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Despite abundant evidence that natural populations are responding to climate

change, there are few demonstrations of how extreme climatic events (ECEs)

affect fitness. Climate warming increases adverse effects of exposure to high

temperatures, but also reduces exposure to cold ECEs. Here, we investigate vari-

ation in survival associated with severity of summer and winter conditions,

and whether survival is better predicted by ECEs than mean temperatures

using data from two coexisting bird species monitored over 37 years in south-

western Australia, red-winged fairy-wrens, Malurus elegans and white-browed

scrubwrens, Sericornis frontalis. Changes in survival were associated with

temperature extremes more strongly than average temperatures. In scrubwrens,

winter ECEs were associated with survival within the same season. In both

species, survival was associated with body size, and there was evidence that

size-dependent mortality was mediated by carry-over effects of climate in the

previous season. For fairy-wrens, mean body size declined over time but this

could not be explained by size-dependent mortality as the effects of body

size on survival were consistently positive. Our study demonstrates how

ECEs can have individual-level effects on survival that are not reflected in

long-term morphological change, and the same climatic conditions can affect

similar-sized, coexisting species in different ways.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction
There is now increasing evidence for adverse effects of climate change associated

with increased exposure to extreme climatic events (ECEs) in the form of high

temperatures (hot ECEs). Exposure to severe heatwaves with temperatures above

critical thresholds can have dramatic immediate impacts on wild populations, lead-

ing to mass mortalities and major population crashes via fatal hyperthermia [1,2].

In addition, there is growing evidence that pervasive effects of increasing exposure

to high temperatures may also have implications for individual phenotypes and

hence for fitness. Prolonged exposure (i.e. over successive days) to high tempera-

tures in the mid-30s8C can lead to reductions in adult body mass, as well as

affect nestling development, presumably through a combination of dehydration

via increased rates of evaporative cooling and energetic constraints that result

from reduced foraging opportunities or provisioning effort [3–7].

Body size may play a critical role in mediating the impact of warmer tempera-

tures on wild animal populations. In general, smaller endotherms are expected to

cope better with a gradual warming of the climate because their larger surface

area to volume ratios allow more efficient dissipation of heat [8–10]. Thus,
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gradual climate warming may be associated with pervasive

reductions in body size [11,12], in line with Bergmann’s obser-

vation of increases in mean body size with latitude [13].

Despite this prediction, responses to gradual warming might

also involve increases in body size. The metabolic costs of

maintaining high body temperature for birds might be reduced

in a warming climate, leading to increased allocation of

resources to growth and body maintenance, with concomitant

improvements in body condition [12]. In addition, temperature

extremes (hot ECEs), rather than means, may impose selection

on small body size. With prolonged exposure to high tempera-

tures above mid-30s8C (hot ECEs), smaller individuals may

suffer higher mortality because evaporative water loss used

for body cooling increases disproportionately with decreasing

body size [14]. Thus, larger individuals can have higher

survival during heatwaves [14,15].

In addition to increased exposure to hot ECEs, climate

warming may also reduce exposure to cold ECEs [16]. The

effects of changing winter conditions have received little atten-

tion even though they can cause direct mortality via cold stress,

reductions in immune function or energetic constraints associ-

ated with resource shortages that can affect body condition

with consequences for fitness [17,18]. Indeed, energetic costs

of thermoregulation in winter during periods of low food avail-

ability can be greater than those during the breeding season

[19]. As for hot extremes, how endotherms deal with cold is

also expected to be affected by body size. Larger body size

may confer thermal benefits in cold conditions both by redu-

cing heat loss (via reduced surface area to volume ratios) and

by increasing capacity to carry more fat reserves, thereby

increasing resistance to starvation [17,20]. Thus, large body

sizes may be beneficial during cold ECEs. Accordingly,

reductions in the severity of winter conditions due to climate

warming are predicted to increase the survival of smaller indi-

viduals, which might lead to a decline in mean body size of a

population over time. For example, in Soay sheep Ovis aries,

milder winters increased survival of small individuals, which

in part contributed to a decrease in mean body size [21].

Although there have been relatively few studies testing

for the impacts of warming winters on fitness, there are even

fewer that have analysed the effects of summer and winter

ECEs simultaneously. Joint consideration is important, because

processes in one season may affect performance in another [18].

