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Abstract
Despite some notable advances in the systemic manage-
ment of gastric cancer (GC), the prognosis of patients 
with advanced disease remains overall poor and their 
chance of cure is anecdotic. In a molecularly selected 
population, a median overall survival of 13.8 mo has been 
reached with the use of human epidermal growth factor 
2 (HER2) inhibitors in combination with chemotherapy, 
which has soon after become the standard of care 
for patients with HER2-overexpressing GC. Moreover, 
oncologists have recognized the clinical utility of con-
ceiving cancers as a collection of different molecularly-
driven entities rather than a single disease. Several 
molecular drivers have been identified as having crucial 
roles in other tumors and new molecular classifications 
have been recently proposed for gastric cancer as well. 
Not only these classifications allow the identification 
of different tumor subtypes with unique features, but 
also they serve as springboard for the development of 
different therapeutic strategies. Hopefully, the applica-
tion of standard systemic chemotherapy, specific 
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targeted agents, immunotherapy or even surgery in 
specific cancer subgroups will help maximizing treatment 
outcomes and will avoid treating patients with minimal 
chance to respond, therefore diluting the average benefit. 
In this review, we aim at elucidating the aspects of GC 
molecular subtypes, and the possible future applications 
of such molecular analyses.

Key words: Molecular biology; Immunotherapy; Gastric 
cancer; Classification; Targeted therapy
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Core tip: TCGA individuates four molecular subtypes: 
Chromosomal instability, microsatellite instability, geno-
mically stable and Epstein-Barr virus positive tumors. 
Asian Cancer Research Group classification partially 
overlaps with the previous one. Although not prospectively 
validated, these novel classifications suggest that different 
subtypes of gastric cancer might be treated with specific 
therapeutic strategies in the near future.
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INTRODUCTION
Gastric cancer (GC) is among the most common malig
nancies worldwide and the second leading cause of 
cancer related deaths[1]. In fact, it represents the fifth 
most commonly diagnosed cancer (6.8% of oncologic 
diagnoses) resulting in an annual estimated incidence of 
18 cases out of 100000 individuals among men and 9 
out of 100000 for women[2].

The mainstay of firstline therapy for GC is still re
presented by a chemotherapy backbone composed by 
platinum compounds and fluoropyrimidines resulting in 
a median overall survival (OS) of about 11 mo. Still, the 
disappointing 5year survival rate is estimated to be about 
25%30% and slightly higher for some Asian experience. 
Historically, many attempts have been made in order to 
reclassify gastric cancer with the aim of clustering some 
new subgroups that could have different prognostic and 
predictive value: Anatomical classification (Borrmann 
classification and Siewert and Stein classification), his
tological classification (WHO classification and Lauren’s 
classification), and extent of disease (early gastric cancer 
vs advanced cancer).

The first effective molecular novelty came from 
the TOGA trial which demonstrated a significant im

provement in OS with the addition of trastuzumab to 
chemotherapy when compared to chemotherapy alone 
in patients with HER2 overexpressing GCs (13.8 mo vs 
11 mo, respectively; P = 0.046)[3]. Another clue to the 
“heterogeneity theory” comes from the observation that 
Asian patients demonstrate different pattern of disease 
and outcomes if compared to the Caucasian western 
population included in the largest trials.

Nowadays, with mounting biological information 
available, almost every solid cancer type is considered as 
a “collection” of multiple very molecularly heterogeneous 
diseases. Very important advances have been made 
in the molecular classification of breast cancers[4], lung 
tumors (by the identification of some tyrosinekinase
inhibitor targetable subtypes), colorectal adenocarcinomas 
(predictive and prognostic classes sorted by mutations 
in RAS and BRAF genes), and malignant melanoma 
(identification of BRAF codon 600 mutation).

Nevertheless, the poor anatomical and molecular 
selections of GC patients entering clinical trials have 
potentially limited the effect of many therapeutic agents 
including chemotherapy, antiangiogenic drugs and the 
newly tested immune-modulators. In fact, the benefit 
of those drugs may have been diluted when tested in 
the overall population. Recently something has changed 
the way of thinking GC starting from the TCGA group 
publication appeared in 2014[5]. 

