerbated by landscape fragmenta-

tion [102]. Investigating preconditioning of devastating

bushfires in Southeast Australia in February of 1983 and 2009,

Cai et al. [103] associated these with characteristic Indian

Ocean conditions with a positive Indian Ocean Dipole, rather

than El Niño events, through impacts on soil moisture, as

shown for prolonged Southeast Australian droughts [104].

(b) Ocean
(i) Marine heatwaves and cold spells
In analogy to heatwaves in the atmosphere, the marine

environment also experiences sustained extreme temperature

events, so-called ‘marine heatwaves’. It is defined as a pro-

longed discrete event with anomalously warm water and

characteristics include its spatial extent, intensity, duration

and rate of evolution [105]. Marine heatwaves can have exten-

sive ecological implications, including shifts in species range

[106], local extinctions [15] and economic impacts when affect-

ing aquaculture or important fishery species [107]. Some of the

recent observed marine heatwaves with extensive ecological

implications occurred in the northern Mediterranean in 2003

[108], the 2011 ‘Ningaloo Niño’ in Western Australia [16],

and in the northwest Atlantic in 2012 [107]. Investigating the

frequency of marine heatwaves in the North Pacific and Atlan-

tic since the 1950s, Scannell et al. [109] found the probability of
marine heatwaves to be a trade-off between size, duration

and intensity, which are modulated by a region’s specific

variability, as well as by modes of climate variability and

anthropogenic warming. Marine heatwaves have been

observed more frequently in the last decades and are projected

to become more frequent in a warming climate [105], though

decadal variability probably plays a role as well [110]. Wern-

berg et al. [15,16] linked regime shifts of Western Australian

temperate reef ecosystems to continuing ocean warming and

extreme marine heatwaves. These resulted in a significant

range contraction of kelp forests, which were being replaced

by communities typical of subtropical and tropical waters

[15,16]. Di Lorenzo & Ohman [111] showed that cumulative

responses to atmospheric forcing can help explain large-

amplitude state transitions in marine ecosystems, allowing

better interpretation of both abrupt responses and gradual

changes (e.g. to long-term warming) in biological systems.

An example of a record-setting ocean heatwave was the one

that occurred in the North Pacific 2013–2015 [112]. It was one

of the largest marine heatwaves ever recorded, with SST

anomalies exceeding three standard deviations in consecutive

years [112]. It is possible that this record-breaking ocean heat-

wave could have been the most ecologically significant in

recorded history [112]. Impacts included sea lion, whale and

sea bird mortality events [113–115], very low ocean primary

productivity [116], and the largest algal bloom on record that

negatively impacted shellfish along the western coast of

North America [117]. This event was characterized by an over-

all warming trend in the North Pacific Ocean superimposed

with anomalously warm interannual SSTs in the Gulf of

Alaska and along the west coast of North America that per-

sisted and grew due to alternating mid-latitude-tropical and

tropical-mid-latitude interactions, with the possibility that

such events could increase in the future in association with

an increase in winter-time variance of climate over the North

Pacific [112].

Another example of an ocean heatwave impact was associ-

ated with the 2015–2016 El Niño that produced extremely high

tropical SSTs in regions where coral reefs experienced the third

mass bleaching event in recorded history [118]. All these mass

bleaching events have occurred in conjunction with El Niño

events since 1997 (first mass bleaching was 1998, the second

was 2010; [118]), and occurred when steadily rising SSTs

from human-caused warming had warm El Niño SST

anomalies superimposed, thus crossing the tolerance threshold

and causing reefs to bleach. In previous mass bleaching events,

a certain percentage of bleached reefs died, thus raising the pro-

spect of large-scale coral reef mortality arising from this ECE

related to the 2015–2016 El Niño event. For example, there

was a reported bleaching of over 90% of the Great Barrier

Reef in Australia by early 2016 [119]. The prospects for even

greater mass bleaching events increase during future El Niño

events as the climate continues to warm, with dire conse-

quences for the overall health and sustainability of coral reef

ecosystems [120].