Thus, for example, the condition of animals emerging from

winter will determine their performance during the breeding

season, and their breeding performance will in turn determine

their condition going into the subsequent winter and hence

their winter performance [17]. Comprehensive assessment of

such carry-over effects is necessary if we are to quantify the

full impact of climate change [18].

Here, we test for links between climatic stressors and survi-

val, and the consequences for morphology, in two similar-sized,

coexisting species of insectivorous passerine birds that have

been the subject of long-term monitoring over 37 years (1977–

2014) at a temperate site in southwestern Australia. These

long-term datasets allow us to explore associations between cli-

mate and survival and whether changes in survival lead to

morphological change over time. Using the long-term recapture

data in combination with local temperature and rainfall data, we

test whether inter-annual variation in survival is associated with

the severity of summer and winter conditions and associated

size-dependent mortality over decades, and thus the long-

term impact of climate change on avian morphology. Our
study populations have experienced increases in mean tempera-

tures in winter and summer. We focus on occurrence of

‘extremes’ (ECEs) defined by the extreme tails of the tempera-

ture distribution at our study site, which represent conditions

that affect survival in a range of bird species including small pas-

serines [15,22,23]. In particular, we test whether survival is more

clearly predicted by occurrence of extreme events than by mean

temperatures. We predict that:

(1) Exposure to extreme events, either hot dry in summer or

cold wet in winter, reduces survival of both study species.

(2) Survival is also size-dependent, and the effects of body

size mediate the effect of extreme events on survival.

We anticipate that the combined implications of these pre-

dictions explain any long-term trends in body size in the

study species: a priori predictions are difficult, being depen-

dent on the relative impact of hot versus cold ECEs, and

their respective interactions with body size.
2. Material and methods
(a) Definition of an extreme climatic event
We have a poor understanding of the ways in which ECEs lead to

changes in fitness, selection and microevolution, in part because

synthesis is hampered by the lack of a universal definition of

what constitutes an ECE. Here, we use a statistical definition of

climate extremes, as the tails in either end of the summer and

winter temperature range at the study site [24]. Specifically, for

each year, we quantified the number of cold wet days on

which rainfall more than 0 mm and minima less than 58C
were recorded (NColdWetDays) and the number of hot dry

days with no rainfall and maxima more than 308C
(NHotDryDays), because cold wet conditions in winter and hot

dry conditions in summer can cause thermal stress and affect

fitness [14,22,23].

(b) Study site and study species
Our study populations are two populations of small passerines,

the white-browed scrubwren (Sericornis frontalis) and the red-

winged fairy-wren (Malurus elegans), that have been the subject

of study over a 37 year period (1977–2014) at the Smithbrook

Nature Reserve southeast of Manjimup in Western Australia

(1168100 E, 348200 S). The 95-ha reserve consists of eucalypt wet

forest dominated by Karri (Eucalyptus diversicolor), Jarrah

(E. marginata) and Marri (E. calophylla) trees with a dense understorey

(for more details, see [25]).

Both study species are small insectivorous passerines that

belong to the large and diverse superfamily Meliphagoidea

[26]. Mean body weight of adults in this study was 9.7 g (fairy-

wren) and 11.2 g (scrubwren). Both species are sedentary, year-

round residents, occupying territories that persist year-to-year

[27,28]. Both are cooperative breeders, breeding during the aus-

tral spring and summer months, and capable of producing

multiple clutches each season [27,29]. Both are also relatively

long-lived: the maximum ages for red-winged fairy-wrens and

white-browed scrubwrens in this study are 15 and 13 years,

respectively. The sexes are dichromatic in both species so can

be readily distinguished on the basis of plumage [27,30].

(c) Data
(i) Bird data
The morphometric and recapture/survival data used here are

from a long-term banding (ringing) programme at Smithbrook
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Nature Reserve [31]. Additional data for red-winged fairy-wrens

were also available from two detailed studies of the social and

mating system of this species based on individually marked,

colour-banded birds at the same site: Rowley et al. [27] and

Russell & Rowley [30] monitored individuals from 30 breeding

groups between 1980 and 1995, and Brouwer et al. [28] have mon-

itored individuals from approximately 70 territories since 2008.

As a result, more than 99% of adult birds in the fairy-wren popu-

lation were individually colour-banded.