A more profound understanding of the molecular 
clustering of stomach cancer could give us the chance 
to obtain new insights into prognostic and predictive 
categorization of this cancer and could definitely provide 
the scientific knowledge for developing modernly con
ceived clinical trials that could maximize the effect of 
novel agents in the proper patient population, avoiding 
the use of costly drugs in non-stratified populations.

Finally, the aim of this review is to give a general pic
ture of the current knowledge of the emerging molecular 
classification of GC and to explore the new possibilities 
connected to the latest discoveries made on the extreme 
heterogeneity of this disease.

THE IMPORTANCE AND LIMITATIONS OF 
MOLECULAR CLASSIFICATIONS 
The first attempt to generate a comprehensive molecular 
classification for GC was made in 2013 by Singapore Re-
searchers[6]. They identified three main types of gastric 
cancer, namely proliferative (characterized by high genomic 
instability and TP53 mutation), metabolic (more sensitive 
to 5FU therapy) and mesenchymal (stem celllike tumors 
sensitive to PIK3CAmTOR pathway inhibitors), based 
on genome expression. Soon after the TCGA research 
group published a classification dividing GCs into four 
main subgroups clustered on the basis of six different 
molecular biology approaches: Copy number variation 
(CNV) analysis, exome sequencing analysis, DNA methyla
tion profile, mRNA sequencing, microRNA (miRNA) 
sequencing and reverse phase protein array[5]. The result 
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is the subdivision of GC into four genomic subtypes: 
EpsteinBarr virus (EBV) positive cancers (9% of all 
gastric tumors with frequent PIK3CA mutation and 
PDL1/PDL2 overexpression), Microsatellite Instability 
tumors (MSI, representing 22% and hypermutated), 
chromosomal instability (CIN, 50%, predominantly 
junctional, TP53 mutated with RTKRAS activation, with 
a high rate of CNV) and Genomically Stable (GS, 20%, 
presenting mutation in motility and adhesion molecules). 
Specific TCGA molecular subtypes are represented in 
Figure 1.

In the meantime, the Asian Cancer Research Group 
(ACRG) too proposed a novel molecular classification[7], 
and the resulting taxonomy divided GCs into: Mesen
chymal subgroup (MSS/EMT, characterized by hallmarks 
of epithelialtomesenchymal transition), Microsatellite 
Instability subgroup (MSI), Microsatellite Stable TP53 
positive (MSS/TP53+, somehow overlapping with EBV type 
of TCGA classification) and Microsatellite Stable TP53- 
tumors (MSS/TP53, overlapping with CIN by TCGA).

These novel classifications create a new paradigm 
in the definition of cancer biology and allow the identifi-
cation of relevant genomic subsets by using different tech
niques such as genomic screenings, functional studies and 
molecular or epigenetic characterization. However, some 
limitations should also be openly recognized. First, these 
classifications are based on a highly complex methodology 
and currently they should not be replicated in standard 
laboratories lacking in the uttermost technologies. Attempts 
towards simplification are ongoing although results may 
not fully capture the underpinning complexity of the 

disease. Second, these classifications lack of a prospective 
validation on a large scale, including patients with different 
ethnicity and age. Third, the two proposed classifications 
have more differences than similarities; in particular, 
they are different in terms of demographics, baseline 
molecular mechanisms, driver genes, and association 
with prognosis. Moreover, there are notable dissimilarities 
in the distribution of Lauren’s diffuse subtype among the 
different subgroups. Since different molecular subgroups 
may be identified across a number of independent gene 
expression profile studies, a collaborative international 
effort is warranted to aggregate a consensus classi
fication. Fourth, the followup of included patients is 
limited, factor that may decrease their prognostic power, 
and subgroups were evaluated on resected specimens, 
with different prevalence of subgroups between localized, 
locally advanced and advanced settings. Fifth, both 
classifications insist on epithelial cells, but none of them 
take into account the active, nonmalignant stromal cells. 
Actually, not only gene expression profiles deriving from 
stromal tissues may influence assignment to a specific 
molecular category, thus creating interpretative troubles[8], 
but also novel stromalbased distinctive signatures have 
been proposed and related to the predominant cancer 
phenotype[9].

