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Extreme climatic events (ECEs) have a disproportionate effect on ecosystems.

Yet much of what we know about the ecological impact of ECEs is based on

observing the effects of single extreme events. We examined what character-

istics affect the strength of inference that can be drawn from single-event

studies, which broadly fell into three categories: opportunistic observational

studies initiated after an ECE, long-term observational studies with data

before and after an ECE and experiments. Because extreme events occur

rarely, inference from such single-event studies cannot easily be made under

the usual statistical paradigm that relies on replication and control. However,

single-event studies can yield important information for theory development

and can contribute to meta-analyses. Adaptive management approaches can

be used to learn from single, or a few, extreme events. We identify a number

of factors that can make observations of single events more informative.

These include providing robust estimates of the magnitude of ecological

responses and some measure of climatic extremeness, collecting ancillary

data that can inform on mechanisms, continuing to observe the biological

system after the ECE and combining observational data with experiments

and models. Well-designed single-event studies are an important contribution

to our understanding of biological effects of ECEs.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction
After an extreme storm in New England in 1898, Bumpus found 136 injured house

sparrows (Passer domesticus), of which 64 later died [1]. When he compared the

morphology of survivors with that of deceased individuals, he found that

the former were clearly less variable than the latter. This outcome was precisely

as predicted by the theory of natural selection, with elimination of those individ-

uals that deviate the most from the norm. A century later, Keller et al. [2] examined

inbreeding in a population of song sparrows (Melospiza melodia) on Mandarte

Island, British Columbia, before and after a population crash caused by a

severe winter storm and found that the survivors were less inbred than the

individuals that had died.

Both studies were based on a single extreme event. Bumpus made use of a

fortuitous opportunity and was one of the first to observe natural selection in

action. Keller et al. analysed an event that occurred during a long-term study

during which they had collected detailed pedigree data and provided one of

the first demonstrations of selection against inbreeding. Both studies became

landmark studies, significantly contributing to our understanding of how

natural selection works in the wild.

Extreme climatic events (ECEs) are changing in frequency and magnitude [3],

and the concern is that they may have a disproportionate effect on ecosystems [4].

ECE studies therefore need to provide information on the likely biological effects

of a climatic event with a particular extremeness, and whether this type of event is

likely to push the biological system across thresholds from which it will only

recover slowly, if at all [5]. ECEs often induce delayed and cascading responses

[5–7], and understanding the underlying mechanisms (e.g. physiological,
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Figure 1. Characteristics of a representative sample of observational studies on extreme climatic events (from Bailey & van de Pol [8]). See electronic supplementary
material, appendix S1, for details. (a) The types of extreme climatic events investigated (n ¼ 174). (b) The types of ecological responses investigated (n ¼ 170). Bars
represent the number of studies in each category and are further subdivided by whether a single extreme event (black) or multiple extreme events (grey) were observed.
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demographic) of the biological reaction is, therefore, important.

Here, we ask what can be learned from studies based on a single

ECE and what characteristics can make such studies particularly

informative. We suggest ways of making better use of existing

studies and to improve the design of future ECE studies.
(a) Characteristics of single-event studies
A substantial proportion of our knowledge about the effects

of ECEs on natural biological systems (below, we will use

the term ‘system’ for any biological system, which could be

an individual, population or community) is based on observ-

ing a single event. Are these studies a biased sample of all

ECE studies? We examined the characteristics of 242 studies

listed in a recent review [8]. More than half (59%) of these

studies were based on a single ECE but they covered similar

ecological responses, climatic events, habitats and taxonomic

groups as the studies with multiple ECEs (figure 1; electronic

supplementary material, appendix S1 with figures S1–3).

The single-event ECE studies in our sample broadly

fell into three categories (see electronic supplementary

material, appendix S1 for details): (i) Opportunistic observa-

tional studies were initiated after an ECE and tended to be

short in duration (31% of the studies, median duration 1.5

years). (ii) Long-term observational studies usually followed

a system both before the extreme event occurred and after it

passed and were generally able to detect delayed responses

(38% of the studies, median duration 10 years). (iii) Experimen-

tal studies tended to be short, on small spatial scales and were

generally restricted to systems that can be manipulated rela-

tively easily (31% of the studies, median duration 0.7 years).
(b) Definitions matter
Most climatic and biological variables of interest are continu-

ous and whether an event is considered extreme—or how

many events in a time series are labelled extreme—therefore

depends on the definition used [8,9]. Most definitions of an

ECE require that either the climatic variable (climatological

definition), the biological variable (biological definition) or

both (hybrid definition) exceed a certain value or are expected

to occur sufficiently rarely [9], e.g. in less than 5% of the years.