By contrast, marine cold spells can also severely impact eco-

system structure (e.g. [121,122]). Subtropical Florida

experienced a severe cold spell in early 2010, with severe

impacts for terrestrial and marine species, including coral reef

communities [121], non-native crabs [123] and important game-

fish [124]. According to Lirman et al. [121], the Florida Reef

Tract experienced the most severe coral mortality on record in

response to the cold-water anomaly in January 2010, which
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disproportionately affected shallow reef habitats that had

exhibited resilience to prior disturbance events. However,

such abnormal cold winters may be a critical ‘reset’ mechanism

for marine invasive species, as the cold snap can limit the range

expansion of subtropical species [123]. For a non-native crab

that had extended its range into the southern US and mid-

Atlantic coast from the Caribbean, Canning-Clode et al. [123]

suggested that this explained the crab’s sudden disappearance

after 2010, as the subtropical species had been unable to tolerate

the prolonged extreme cold temperatures in early 2010.
 g
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(ii) Other extreme climate events affecting marine biological
systems

Reviewing how marine organisms in the coastal environment

are affected by climate change, Harley et al. [125] distinguished

changes in the physical environment related to sea-level rise,

changing circulation, pH, CO2 and UV. Emergent ecological

responses could be divided into distributional shifts (e.g. zona-

tion patterns and biogeographic ranges), changes in species

composition, diversity and community structure, changing pri-

mary and secondary production and population dynamics

[125]. ECEs are likely a controlling factor of how changes in

the physical environment exert their influence on biological

systems in the marine environment. In addition to the tempera-

ture-related marine heatwaves and cold snaps, these ECEs

include, for example, severe storms [126–128], extreme wave

activity [129], extreme sea level [130,131] and salinity changes

and floods [132–134].

In a synthesis study, Vose et al. [135] examined changes in

ECEs associated with extratropical storms, winds and waves,

and found that storm frequency and intensity had increased

in the Northern Hemisphere cold season since the 1950s,

along with an increase in extreme winds over the oceans

since the 1980s. Extreme waves along the Pacific US coast

have increased moderately since the 1950s, while the evi-

dence for other US coastlines is inconclusive [135]. Extreme

wave heights have been observed to increase in many regions

around the world, such as for the US Pacific Northwest

[135,136], along the South American Pacific coast since the

1980s [137] and for the North Atlantic over the twentieth cen-

tury [138]. Using a multi-model ensemble, Hemer et al. [139]

found the annual mean significant wave height to decrease

by 25% globally by 2070–2100, while only 7% of ocean areas,

mostly in the Southern Ocean, exhibited an increase over the

same timeframe. By contrast, according to Mori et al. [140], sig-

nificant wave height is projected to increase globally by 15% by

the end of the twenty-first century, exceeding the projected

changes in surface pressure and wind speed. Similarly, Wang

et al. [141] found significant wave height increases in the east-

ern Pacific and for the Southern Hemisphere extratropics by

the end of the twenty-first century. Extreme wave heights are

also likely to double and triple in coastal regions, such as for

Chile, the Gulf of Bengal, South and East Asian coasts and

the Gulf of Mexico due to increased sea-level pressure

gradients and surface winds [141].

Changing storm characteristics can have considerable

impact on natural systems, as coastal and near-shore biological

communities experience physical disturbances in response to

extreme wave action. For example, kelp forest structure can be

modified by changes in severe storms and the associated

wave activity [129]. The 2013–2014 storm season in the North-

east Atlantic was unusually severe, resulting in extensive
flooding and exhibiting extreme wave activity [142–144].