GC WITH CHROMOSOMAL INSTABILITY
CIN subtype represents approximately 50% of GCs[10] 
and it mostly occurs in the esophagogastric junction 
(EGJ)/cardia. CIN GC is related to intestinal type histology, 
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to copy number gains of chromosomes 8q, 17q and 20q, 
while, gains at 12q and 13q are associated with diffuse 
GC[11]. Interestingly, CIN showed elevated frequency 
in the EGJ/cardia, as demonstrated in TCGA characteri
zation (65%, P = 0.012). CIN is characterized by somatic 
mutations at cytogenetic level, particularly involving loci that 
control mitotic checkpoints, thus gatekeeper and caretaker 
genes implicated in carcinogenesis. CIN comprises both 
altered DNA copy number and structural abnormalities in 
some chromosomal regions. Those alterations could result 
in gain or loss of whole chromosomes[12] (aneuploidy), 
nonreciprocal translocations, amplifications, deletion 
or the loss of one allele with loss of heterozygosis. 
Altogether, CIN results in the loss or gain of function 
of some “key genes”, including oncogenes and tumor 
suppressor genes that may be efficaciously targeted 
by specific inhibitor molecules[13]. Notably, CIN GC is 
enriched in mutations in TP53 gene and receptor tyrosine 
kinases (RTKs), furthermore it shows amplifications 
of cell cycle genes (Cyclin E1, Cyclin D1, and Cyclin
dependent kinase 6)[14]. 

Evaluation of the biological characteristics among 
CIN cancers demonstrated that TP53 mutations occurs 
in 71% of GCs[5]. Furthermore, CIN also display amplifi-
cation in oncogene pathways such as RTK/RAS/MAPK 
signaling, including HER2, BRAF, epidermal growth factor 
(EGFR), MET, FGFR2, RAS[5,15].

A recent work reviewed the pathogenic and molecular 
similarities between gastric intestinaltype adenocarcinoma 
and esophageal adenocarcinoma (EAC)[16], suggesting 
that treatment of EAC should recall that of gastric 
adenocarcinoma rather than being similar to the approach 
used for upper esophageal cancers (mostly squamous). In 
fact, not only EAC may arise from progenitor cells deriving 
from the cardia of the stomach but also the majority 
of EAC express a chromosomal instability that closely 
resembles the one found in CIN GC. All these findings 
suggest both the need for better subtyping esophageal 
cancers and the opportunity of developing specific thera-
peutics strategies in this disease as well.

HER2
The protooncogene HER2 is a member of the EGF 
receptor family with tyrosine kinase activity. It is known 
that HER2 positivity may vary depending on the primary 
tumour location as well as on the histotype of gastric 
cancer. Indeed, HER2 overexpression/amplification is 
detected in more than 30% of the tumours arising from 
the gastroesophageal junction whereas less than 20% 
of tumours in the gastric body are HER2positive. In 
addition, intestinal and diffuse histotype display a rate 
of HER2 positivity of 34% and 6% respectively[17]. HER2 
plays a key role in a large number of cellular processes, 
including cell differentiation, proliferation, motility and signal 
transduction. After the combination of chemotherapy and 
HER2 targeted therapy with trastuzumab had defined 
a new standard of care for HER2positive metastatic 
GC[3,18,19], other HER2 inhibitors were tested. 