Single-event studies report a biological response to one event

(or treatment in the case of experiments) that is considered

extreme according to one of these definitions (an observation

falling into areas I, II or III in figure 2a). Beyond that, however,

single-event studies vary greatly in their design, which impacts

on what can be learned from them.

(c) Opportunistic single-event studies
Some single-event studies literally just observe a single extreme

event and some biological response to it (opportunistic studies,

figure 2a). Opportunistic single-event studies using a climatolo-

gical definition (climate event is to the right of the vertical grey

line in figure 2a) typically were initiated after an ECE occurred

(e.g. the 2003 heatwave in Europe [10]) and examined eco-

logical responses after the event. For example, a mid-winter

rainstorm in the polar desert of continental Antarctica, and

subsequent freezing did not damage lichens [11]. Single-

event studies using a biological definition (a response above

the horizontal grey line in figure 2a) typically observe an

unusual ecological response and then examine what may

have caused it. For example, an extreme case of heather

(Calluna vulgaris) dieback in Scotland was attributed to low
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Figure 2. Hypothetical datasets illustrating different types of single-event
studies of extreme climatic events. (a) Opportunistic single-event studies
document the ecological response of a single climatic event. These could
be defined as extreme events because the climatic event was unusual (ver-
tical grey line: a climatic event to the right of this line, in areas I and II, is
defined to be extreme), the ecological response is unusual (horizontal grey
line: a response above this line, in areas I and III, is defined as being
extreme) or both (area I). (b) A single extreme event (black triangle) is
observed as part of a long-term study (black dots are non-extreme
events). In this set-up, it is not possible to distinguish whether the extreme
climatic event led to an increased mean response (open grey triangles
represent unobserved replications of similarly extreme climatic events) or
increased variance (grey circles represent unobserved replications of similarly
extreme climatic events), as the observed outcome is likely under either
scenario. (c) An extreme climatic event led to a response (black triangle)
that does not look unusual based on observations under non-extreme
events (black dots). Either the extreme climatic event had no effect on
the ecological system (open grey triangles), or it increased the variance in
the response but we happened to observe a value that would be typical
of less extreme conditions (grey circles). (d ) An extreme climatic event led
to an extreme response (black triangle) that is nevertheless in line with
the relationship between the system’s response and the environment
under non-extreme climatic conditions (black dots).
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humidity combined with low temperatures and an ageing

plant population [12]. Opportunistic single-event studies

sometimes use a hybrid definition (area I in figure 2a, [5]).

For example, Knapp & Soule [13] examined the spatial extent

of an extreme frost event after it had led to widespread tree

mortality in the Pacific Northwest of the United States.

Opportunistic single-event studies show what can happen

to a system under certain climatic conditions. However,

observational studies generally cannot attribute the response

to the ECE unequivocally because the effect of unobserved

confounding variables can never be ruled out.
Phil.Trans.R.Soc.B
372:20160141
(d) Single extreme climatic events observed during
long-term studies

The other main type of observational single-event study

reports ecological responses to an ECE that occurred during

a long-term study (figure 2b–d). These studies are able to

quantify how much the ecological response to the extreme

climate deviates from the response of the system to non-

extreme climate. For example, one could model the ecological

response, Yi at occasion i, as a function of the observed

climate (climi) as

gðYiÞ ¼ f ðclimiÞ þ d� Xi þ ei, ei � Nð0,s2Þ
s � hðclimÞ,

)
ð1:1Þ

where g is a suitable transformation of the response and f a

suitable function for the relationship between climate and

response, e.g. constant, linear, etc. The model above assumes

that the errors 1i are normally distributed with variance s2,

and related to climate through function h, which may be

constant or generalized to account for autocorrelation. d esti-

mates the difference between a normal (Xi ¼ 0) and an

extreme (Xi ¼ 1) event, and therefore how unusual it is, com-

pared with non-extreme events. However, if the response to a

single ECE is judged unusual, one cannot distinguish whether

the event led to an extreme mean (event is not well described

by function f; open triangles in figure 2b) or an increased var-

iance (event is not well described by function h; open circles

in figure 2b) in the response, as an extreme response is possible

in both cases. Conversely, if a climate extreme does not lead to

an observed extreme response (figure 2c), this does not necess-

arily mean that function f in the above model provides a good

description of how the system responds to this type of extreme

event. It is possible that the response is more variable under

these conditions but the observed event happened to lead to

a response that looked typical given the observations from

non-extreme events (figure 2c). An increased variance in the

ecological response could be expected if climate interacted

with other variables. For example, extreme winters lead to

high mortality in Dutch oystercatchers (Haematopus ostralegus)

only when food availability is low [14].