Birds were captured in mist-nets throughout the year and

weighed with a Pesola balance to an accuracy of 0.5 g. Birds

were caught and banded with permission from the Australian

Bird and Bat Banding Scheme. Primary wing feathers were

scored for moult. Wing length was measured as the length of

the flattened wing chord from the carpal joint to the tip of the

longest primary to the nearest 1.0 mm using a butt-ended

ruler. Among passerines, wing length is the best single linear

predictor of structural size, and accordingly may be used as an

index of body size [32]. Some studies use tarsus length as an

index of body size because the trait is less variable over an indi-

vidual’s life. However, appendages such as bills and tarsi are

involved in heat dissipation and are predicted to increase in

size, relative to body size, with climate warming in accordance

with Allen’s Rule [33,34]. To avoid these complications, we there-

fore chose to use wing length an index of structural body size.

Birds were either of known age (banded as a nestling) or we esti-

mated minimum age based on recapture data, with unknown

adult birds assigned as age one at first capture. We included

only adults (more than 12 months old) in our analyses. We

assigned an index of feather wear (abrasion score, 1–12) to

account for abrasion of the tips of primary feathers, which

occurs between successive moults and affects wing length [35].

We analysed summer and winter survival separately. The

species are known to be sedentary and strongly site-faithful, so

adult disappearances are likely to reflect mortality rather than dis-

persal [27,29,30]. Thus, we defined ‘winter survival’ as a binary

variable, with a bird being defined as having survived winter if it

had been captured during autumn/winter (i.e. April–September),

and then was resighted/captured again at least one time point sub-

sequently following 1 October. Similarly, ‘summer survival’ was

defined as a bird having survived summer if it had been captured

during spring/summer (i.e. October–March), and then was

resighted/captured again subsequently following 1 April. We

also calculated the number of days elapsed between capture and

the day on which survival was assessed at the end of autumn/

winter (NDaysFromCaptureToOct1) or at the end of spring/

summer (NDaysFromCaptureToApr1). For fairy-wrens, data were

available on 2258 captures of 1612 individuals over 37 years; for

scrubwrens, data were available on 1146 captures of 633 individuals

over 36 years.

(ii) Climate data
We calculated environmental variables from climate data, based

on standardized daily records from the Pemberton weather

station (Station: 009592, 1168000 E, 348270 S; Bureau of Meteorol-

ogy) located approximately 15 km from the study site. In

addition to the effect of summer and winter ECEs on survival

(defined above), we also extracted mean temperatures for

summer (MeanSummerTemp) for the months December–

February, and for winter (MeanWinterTemp) for the months

June–August, and total annual rainfall (TotalAnnualRainfall)

for each year. To test for temporal changes in climate at

our study site we also extracted mean minimum temperature

(AnnualMeanMinTemp), mean maximum temperature (Annual-

MeanMaxTemp), number of cold days recording temperatures

less than 58C (AnnualNdays less than 58C) and number of hot

days recording temperatures more than 308C (AnnualNdays

more than 308C) for each calendar year.
(d) Statistical models
Our analyses consisted of three sets of statistical models.

(i) Temporal changes in climate and in body size
We tested for changes in climate at Smithbrook Nature Reserve

over the 37 years of the study, fitting each annual climate variable

(AnnualMeanMinTemp, AnnualMeanMaxTemp, AnnualNdays

less than 58C and AnnualNdays more than 308C) as the response

and calendar year as a predictor covariate in separate linear

regression models.

We tested for long-term changes in adult body size over the 37

years of the study, treating each species separately. We used linear

mixed models with body size as the response variable using an

identity link function and Gaussian error distribution. We fitted

sex (as a two-level fixed factor) and age (because older birds

tend to have longer feathers [30]), feather wear and year as continu-

ous fixed-effects covariates. We also fitted age at last capture as an

additional variable to distinguish within- versus between-subject

effects of age on body size, and hence to model any potential ‘selec-

tive disappearance’ [36]. Finally, the random effects fitted were

bird identity and year (fitted as a categorical variable) to account

for multiple captures of the same individuals, and multiple

measures from the same years, respectively.

(ii) Determinants of winter survival
We tested whether winter survival each year was associated with

the severity of weather conditions for birds caught in the autumn

and winter months between April and September, using general-

ized linear mixed models (GLMM) with survival as a binary

variable and a logit-link function and binomial error. We ran

separate models for each species.