Lapatinib, a multikinase inhibitor, was evaluated in 

two randomized phase Ⅲ trials enrolling GC patients 
with advanced disease. The LOGiC trial tested the efficacy 
of lapatinib in combination with capecitabine plus oxali
platin given upfront. The addition of lapatinib did not 
significantly increase OS [12.2 mo vs 10.5 mo, hazard 
ratio (HR) 0.91, P = 0.349], although progressionfree 
survival (PFS) was longer (6.0 mo vs 5.4 mo, HR 0.82, P 
= 0.0381) and objective response rate (ORR) was higher 
(53% vs 39%, P = 0.0031) in the lapatinib arm[19]. The 
TyTAN trial randomized 261 Asian patients to receive 
lapatinib plus paclitaxel or paclitaxel alone in secondline 
treatment. Disappointingly, no marked survival differences 
between treatment groups were noted: Median OS (11.0 
mo vs 8.9 mo, P = 0.1044) and PFS (5.4 mo vs 4.4 mo, 
P = 0.2441). Overall, 15 patients (6%) had previously 
received trastuzumab, 8 in the lapatinib/paclitaxel arm 
and 7 in the paclitaxel alone arm[20].

JACOB, a large randomized phase Ⅲ trial designed 
to test the efficacy of pertuzumab in combination with 
trastuzumab and standard chemotherapy (cisplatin plus 
fluoropyrimidine) has recently completed the accrual[21]. 
Results of the trial are eagerly awaited. Novel anti
HER2 drugs have been developed to try to overcome 
secondary trastuzumab resistance, as in the case of 
trastuzumabemtansine (TDM1). Data from phase Ⅲ 
GATSBY trial were recently presented concluding that 
TDM1 did not improve patients’ outcome compared to 
secondline taxanes at the 2015 clinical cutoff[22].

The majority of gastric cancer patients who achieve an 
initial response to trastuzumabbased regimens develop 
resistance within 7 mo[23]. These unsatisfactory results may 
be attributed to primary (de novo) or secondary (acquired) 
resistance to the HER2targeted therapy. Therefore, as 
it happened for breast cancer, the onset of trastuzumab 
resistance has been investigated also in gastric cancer, 
showing several molecular mechanisms underlying the 
acquired resistance to HER2 inhibitors[24]. Lee et al[25] 
identified that HER2amplified GC patients have diverse 
pattern of various concurrent molecular events. Zuo et al[26] 
employed the human gastric carcinoma cell line NCIN87 
with high HER2 expression to create trastuzumabresistant 
NCIN87/TR cells by stepwise exposure to increasing 
doses of trastuzumab. They showed that activation of the 
PI3KAKT signalling pathway downstream of HER2 was 
one of the major mechanisms leading to resistance of 
NCIN87/TR gastric cancer cells to trastuzumab, which 
was probably associated with PTEN gene downregulation 
and mutation, as well as with overactivity of the IGF
1R signalling pathway[26]. The study conducted by Piro et 
al[27] identified the FGFR3/AKT axis as an escape pathway 
responsible for trastuzumab resistance in gastric cancer, 
indicating that the inhibition of FGFR3 could be a potential 
strategy to modulate this resistance. Recently, Arienti 
et al[28] explored the role of the IQdomain GTPase
activating protein 1 (IQGAP1), a multifunctional scaffold 
protein, which interacts with diverse proteins to regulate 
cell adhesion and cell migration. IQGAP1 governs HER2 
expression, phosphorylation and signalling in breast 
cancer cell lines[29], it is overexpressed in aggressive form 
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of gastric cancer[30] and its overexpression is correlated 
with trastuzumabinduced resistance in breast cancer cell 
lines[31]. The study of Arienti et al[28] revealed that high 
IQGAP1 expression leads to resistance to trastuzumab 
in gastric cancer; in addition, they found two new 
mutations of the HER2 gene that may be correlated with 
acquired resistance to the drug. Moreover, a functional 
crosstalk between the receptor tyrosine kinase MET 
and HER family members has been reported in the 
context of the acquisition of aggressive phenotypes[32]. 
The hepatocyte growth factor (HGF) mediated activation 
of MET may also causeresistance to lapatinib in HER2
amplified GC cell lines by stimulating downstream sig
nalling[33]. De Silva et al[34] confirmed in vitro that MET is 
likely to be a significant mechanism of lapatinib resistance 
in vivo. Finally, we recently showed that HER2 loss 
may be associated with acquired resistance to first-line 
trastuzumabbased treatment in patients with initially 
HER2positive GC[35]. All these evidences enhance the 
complex crosstalk between HER2 and its downstream 
pathway and stress the importance of further elucidating 
the strategies to overcome resistance to HER2targeted 
therapy. Indeed, identifying the mechanisms underlying 
treatment resistance would increase the benefit from 
HER2targeted therapy in patients with HER2positive 
gastric cancer. Certainly, development of inhibitors target
ing multiple receptors or common downstream signalling 
proteins deserves further investigation. 