Smale & Vance [129] found the warm-water kelp species to be

more affected by the stormy 2013–2014 conditions than the

more hardy cold-water kelp species. They cautioned that cli-

mate-driven shifts towards more mixed canopies in the

Northeast Atlantic due to warming temperatures might erode

the kelp communities’ resistance to such storm disturbances

[129]. For the California coast, Byrnes et al. [126] showed that,

while moderate levels of severe storms (i.e. one storm every

3–4 years) help maintain complexity in kelp forest food webs,

more frequent severe storms (i.e. at annual frequency) lead to

a decrease in diversity in giant kelp forests. In the Adriatic,

Perkol-Finkel & Airoldi [145] attributed a loss of subtidal

algal forests to several extreme storm events, compounded by

long-term human-induced habitat instability.

Sanchez-Vidal et al. [127] highlighted that severe coastal

storms do not only affect the shoreline communities, but

also have the potential to affect deep-sea ecosystems. This

was observed during an exceptionally strong storm along

the Spanish coast in December 2008 that initiated shelf sedi-

ment movement and redistribution across the adjacent deep

basin that caused abrasion and burial of the benthic commu-

nities in the Western Mediterranean [127]. The storm also

affected the biodiversity of a coralligenous outcrop in the

Northwest Mediterranean, with exposed and impacted sites

experiencing major shifts in species composition immediately

following the storm and loss of cover of benthic species in the

range of 22–58%, with fragile species impacted more [146].

Furthermore, extremes in biogeochemical properties in

the marine environment can also affect ecosystem structure

and functioning. Investigating episodes of high CO2 concen-

trations in seawater, McNeil & Sasse [147] found that the

amplitude of the annual CO2 cycle is increasing with rising

greenhouse gas emissions. By the second half of the

twenty-first century, major fisheries in the Southern Ocean,

Pacific and Atlantic may be periodically exposed to CO2 con-

centrations that have detrimental physiological and

neurological effects on marine animals [147].
5. Challenges and opportunities in assessing
how extreme climate events impact biological
systems

Despite advances in the field of event attribution in recent

decades, challenges remain. Improvements in statistical meth-

odology, observations, climate and weather modelling will

probablyallow for better understanding of ECEs and event attri-

bution [1]. Event attribution is most skilful when combining

evidence based on theory (sound physical understanding of

the processes involved), observations (long-term observational

records exist that allow placing the event in a historical context)

and numerical model simulations (adequately simulated by

models to allow replicating the event and for the right reason).

In addition, event types purely meteorological in nature, i.e.

not confounded by factors, such as resource management or

infrastructure, allow for more reliable event attribution [1].

Irrespective of the approach, the success of detection and

attribution relies on a model’s ability to represent the relevant

processes and their interactions over the region and season of

interest [39]. Confidence in attributing changes in ECEs to

anthropogenic forcing is most pronounced when considering
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event types related to regional and global temperature [7],

such as extreme heat and cold events, hydrological drought

and intense precipitation [1]. Improved process representation

through better model dynamics, improved model parametriza-

tions, and higher horizontal and vertical model resolution

have led to improved representation of regional-scale climate

variability. However, considerable further advances are

required to represent fine temporal and spatial scales, at

which ECEs in precipitation are experienced at a local level

([39], and references therein). In addition, low-frequency

natural variability, such as that associated with Atlantic or

Pacific Decadal Variability, can affect the reliability of event

attributions [1]. Given the shortness of the observational

record relative to the multi-decadal nature of these modes of

variability, they remain a challenging aspect also for climate

model simulations of ECEs [148]. Furthermore, this is not just

a challenge for model simulations of ECEs, but also when con-

sidering the length of the instrumental record: as recently

shown by Abram et al. [149], industrial-era warming com-

menced as early as the mid-nineteenth century and therefore

instrumental records in many regions are too short to compre-

hensively assess anthropogenic climate change. This has to be

taken into consideration when addressing detection and attri-

bution to assess anthropogenic contributions to specific events

(cf. also recent reviews in [22] and [24] on event attribution).