We tested for the effects of NColdWetDays recorded in the

calendar year in which a bird was captured. Furthermore, NHot-

DryDays in the preceding summer was also included as a

covariate, to test for carry-over effects of high summer tempera-

tures on survival [7]. We predicted that the effects of exposure to

these weather conditions would be nonlinear so we also fitted

quadratic terms for each variable.

We tested for effects of structural body size on survival by

including a measure of wing length corrected for feather wear;

this was calculated from a regression of wing length on abrasion

score [35]. To test whether associations between survival and cli-

mate variables were size-dependent, we fitted interactions

between body size and the two climate variables (body size �
NColdWetDays; body size � NHotDryDays). Because the prob-

ability of survival may also vary with TotalAnnualRainfall,

age, sex and NDaysFromCaptureToOct1, we fitted these terms

as additional fixed explanatory variables.

To account for multiple observations from each year, we

fitted year as a multi-level random effect. In the case of red-

winged fairy-wrens, capture effort varied substantially among

years, so we also fitted ‘capture effort’ as a three-level factor

(low, medium, high) to account for this difference (see the elec-

tronic supplementary material). All continuous, explanatory

variables were standardized to zero mean and unit variance

prior to analysis to facilitate model convergence.

Finally, because responses to climate may be better predicted

by mean temperatures rather than extremes, we ran all models

with mean temperature variable equivalents replacing those for

ECEs (e.g. NColdWetDays with MeanWinterTemp, NHotDryDays

with MeanSummerTemp) including in interactions with body size.

(iii) Determinants of summer survival
We used the same model structure and variables to test whether

summer survival each year (after 1 April) was associated with

the severity of weather conditions for birds caught in the
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spring and summer months (between October and March).

We therefore tested for the effects of NHotDryDays during the

current summer, and also for possible carry-over effects of

NColdWetDays recorded in the preceding winter. Other vari-

ables included were identical to the winter model except that

we assessed survival to end of summer (NDaysFromCapture-

ToApr1) (above). As with the winter analysis, we also fitted

models with mean temperature variables including interactions

with body size.
(e) Model fitting
To account for model selection uncertainty, we adopted a multi-

model inference approach. We used Akaike information criteria

[37,38] corrected for the sample size (AICc) to select the most

parsimonious model out of the set of models with all possible

combinations of variables. Models with lower AICc values are

better supported by the data. We used an all-subset approach

and reported the top models within two DAICc of the best sup-

ported model only. We calculated the Akaike weights to assess

the relative likelihood of competing models. In total, 95% confi-

dence intervals (CI) of estimates of individual predictor

variables were used as indicators of parameter importance [39].

All analyses were conducted in R 3.3.2 [40]. Linear mixed

models were fitted with maximum-likelihood (rather than

REML) using the package lme4 [41], generalized linear mixed

models were fitted using the glmer function from the lme4 pack-

age [42] and model selection was conducted using the package

MuMIn [43].
Because climate means and extremes were highly correla-

ted (electronic supplementary material, table S1), we did

not include mean and extreme temperature variables in the

same model simultaneously. Instead, we used AICc to identify

whether models with extremes better explained the data, over

and above those with mean temperature variables. In all but

one case, replacing climate extremes with climate means

increased AICc values. Thus, our results are confined to

models with extreme temperatures for three of the four analyses;

see electronic supplementary material, table S2 for the top 100

models for each analysis.
3. Results
(a) Temporal trends in climate
The climate changed at the site over the 37 years of the

study (figure 1). Annual mean minimum and mean maxi-

mum temperatures rose over time (AnnualMeanMinTemp:

0.020+0.006 s.e. 8C yr21, t ¼ 3.11, P ¼ 0.004; AnnualMean-

MaxTemp: 0.041+0.008 s.e. 8C yr21, t ¼ 5.34, P , 0.001).