The model above (equation (1.1)) can be used to test

whether an observed response falls outside of the system’s

response expected under non-extreme climatic variation,

which could indicate a threshold-like response. Conversely, if

this model predicts an extreme response well, that could indi-

cate that the system does not cross any thresholds over the

range of observed climatic events (figure 2d). For example,

juvenile survival in barn owls (Tyto alba) was lowest after

unusually harsh winters, but in line with what was expected

given the extremeness of these years [15].



Box 1. Examples where observing a single event has led to important insights.

Case study 1: More detailed understanding through spatial replication
Spatial replication—where the response to a single extreme climatic event is observed across multiple sites (e.g. popu-

lations of the same species)—can yield additional information on the effects of a single event. Oliver et al. [21] studied the

impact of an extreme drought event in 1995 on 79 populations of the wide ranging ringlet butterfly (Aphantopus hyperantus)

in the UK. The populations inhabited natural woodlands that varied considerably in size and habitat fragmentation. The

drought event was followed by marked population declines in all study sites, but the impact depended on habitat quality.

Populations in smaller and more fragmented woodlands declined more during the drought and recovered more slowly.

While this study used data collected across large spatial scales, spatial replication across smaller scales can reveal context

dependence if there is heterogeneity among sites in the extremeness of the climatic event or relevant variables that interact

with climate.

Case study 2: The value of detailed community data
Some studies have been able to gain important understanding from observing a single extreme climatic event because it

happened during a long-term study that collected detailed mechanistic data. Rosemary & Peter Grant [22] have studied

Darwin’s finches on the Galapagos Island of Daphne Major since 1976. Normally arid, this island received an extreme

amount of rainfall during the 1982/1983 El Niño event. As a result, small soft seeds on which the medium ground finch

(Geospiza fortis) specializes became more abundant and large hard seeds on which the cactus finch (G. scandens) specializes

became relatively less common. The change in food availability led to selection for smaller beaks in G. fortis and correspond-

ing evolutionary change over the next years. The population of G. scandens declined. The environmental changes in the wake

of this extreme event also increased fitness of hybrid individuals and led to increased gene flow between the two species

compared to normal years. Because of the detailed demographic data, knowledge of the relationship between seed size,

beak size and fitness, as well as how these variables changed in response to the extreme event, this study was able to

document the effects of the event as it propagated through the food web and levels of biological organization.

Case study 3: Combining different approaches
A promising approach is to combine observational data from an extreme climatic event with mechanistic models to pro-

duce testable predictions. Godfree et al. [23] studied the demographic responses of the keystone grass, Austrostipa aristiglumis,
in eastern Australia during an exceptional 3-year drought. Taking advantage of spatial variability, they used demographic

models to estimate the population growth rate under different levels of soil water content. Based on these results, Godfree

et al. then made specific predictions about how precipitation and temperature should limit the distribution of this species,

and then tested these predictions using species distribution models.
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2. Inference from single-event studies
To understand the effects of ECEs on biological systems, we

need to be able to estimate the magnitude of the effect (e.g. as

described above) and also to attribute that effect to the ECE

[9]. Different types of ECE studies have different strengths

and limitation in this regard. Experimental studies adhering

to the three statistical principles of study design—replication,

randomization and control—allow attributing effects to treat-

ments. Experiments are, therefore, the most powerful tool for

examining the effect of particular climatic conditions on a

system. However, experiments may not estimate the magnitude

of the natural response well [16] and are often not possible to

carry out at the desired scale. Well-designed observational

studies are important because they estimate the response

under real conditions but attribution is more difficult since

one can never rule out the possible effects of unobserved

covariates [17,18].

(a) Design of observational single-event studies
Observational single-event studies allow for stronger inference

if they use random sampling as opposed to convenience

sampling. Random sampling ensures representativeness.