On the biological side, data have traditionally been gath-

ered at single sites (e.g. field stations) or more rarely within a

region [14]. Extended cross-regional long-term observations

are limited, even though sustained monitoring is important

for assessing integrated responses of ecosystems to ECEs to

account for long-term effects in subsequent years [93]. For

example, maintaining long time series has been the key pro-

blem in understanding variability and change in marine

biodiversity and ecosystems in response to environmental fac-

tors [150]. In their review, Jentsch et al. [151] concluded that

long-term observations and experimental studies in different

ecosystem types and across a range of spatial and temporal

scales are crucial for advancing the understanding of how

ECEs affect biological systems. The largely local and site-

specific nature of existing long-term biological records,

paired with still comparatively coarse climatic information

from current-generation reanalysis products and climate

models leads to a mismatch in the spatial and temporal scale

of available data for addressing how biological systems

respond to climate variability and change. This is even more

exacerbated in the case of ECEs, which are rare events by defi-

nition. To sufficiently sample a distribution to allow inferences

about its tails, extended time series are required.

Improved understanding of bio-physical interactions

across a range of spatial and temporal scales [152] is not only

important for quantifying how ECEs affect biological systems.

Parmesan [153] considers the current lack of mechanistic

understanding of the effect of ecological, behavioural and evol-

utionary responses to ECEs a crucial limitation in assessing

ecosystem adaptation to climate change more generally. In par-

ticular, developing process-based concepts of the biological

systems’ response to ECEs is crucial for predicting the impacts

of changes in the climate system on ecosystem functioning in

the future [14].

Recent advances and enhanced capabilities in observing

systems provide new avenues for developing a mechanistic fra-

mework to understand interactions between the physical climate

system and biological processes. To advance understanding of
how ECEs affect ecosystem functioning, remote sensing in

particular allows for concurrent observations of physical

and biological parameters at comparable spatial and temporal

resolution [152]. For example, remote sensing with short return

intervals at identical locations and near-global coverage facili-

tates monitoring of soil properties, concurrent vegetation states

(e.g. biomass, leaf area index) and radiative properties like frac-

tions of absorbed radiation [18]. Concurrent impacts on plant

physiology, photosynthesis, respiration, mechanical damage

for trees (e.g. snow and ice breakage, wind throw) and effects

on topsoil erosion can thus be documented, as well as lagged

impacts like changes in plant phenology, reduced plant

growth, increased mortality and changes in plant species com-

position [18]. Vrieling et al. [154] for example used a remotely

sensed normalized difference vegetation index to predict seaso-

nal forage availability ahead of time to cover livestock losses by

pastoralist households in East Africa during drought periods

through early insurance payments to allow purchase of forage,

water or medicines to protect livestock.

When investigating how ECEs impact the terrestrial carbon

cycle, Frank et al. [18] found the (sub)tropics to be largely

understudied in regard to ground-based case studies when

compared with those obtained via remote sensing. To be able

to upscale how ECEs affect biological systems and, more

specifically, the carbon-climate feedback on a global scale,

more extensive regional studies are required [18]. Zscheischler

et al. [155] presented a methodological framework to assess

how ECEs affect state and functionality of terrestrial ecosys-

tems on a global scale by identifying spatio-temporally

contiguous signals of extremes in different Earth observation

products. Using the fraction of absorbed photosynthetically

active radiation to detect extremes in vegetation activity over

the past 30 years, they demonstrated that the size distribution

of extremes follows a distinct power law [85]. Furthermore,

based on a hierarchy of models ranging from purely data-

driven to semi-empirical and dynamic vegetation, land-surface

models and remote sensing products, Zscheischler et al. [156]

found that the total effect of negative extremes in global pri-

mary production is of a similar magnitude as the mean

terrestrial carbon sink. Furthermore, carbon cycle extremes

exhibit an uneven spatial distribution with ‘hotspot’ regions

in many semi-arid monsoon-affected regions and are strongly

associated with water scarcity [18,156,157]. The lack of bio-

logical observations is particularly true for marine ecosystems,

as changes in the ecosystem structure of many habitats (e.g.

kelp forests and seagrass meadows) cannot be remotely

sensed. Considering that these habitats play a key role in

marine carbon cycling and are affected by ECEs, monitoring

of marine ecosystems at appropriate spatial and temporal

scales is even more lacking than for terrestrial ecosystems.