The AnnualNdays less than 58C showed a marginally non-

significant decline (20.246+ 0.123 s.e. days yr21, t ¼ 22.0,

P ¼ 0.052), and the AnnualNdays more than 308C increased

(0.297+0.109 s.e. days yr21, t ¼ 2.737, P ¼ 0.01). TotalAn-

nualRainfall did not change over time (0.768+ 2.404 s.e.

mm yr21, t ¼ 0.319, P ¼ 0.751).
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Figure 2. The predictions of the effect of body size on survival for (a) red-
winged fairy-wrens in winter given for varying carry-over effects of mean temp-
erature of the preceding summer and (b) white-browed scrubwrens in summer
given for varying carry-over effects of NColdWetDays (number of wet days less
than 58C) of the preceding winter. Predictions are based on model 1, table 1a
and model 1, table 2b, respectively. Body size index is residual body size, cal-
culated from a regression between wing length and abrasion score to
account for changes in wing length due to feather abrasion (zero ¼ mean
body size) and is given in standard deviations of the mean. A high mean
summer temperature/NColdWetDays depicts the mean þ1 s.d. whereas a
low mean summer temperature/NColdWetDays depicts the mean 21 s.d.
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(b) Determinants of winter survival
Fairy-wrens. Overall, models with mean temperature variables

better explained the data than did those with ECE variable

equivalents (electronic supplementary material, table S2). In

contrast with our predictions, the winter ECEs (NColdWet-

Days) were not included in any of the top models and thus

there was no evidence that winter survival decreased with an

increasing frequency of cold, wet days (table 1a). However,

body size was consistently included in the top models

(table 1a), thus there was strong evidence that body size was

positively associated with survival (figure 2a). Moreover, the

association between body size and survival was mediated by

a carry-over effect of mean temperature in the preceding

summer, with body size having a stronger effect on winter

survival if the previous summer was warmer (table 1a and

figure 2a). Thus, size-dependent survival in winter was associ-

ated with warmer conditions in the previous summers,
but there was no evidence that hot ECEs explained this vari-

ation in survival better than mean summer temperature

(DAICc ¼ þ2.7, electronic supplementary material, table S2,

model 1 versus model 16). There was no evidence that survival

was associated with annual rainfall (table 1a).

Scrubwrens. In accordance with our predictions, there was

strong evidence that white-browed scrubwrens were less

likely to survive winters with higher frequencies of cold

ECEs (table 1b). However, this effect was nonlinear (table 1b,

NColdWetDays2). There was only weak evidence that survival

was associated with carry-over effects of the preceding

summer (table 1b, model 2 versus model 3). Furthermore,

similar to the red-winged fairy-wrens, there was a body size-

mediated carry-over effect of the previous summer, with

body size having a stronger effect on winter survival if the pre-

vious summer had more hot ECEs (NHotDryDays), although

this effect did not receive strong support (table 1b model 1

versus model 2; CIs overlap zero). There was no evidence

that survival was associated with annual rainfall (table 1b).

(c) Determinants of summer survival
Fairy-wrens. There was no association between summer survi-

val and any climate variable for red-winged fairy-wrens

(table 2a). Neither was survival associated with body size,

but males and older individuals had higher survival than

did females or younger individuals (table 2a).

Scrubwrens. In white-browed scrubwrens, summer survi-

val was not associated with the severity of summer ECEs.

However, survival was associated with body size and this

effect of body size on survival was mediated by conditions

in the preceding winter: larger individuals survived better

following mild winters (low number of NColdWetDays),

whereas smaller individuals survived better following cold

winters (high number of NColdWetDays; table 2b and

figure 2b), although the advantage for small size under

extreme cold is minimal (figure 2b).

The results from the top models in tables 1 and 2 are

summarized in table 3.

(d) Temporal trends in body size
Structural body size (wing length) decreased by 0.029 mm

per year over the 37 years of the study in red-winged

fairy-wrens, but there was no change in body size of white-

browed scrubwrens (table 4 and figure 3). The analysis of

body size in the fairy-wrens also showed that size increased

with age, and that there was selective disappearance of smal-

ler individuals (i.e. larger individuals had an older age of last

capture; table 4a).
4. Discussion
Our aim in this study was to explore the relationship between

climate and survival and the long-term impacts on morphology

in two coexisting species of small insectivorous passerine, using

data from two study populations that have been monitored for

37 years in southwestern Australia. Associations between cli-

mate and survival (recapture) were complex and varied

between the species, but survival was more strongly associated

with temperature extremes than mean temperatures, except in

one case. Survival was also associated with body size in both

species, and with inter-annual variation in the severity of
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Table 3. Summary of the nature and direction (þ positive,2negative) of direct and carry-over effects and body size on the survival of red-winged fairy-wrens
and white-browed scrubwrens in summer (for birds captured during the spring and summer months, October – March) and winter (for birds captured during
the autumn and winter months, April – September), and between October and March between 1977 and 2014. n.a. represents variables that were not included
in the final top model;þrepresents significant positive effect.