Bumpus’s study [1], for example, was based on sparrows that

were injured during the storm and they may not be representa-

tive of the sparrow population in general. We, therefore, cannot

tell whether this storm reduced morphological variance in the

sparrow population as a whole. More generally, single-event

studies based on a convenience sample of observational units
(individuals, study sites, etc.), rather than a random one, can

demonstrate that a particular phenomenon can happen but

they cannot make inference about the bigger population of

affected biological systems.

Inference from single-event studies can be improved by

employing some kind of control. The classical designs for

such ‘impact studies’ [19] involve either temporal or spatial

controls, or both. Where a single ECE was observed during a

long-term study, its impact can be inferred from temporal

changes in the response (e.g. equation (1.1) above). Methods

for inferring step-changes in time series are also known as

intervention analysis [20]. If no data are available from before

the impact occurred (as is the case in opportunistic single-

event studies), spatial controls could be used instead, e.g. by

comparing the system affected by the ECE with one that was

not affected. Spatial replication has occasionally been used in

single ECE studies (e.g. case study 1, box 1, [21]), allowing

researchers to examine interactions between the ECE and fac-

tors that vary spatially, like habitat quality [21]. Since the

extremeness of an event often varies spatially [10,13], spatial

replication can give important information on the shape of

the relationship between climate and response, e.g. whether

critical thresholds lie within the range of observed values of

the climatic driver. Spatial replication could also be used to sep-

arate climate extremes from other drivers, if they are not

strongly correlated. The strongest designs include spatial and

temporal controls, known as Before-After-Control-Impact

designs [19], but are difficult to apply to ECEs because we do

not know when and where these are going to happen.
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(b) Replication at a lower level
Single-event studies are unreplicated at the level of the ECE

and inference is limited to the particular event that was

observed. We therefore also cannot estimate the natural varia-

bility in the biological response to the observed type of ECE

(figure 2b,c), and whether it depends on the state of the

system [24] or other variables that may interact with climate

[21]. However, the precision with which we can estimate

the biological response to a particular event is at least

partly under our control as it depends on replication at a

lower level. For example, to estimate the effect of a particular

heatwave on the mortality of a certain tree population, we

could count the number of trees that have died (d ) and

those that survived (s) in a particular sample and estimate

survival (V) during this particular event as:

F ¼ s
sþ d

:

Assuming the trees’ fates are independent, the standard error

of V is

s:e:ðFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� ð1�FÞ

n

r
,

where n is the total number of trees observed. By increasing

n, we can estimate tree mortality during this particular

event more precisely.

Stronger inference is possible if we have data on tree

stands during normal climatic conditions, e.g. by sampling

other stands that were not impacted by the heatwave (spatial

control), or by observing the same stand during non-extreme

years (temporal control). We could then estimate the variabil-

ity in survival, for example using a generalized linear mixed

effects model

Yi�Binðni,FiÞ

logitðFiÞ ¼ mþ d� Xi þ ei, ei�Nð0,s2Þ,

where Yi is the number of surviving trees out of ni in stand

or year i, m estimates mean survival under non-extreme con-

ditions, d estimates the difference between a normal (Xi ¼ 0)

and an extreme (Xi ¼ 1) event and 1i is a random effect. The

variability in survival among stands or years is captured by

the estimate of s2. With this model, we can quantify and

test the effect of this particular ECE on survival and we can

improve precision by increasing ni or the number of years/

stands that we observe.
(c) Mechanistic understanding through ancillary
information

Statistically attributing biological responses to an ECE is diffi-

cult in observational studies [17,18]. However, a convincing

case can usually be made if the mechanistic pathways that

led to the response are known and ancillary data are collected

that give insights into the mechanisms of the ecological

response we are interested in [25]. For example, Grant &

Grant ([22], case study 2, box 1) showed how an El Niño

event changed selection on beak size of Galapagos finches by

favouring plants that produced softer seeds. Observing mul-

tiple demographic responses might give insights into the

demographic mechanisms, such as life-history trade-offs and

constraints [26], and observing multiple species helps under-

standing community-level effects [27]. Godfree et al. ([23],
case study 3, box 1) combined detailed observations with an

experiment and models to understand how an extreme

drought affected the local occurrence and range boundaries

of a grass. Observing how the system recovers from the

impact [28] or how a collection of similar systems reacts to

the same event (e.g. [21], case study 1, box 1) are additional

means for strengthening the inference that can be made from

single-event studies. For a mechanistic understanding of the

biological effects of ECEs, physiologically important variables

such as temperature, or available water, are more useful than

measures of climate without a clear mechanistic link to the eco-

logical response, e.g. a climate index [29]. Ideally, the measured

climatic conditions should closely reflect the microclimate that

a biological system experiences, which may not necessarily be

what regular meteorological stations record.