Meta-analysis is considered a powerful method of quantitat-

ive data synthesis in ecological research [158]. This could be

combined with extended observational records, remote sensing

capabilities and climate model output at increasingly finer resol-

ution, both from global climate models and regional model

configurations, to address interactions of the physical and

biological systems across a range of temporal and spatial scales.
6. Summary
How ECEs affect ecosystems largely depends on the magni-

tude, spatial and temporal extent, as well as timing of the
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anomalous climatic event [93]. As such, perspectives spanning

across spatial and temporal scales on how biological and phys-

ical systems interact (figure 2) are crucial [152] for improved

process understanding of ecosystem responses to ECEs. Limit-

ations in our current observational network (e.g. [11]), both

for physical climate system parameters and even more so for

long-term ecological monitoring, have hampered progress in

this regard. This is especially pronounced when considering

ECEs, which by definition are rare events. The observing sys-

tems of the physical climate, and even more so for the

biological system, are limited with regard to depth (time

dimension) or breadth (spatial scales), or both. The mismatch

of the available and required scales in observations has been

compounded in (global) climate models, suffering from a dis-

crepancy in the explicitly resolved spatial and temporal scales

and those required for ecological impact research.

New opportunities for assessing how ECEs modulate

structure and functioning of ecosystems arise from recent

technological advances in observing systems and instrumenta-

tion (e.g. through advanced remote sensing capabilities).

These allow for monitoring at increased spatial and temporal

resolution for both physical and biological parameters con-

currently at appropriate resolution [152]. Parmesan et al. [14]

further saw potential for advances in ecological and evolution-

ary theory (population dynamics, physiological energetics and

community structure) leading to greater descriptive and predic-

tive power as a result of better alignment of ECE analyses of

biological and physical system parameters. They saw this as a

potential outcome of improved coupling of in-depth climatolo-

gical analyses and biological processes that would allow us to

better characterize the complex interactions between climatic

conditions and natural systems spanning the spatial and

temporal spectrum across which these interactions can occur

(cf. figure 2). Bailey & van de Pol [161] also pointed out that

multi-event studies that combine long-term field studies and

experiments with modelling are crucial for a better understand-

ing of the mechanisms and for improving the predictions of how

ECEs affect natural systems. This is especially the case given the
rarity of such events and the challenges with collecting ecologi-

cal time series of sufficient length. Extensions of the historical

observational record through climate quality reanalyses or

through longer term archives from palaeo proxies (e.g. tree

rings, stalagmites and sediments) are also crucial for ensuring

a record of sufficient length to reliably quantify trends and

sample the characteristics of the ECEs in the physical climate

system across a range of spatial and temporal scales [1,93].

Improvements in statistical methodology and in numerical

modelling, including but not limited to model resolution and

improved parametrizations, provide the necessary tools to

advance our understanding of the physical mechanisms that

lead to ECEs [1,22] and how their characteristics are changing

in a warming world. Stott [7] stressed the importance of devel-

oping new methods to conclusively link the changes in ECEs to

their meteorological and climatic drivers. This applies similarly

to addressing ECEs and their impacts on species, populations

and ecosystems as a whole. Current-to-next generation global

climate models, along with higher-resolution regional models,

provide new tools and opportunities for developing a mechan-

istic, process-based understanding of where, when and how

ECEs impact biological systems.
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Endnote
1Reanalyses combine observations with an unchanging data assimila-
tion scheme and model to provide a dynamically consistent estimate
of the climate state over the instrumental period [38].
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