species direct effects carry-over effects body size

winter

red-winged fairy-wrens n.a. positive interaction between body size � MeanSummerTemp þ
white-browed scrubwrens negative effect of NColdWetDays n.a. n.a.

summer

red-winged fairy-wrens n.a. n.a. n.a.

white-browed scrubwrens n.a. negative interaction between body size � NColdWetDays þ
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winter conditions in white-browed scrubwrens. There was also

evidence that size-dependent mortality was mediated by carry-

over effects of climate conditions in the previous season: in both

species, larger individuals survived winter better following

hotter summers, and larger scrubwrens had higher summer

survival following mild winters (figure 2). In accordance with

predictions that warming winters should result in a reduction

in body size, we found that body size of red-winged fairy-

wrens declined over 37 years. However, this reduction in

mean body size cannot be explained by size-dependent mor-

tality, which showed positive effects of body size on winter

survival and hence should lead to an increase in mean body

size through either within- or between-generation changes.

Our study therefore demonstrates how climate can have com-

plex effects on fitness (survival), but no apparent effect on

morphology across years.
5. Direct effects of climate on survival
Cold, wet conditions in winter were directly associated with

declines in winter survival in white-browed scrubwrens;

there was also evidence for size-mediated carry-over effects

of winter conditions on their survival in the subsequent

summer (see below). Cold exposure can cause mortality of

small passerines in winter, even in conditions that are relatively

mild [17,22,44]. For example, prolonged exposure to cold wet

weather with daily minima less than 58C was associated with

high mortality in a range of similar-sized passerine species in

Britain [23]. Although such conditions are relatively mild,

they have been shown to cause thermal stress in small passer-

ines, increasing the metabolic costs of keeping warm at a time

when food is limited [22,23,29]. In the case of species at our

study area, temperatures rarely dropped below zero (2 days

in 37 years) so temperatures less than 58C were the most

severe experienced, and can be considered to represent ECEs.

Unexpectedly, in white-browed scrubwrens, the effect of

winter conditions on survival was nonlinear, with survival

increasing in years with the harshest conditions, when cold

wet days exceeded 20 days per year (NColdWetDays2;

table 1b). However, the positive quadratic term was driven

by a single outlier year (1986) and disappeared when data

from 1986 were removed from analysis; all other effects

remained the same. The year 1986 was the one with the highest

number of cold, wet days (a total of 26; the next highest,

1989, was 19), but had 50% average survival rates of scrub-

wrens (n ¼ 12): the results therefore indicate that across all
other years, survival dropped with increasing numbers of

cold, wet days, but for reasons unknown, not in 1986.

In contrast with that of scrubwrens, winter survival of

red-winged fairy-wrens was not associated with severity of

winter conditions. This might conceivably relate to differences

between the species in roosting behaviour and use of micro-

climates that can buffer individuals from extreme conditions

[45,46]. Like other fairy-wrens, red-winged fairy-wrens are

thought to roost communally, huddling together at night,

which presumably conserves heat in cold conditions, while

scrubwrens apparently roost individually and presumably

have higher thermoregulatory costs in cold conditions [47].

In contrast with our prediction, hot ECEs were not associ-

ated with lower survival in either species, suggesting that

the climate is not hot enough to drive reductions in survival.

In the few studies demonstrating fitness costs of high tempera-

tures, negative effects on body condition and survival are

associated with air temperatures more than or equal to 358C
[3–5,7]. Studies of physiology show that for many passerines,

the onset of panting, which facilitates evaporative cooling,

occurs at slightly lower temperatures, at about 308C, but only

when air temperatures approach body temperature (approx.