(d) Clear hypotheses lead to stronger tests
There is usually some prior knowledge on the system we are

interested in, or on similar systems. If we understand the relevant

processes (e.g. physiological limits) well enough to be able to

generate specific predictions, observing the response to a

single ECE can be a powerful test of our knowledge. Bumpus’

[1] study was so influential because it tested a key hypothesis

of an important new theory. A single careful observation can

also indicate gaps in our understanding. For example, if a

known physiological threshold is exceeded during an extreme

event, but the expected ecological reaction does not happen,

the organisms must have ways to protect themselves [30].
3. Ways to knowledge: learning by data
accumulation versus learning through theory
development

Progress in our understanding of ecological systems alternates

between inductive and deductive inference: we observe a

phenomenon, develop hypotheses that might explain the

observation, develop a theory, collect more observations,

refine or re-develop the theory, etc. [31]. The goal is to progress

from a situation of no data and little understanding to a situ-

ation of having rich data and thorough understanding. Along

this path, observations, experiments and theory (models) are

tools that complement each other. We need to observe natural

events to make sure that the phenomenon we study is relevant

in nature. We need experiments to establish causation. And we

need theory to deduce testable predictions and reach a more

general understanding.

How a new observation—e.g. of the effect of an ECE—

contributes to this process depends on the level of

background information that is already available [32]. When

we lack understanding of a system, observing one event can

tell us what type of responses are possible. A single observation

greatly reduces uncertainty compared with the prior state of

not having any information at all [33], and can be useful for

decision-making [34]. Observations, even patchy or anecdotal

ones, are a starting point for the process of gaining knowledge.

Conversely, having a lot of data does not necessarily lead

to a good understanding of a system or process. Holling [35]

distinguished between situations with lots of data but little

understanding (area I in figure 3), lots of understanding but

little data (area II in figure 3), little data and little understand-

ing (area IV in figure 3) and lots of data and good
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on theory development that may be based on relatively little data at first.
This is what we call the theory-driven pathway. Adapted from Holling [35].
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understanding (area III in figure 3). The goal is to reach area III

but one can do so via different routes, which we call a

data-driven pathway if it goes via area I, and a theory-driven

pathway if it goes via area II (figure 3).

(a) Theory-driven pathway
Most importantly, we think, single-event studies can contrib-

ute to the theory-driven pathway to knowledge (figure 3) in

critical ways. In systems with little prior knowledge (area IV

in figure 3), observing a large ecological response to an unusual

climatic event can suggest that critical thresholds have been

crossed. For example, Salewski et al. [36] observed high mor-

tality among migratory birds arriving at an oasis south of the

Sahara desert during the post-breeding southwards migration,

following temperatures around 508C. Because little was known

about the migration ecology of these birds crossing the Sahara,

it is not clear how unusual such events are or what effect they

have on the bird populations. Nevertheless, it clearly showed

that these conditions can push many individual birds over

the limit, which led to further studies that clarified how

migratory birds cross the Sahara desert [37,38].

Where more background information is available, detailed

observations of ecological effects of a single ECE can improve

our confidence in our understanding of the system. A good

understanding of the mechanistic pathways of how extreme

events affect ecological systems exists for many situations.

For example, we know a lot about the mechanisms by which

plants respond to droughts and under what conditions they

reach limits [39]. We also have clear hypotheses of the effects

of extreme precipitation on terrestrial systems [40], and

we understand the pathways of how ECEs affect carbon

fluxes [41], riverine systems [42] and arid ecosystems [43].

These reviews provide frameworks against which each new

observation can be evaluated.

The slow accumulation of observations of extreme events is

similar to the slow accumulation of evidence in some situations
where natural resources are harvested. There, adaptive man-

agement has been suggested as a tool for making decisions

while at the same time learning about a system [44]. Adaptive

management relies on a number of alternative models that rep-

resent the uncertainty about how the system works, according

to the current knowledge at the time. Learning happens

by comparing model predictions to observed outcomes and

re-evaluating one’s confidence in each model.

Ideas of adaptive management could be used to learn

about the ecological responses to extreme events more effec-

tively, even if no management decisions are involved. We

applied this method to the question how extreme winters

affect barn owl survival [15] and found that learning continued

long after the last extreme event happened (box 2). Generally,

by building alternative models to predict ecological responses

to ECEs it becomes clear what kind of information is needed to

help distinguish between alternative hypotheses. Each time an

extreme event occurs, one can focus on collecting that type of

information and thereby make progress along the theory-

driven pathway (figure 3). Adaptive management provides a

sound framework for learning from consecutive events. This

approach is particularly powerful when observations are

hard to come by and one needs to make the most out of each

observation [46,47] and for detecting ecological surprises

[48]. Adopting ideas from adaptive management may only

work for effects that we can anticipate and have enough knowl-

edge to model, albeit even with little knowledge, simple

models can be very powerful [49].

(b) Data-driven pathways to learning from single-event
studies: meta-analyses

Studies on single extreme events can contribute to the data-

driven pathway most effectively if they are reported in a

way that makes them comparable with other studies, for

example, through formal meta-analysis [50]. This requires

reporting effect sizes in a comparable way—a meta-analysis

is only possible if the effect sizes from different studies

reflect the same thing. The most relevant effect size is often

the magnitude of the ecological response to the ECE, i.e.

the difference in the ecological variable—e.g. survival,

growth—after an extreme event compared to its value

under normal climatic conditions. Having some kind of con-

trol (§2a) is therefore particularly important. To make single-

event studies comparable one also needs to know how

extreme the observed climatic event was, since the magnitude

of the ecological response likely depends on how climatically

extreme the event was. Quantifying the magnitude of climatic

extremeness in a biologically relevant way is challenging as

long-term climatic data are needed, and the frequency of

such events is changing with climate change. Meta-analyses

can help attributing extreme responses to particular drivers

(different components of climate or non-climatic drivers) if

single-event studies report those.

To demonstrate how meta-analyses can be used to draw

information from multiple single-event studies, we examined

whether the 2003 heatwave that affected much of Europe [10]

had different effects on fecundity, growth and survival across

different organisms (example 1, box 3). We found some

evidence that survival and fecundity declined more than

growth but there was a lot of variability among observations.

As a second example, we examined whether a change in sur-

vival in response to heatwaves depended on the extremeness



Box 2. Learning through updating model weights.

Under adaptive management, a number of competing models are confronted with data in an iterative way. Learning happens

as the data increasingly favour one model and the associated biological hypothesis.

We illustrate how similar ideas can help learning from single, or a few, extreme events. We used a published time series of

survival rates of Swiss barn owls between 1946 and 2001 [15]. Barn owls hunt small rodents but cannot do so if there is a layer

of snow greater than about 5 cm. If such a snow layer persists for long enough, barn owls starve [15]. Switzerland experi-

enced extreme snowfall during the winters beginning in 1952 and 1962, leading to high mortality, and crashes in the barn

owl populations [15].

Here, we fitted three models to the logit-transformed

gðYiÞ ¼ log
Yi

1� Yi

� �

survival estimates for adult barn owls (figure 4a). The models were versions of the general model in equation (1.1) in the main

text.

gðYiÞ ¼ b0 þ ei, ei � Nð0,s2Þ, ð3:1Þ
gðYiÞ ¼ b0 þ b1 � snow + ei, ei � Nð0,s2Þ ð3:2Þ
and gðYiÞ ¼ b0 þ b1 � snow + d� Xi þ ei, ei � Nð0,s2Þ: ð3:3Þ

These models represent three alternative hypotheses about how we expect the system to react to environmental variation.

Model 3.1 assumes that survival is unrelated to the number of days with more than 5 cm snow (snow); model 3.2 assumes

a linear relationship between logit survival and the number of days with more than 5 cm snow; and model 3.3 additionally

allows for an effect of extreme years (d), defined as any year with more than 55 days of snow exceeding 5 cm. Xi is an indi-

cator variable taking the value 1 if year i is extreme and 0 otherwise.

First, we pretended that we had only observed survival from the start of the study (1946) until the first extreme event

(1952) and fitted the three models to the data from these years. We used Akaike’s Information Criterion to compare the

models and calculated Akaike weights [45] to estimate the relative support each model had from the data.

The idea of adaptive management is to let each model predict how the system should react during the next time step, observe

the response and evaluate how well each model predicted the observation. Then, update the model weights based on how well

the data support each model. Diverging model weights represent learning. If one model consistently predicts new observations

better than the others, its weight increases over time, lending more credibility to the associated biological hypothesis.