408C) do the costs of evaporative cooling increase dramatically,

and body temperatures of approximately 458C or higher are

lethal [14,15,48]. At Smithbrook, although maximum tempera-

tures have risen over the study period, there were few days

where temperatures exceeded 358C: only 190 days over 37

years. This suggests that the increase in the annual frequencies

of days more than 308C (figure 1d ) that presumably increase

energetic costs associated with heat dissipation behaviours

has no measureable effects on survival at these levels. How-

ever, as temperatures continue to rise and the costs of heat

dissipation behaviours increase, fitness consequences may

change.
6. Carry-over effects of climate on survival
Both winter and summer survival were associated with

size-mediated carry-over effects of the preceding season. In

white-browed scrubwrens, larger individuals survived better

in summers that followed mild winters (low NColdWetDays)

(figure 2b). Mild winter conditions were directly associated

with higher scrubwren survival in the same winter (above).

We speculate that perhaps higher survival in mild winters

leads to greater competition among individuals for resources

in the following summer, conditions that might give larger
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individuals a competitive advantage. Such density-dependent

phenomena are common and associated with climatic variation

[49], although as we do not have direct measures of population

density in these study populations for all years, we are unable to

explicitly test for density-dependence here. More work is

required to understand carry-over effects of climate between

seasons and the consequences for selection on body size.

In red-winged fairy-wrens, larger individuals survived

winter better than smaller ones, especially after summers

with higher mean temperatures (table 2a and figure 2a). Per-

formance in winter can be enhanced by pre-winter conditions

and organisms in better condition heading into winter can have

higher winter survival [17]. For example, in yellow-bellied

marmots (Marmota flaviventris), earlier emergence from hiber-

nation in response to warming spring temperatures led to

increased growth and improved body condition before the

start of the following winter, and consequently increased over-

winter survival [50]. Surprisingly, the positive effect of warmer

summers was only evident for larger individuals; smaller indi-

viduals had higher winter survival following cooler summers

(figure 2a). We would expect all fairy-wrens to benefit from

warmer (mean) summer temperatures at Smithbrook, given

the absence of summer ECEs, not just larger individuals. We

have no explanation for this patterns that suggests complex

interactions between climate, body size and survival [21,50,51].
7. Temporal trends in body size
We have demonstrated positive viability selection on body size

in both species, involving both direct effects within a season, as

well as carry-over effects between seasons, and these relate to

ECEs and to mean temperatures. The evidence that body size

interacts with carry-over effects of climate in the previous

season suggests that selection on body size is stronger under

recent climatic conditions (figure 3a,b). Despite the observed

patterns of survival, we found no evidence for an evolutionary

response to this selection in the form of increased body size

over time. In fact, the mean body size of fairy-wrens declined

over time and there was no change in the mean size of

scrubwrens.

The temporal decline in fairy-wren body size is consistent

with predictions arising from Bergmann’s Rule for pervasive

reductions in body size as the climate warms [11]. However,

such reductions are not related to a survival advantage for

smaller individuals, and indeed we showed that there was

selective disappearance of smaller individuals (i.e. larger

individuals were older at last capture, and older birds are

larger (wing length) (table 1b). Accordingly, our results are

inconsistent with the thermoregulatory explanations we out-

line here. This may be due to a variety of factors. For example,

phenotypic plasticity may underlie shifts in body size that are

associated with density-dependent phenomena or changes in

other ecological conditions, such as predation pressure and

habitat degradation [52,53]. In addition, selection may act

via reproduction in addition to viability, although it is

worth noting that selection on body size via reproduction is

typically positive (e.g. [54]).
8. Conclusion
Our study demonstrates that responses to climate are complex

and can vary between ecologically similar species coexisting at
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the same site and experiencing the same weather conditions.

We found evidence for changes in climate, and for associations

between survival and climate and between survival and body

size, but these factors did not combine to generate population-

level changes in morphology over multiple years. Changes in

survival were associated with temperature extremes more

strongly than with mean temperatures. Exposure to these

extremes of climate had direct effects on survival, within the

same season, in one case, but also had carry-over effects of

body size on survival in the following season. The results illus-

trate the value of considering the effects of changes in climate

across the year on wild animal populations, rather than consid-

ering just a single season. Finally, the differences in the

responses to ECEs we observed between two closely related,

similar-sized insectivores experiencing the same weather con-

ditions highlight the potential diversity in effects of climate

change on natural populations, and hence the difficulties

inherent in drawing general conclusions about avian responses

to extreme climatic events.
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