To illustrate this process, we added the next observation (1953) and refitted the three models. Then we recalculated the

Akaike weight for each model. We repeated this procedure, adding 1 year at the time, until the last year, 2001.

With the data up to 1952, model 3.2 was the best supported model (figure 4b) but models 3.1 and 3.3 also had consider-

able support from the data (Akaike weight . 0.2). As time went on, model 3.3 received increasingly more support, especially

after the second extreme event in 1962. By 2001, model 3.3 was five times as well supported as model 3.2 (Akaike weights of

0.83 versus 0.17, respectively). The Akaike weight for model 3.1 dropped close to zero during the second half of the study.
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Figure 4. (a) Number of days with more than 5 cm of snow measured at a central location (Bern) in Switzerland between 1946 and 2001 and annual survival estimates
of adult barn owls (T. alba) in Switzerland, estimated from ringing data [15]. The arrows mark two extreme climatic events (1952, 1962). (b) Akaike weights of three
models representing different hypotheses about how survival in barn owls responds to snow. The Akaike weights measure the relative support each model has from the
data up to a particular year, and sum to one in a particular year. A change in Akaike weight, as more data are included over time, represents learning.
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Considering all the data, there was therefore clear evidence that survival during the two extreme years was lower than

what would have been predicted from variation in survival during non-extreme years, based on a linear relationship.

Remarkably, learning about the effects of extreme winters on the survival of barn owls continued after the last extreme

event. This is because more data allowed the relationship between survival and snow (function f in equation (1.1), main

text) to be estimated ever more precisely. More information on the reaction of a system to non-extreme climatic variation

therefore improves our ability to estimate the effects of extreme events when they happen.

Box 3. Meta-analyses using single-event studies.

We give two examples of questions that can be addressed through meta-analysis using single-event extreme climatic event

(ECE) studies. These examples are for illustration only, and to see whether single-event studies typically report the infor-

mation needed to perform a meta-analysis. We restricted our literature search to the list of 242 studies described in

electronic supplementary material, appendix S1 and did not follow the entire protocol of rigorous meta-analyses [50].

European heatwave of 2003
In the first example, we look at the heat wave that affected much of Europe during the summer of 2003 [10] and ask whether

the fitness components fecundity, growth and survival were affected in different ways. Our sample contained 17 studies

reporting ecological responses to this particular event. Out of these, four studies did not provide enough information for

us to extract effect sizes and associated standard errors. Among the remaining studies, nine reported fecundity, growth or

survival responses. From these studies, we extracted 25 responses and used per cent change during the heatwave compared

to a baseline estimate as effect sizes (electronic supplementary material, table S2).

We adopted a Bayesian approach similar to that of McCarthy & Masters [51] to estimate the mean effect sizes in the three

types of response (see electronic supplementary material, appendix S2 for details). Across these nine studies, fecundity and

survival were more strongly reduced by the heatwave than growth (figure 5, posterior mean and 95% credible interval for

per cent change: fecundity 227 [260, 10]; growth 210 [234, 13] and survival 231 [261, 21]). The uncertainty was relatively

large because the responses within each response type were fairly variable. If we had any covariates that could explain part of

this variability—e.g. how severe this particular event was in a specific location—the uncertainty could probably be reduced.

However, this example demonstrates how single-event studies can be further analysed using meta-analysis techniques.

The model we used for this analysis could easily be expanded to include covariates or additional sources of uncertainty.

Effects of extreme heat waves on survival
In the next example, we ask how the severity of heatwaves affects survival. The sample of studies in electronic supplementary

material, appendix S1 contained nine papers that covered a single ECE and considered survival in response to a heatwave.

Four of these papers failed to provide adequate information to estimate either the severity of the extreme event or changes in

survival. Of the remaining five, only two provided effect sizes and their standard errors in a straightforward way. Neverthe-

less, we were able to extract nine unique estimates from the text and graphs of these five studies. We used per cent change as

effect size (electronic supplementary material, table S3). However, we were only able to obtain a standard error for the effect

size for three of these nine estimates.
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Figure 5. Violin plots of the posterior distributions for the mean change in fecundity, growth and survival in response to the heatwave that affected Europe
in 2003, obtained through a Bayesian meta-analysis. The dots show the reported values, slightly jittered.
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In this meta-analysis, we therefore had to ignore the uncertainty in the estimates and decided to treat them like regular

observations (electronic supplementary material, appendix S2). The estimated relationship between extremeness of the heat-

wave, estimated in number of standard deviations from the mean, and per cent change in survival was negative (figure 6,

slope 29.1, 95% CI: 224.5, 6.2) but the confidence interval included zero. The results are inconclusive about the importance

of climate extremeness but our difficulty of finding studies that reported extremeness suggests that this is a quantity that

should receive more attention in future studies.
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Figure 6. Relationship between the intensity of a heatwave (measured in number of standard deviations from the mean) and change in survival. The dots
are the estimates taken from single-event studies, and the black line is the best fitting linear regression line.

Box 4. Checklist of factors that improve the strength of single-event studies.

— Control: temporal and/or spatial controls help quantify and attribute the effects of an ECE (§2a).

— Robust measure of biological response: ensure that sample sizes are sufficient to estimate the biological response with sufficient precision (§2b); ensure
that relevant responses are measured (§2d).

— Measure of climatic extremeness: quantifying climatic extremeness helps in making studies comparable (§3b); measuring biologically relevant climate
helps in understanding mechanisms (§2c) and testing predictions (§2d).

— Clear hypotheses: observing a single extreme event can be a strong test of a hypothesis if clear ( preferably quantitative) a priori predictions exist of what
is expected to happen under these conditions (§2d).

— Ancillary data: collecting data that illuminate the mechanisms that led to the biological response can make a study more informative (§2c).

— Observe multiple responses: observing several demographic quantities (e.g. survival, reproduction and growth; or multiple species in a community) can
lead to a better understanding of the biological impact of the extreme climate (§2c).

— Keep observing the system for long enough to be able to detect delayed responses, cascading effects, and ( perhaps) the return of the system to its normal
state (§2c). Better knowledge of the system’s response to non-extreme climatic variation helps in estimating the effects of extreme events (§3a).

— Reporting possible alternative drivers helps in attributing a response to a particular component of climate, or non-climatic driver through meta-analyses (§3b).

— Augment observations with targeted experiments to establish causal relationships (§2c).

— Select your sample at random to make it representative of the population of interest (§2a).
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of the event (example 2, box 3). In the two examples, we had

to exclude 24 and 44% of the studies because they lacked

critical information on the effect size or extremeness of the cli-

matic event, suggesting that future studies should pay more

attention to reporting critical information.

One issue that needs particular attention when conduct-

ing formal meta-analyses of ecological responses to ECEs is

that there could be bias due to particular definitions of

ECEs. For example, studies observing no large ecological

response after a climatological ECE (area I in figure 2a)

would not be called extreme events under the biological or

hybrid definitions. Meta-analyses might consequently overes-

timate the effects of ECEs, particularly where sample sizes

are low [52].
4. Conclusion: how to make single-event studies
most useful

As ECEs happen rarely we get few opportunities to study

them. Single-event studies will therefore remain an important

source of knowledge about the biological effects of ECEs.

We found that single-event studies broadly fall into three cat-

egories that each have their strengths and limitations but can

contribute to our knowledge of the biological effects of ECE

in complementary ways [53]. (i) Long-term studies can collect

information on a system before and after an extreme event.

However, they need a lot of investment to be maintained

over long enough time spans. (ii) Opportunistic studies are

easier to set up, but lack information on the system’s dynamics
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before the extreme event. (iii) Experiments can uncover causal

relationships, but tend to be limited to certain types of systems,

and relatively small spatial and temporal scales.

We examined factors that make single-event studies more

useful contributions to both a theory-driven (§3a) and a data-

driven pathway (§3b) of learning, and summarise these fac-

tors in box 4. The location and timing of the next extreme

event is uncertain and it can therefore be difficult to measure

the right thing in the right place (§2c). However, having clear

hypotheses (§2d) and some prior understanding of the

mechanisms (§2c) help when deciding what responses

should be measured and for how long. To make the most

of each opportunity, we argue that attention to rigorous

study design is particularly important. This involves using

appropriate controls and random sampling (§2a), and

enough power to estimate the effect size reliably (§2b).

Studies reporting on ecological responses to a single ECE

may have their limitations [8]. However, due to the difficulty
of studying multiple extreme events, these studies play an

important role in our understanding of such effects. With

this paper we hope to improve the value of single-event

studies by taking a critical look at the value and limitations

of such studies, by suggesting ways of making better use of

existing studies and by suggesting ways to improve on the

design of future studies.
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