EGFR 
The EGFR (or ERBB1) belongs to RTKs and it is the 
second most frequent RTK playing a key role in GC 
initiation and progression. Despite the wide use of anti
EGFR monoclonal antibodies in colorectal cancer, demon
stration of efficacy in GC has not yet been provided. 
EGFR overexpression has been reported in 24%27% 
of all gastric adenocarcinomas[36]. Several studies have 
evaluated the efficacy and safety of different anti-EGFR 
therapy, based on preclinical data[37]. The phase Ⅲ 
EXPAND trial evaluated the addition of cetuximab to first-
line capecitabine and cisplatin in a nonselected cohort of 
GC patients. This trial showed no significant advantage in 
median PFS (4.4 mo vs 5.6 mo in favor of control arm, P = 
0.32)[38]. The REAL3 phase Ⅲ trial evaluated the addition 
of panitumumab to epirubicin, oxaliplatin, and capecitabine 
(EOC). It demonstrated that the addition of panitumumab 
is detrimental as to OS (11.3 mo for EOC and 8.8 mo 
for EOC plus panitumumab, HR 1.37, 95%CI:1.071.76, 
P = 0.013)[39]. These disappointing results have been 
confirmed with another anti-EGFR drug, nimotuzumab[40]. 
The failure of antiEGFR monoclonal antibodies in advanced 
GC may lie in the lack of a proper selection, as happened 
to the patients treated in the aforementioned trials. A 
recent publication from Birkman et al[41] studied the pre
valence of EGFR overexpression/genomic amplification 
in gastric intestinaltype adenocarcinoma. In this work, 
220 paraffinembedded samples of GC were collected 
with the aim of elucidating the prevalence of EGFR over

expression/amplification, the HER2 overexpression/
amplification and the combination of the previous two. 
Interestingly, EGFR overexpression was more frequent 
in intestinaltype GCs (32.7% of the specimens) and its 
genomic amplification was demonstrated in 14.1% of the 
patients. It has also been shown that EGFR amplification 
was associated to a deeper tumor invasion (pT34 vs 
pT12, OR 2.15, P = 0.029). This unfavourable clinical 
feature correlated also to a shortened time to cancer 
recurrence (P = 0.026) and cancer specific survival (P = 
0.033). Furthermore, HER2 overexpression/amplification 
has been shown to be less frequent when compared to 
EGFR overexpression/amplification and EGFR/HER2 co
amplification (3.6% of the cases), indicating that these 
two different populations may bear specific genomic 
alterations potentially approachable with different 
treatments. All these data strongly suggest that modern 
trials should be designed with a careful stratification 
according to EGFR amplification to properly assess the 
clinical effectiveness of antiEGFR drugs in GC patients.

RAS and BRAF
KRAS mutation occurs in less than 5% of GC and may 
have a negative prognostic value in GC patients. KRAS 
activates critical pathways involved in carcinogenesis and 
tumor progression, such as PI3KAkt, RAF, MEKextra
cellular signal regulated kinase and NFkB. However, 
no target therapies are currently approved for this mole
cular aberration[42]. Other drugs, such as MEK inhibitors 
were tested in KRAS mutated cancer cell lines with 
promising results. Since preclinical study suggested 
that the combination of MEKinhibitors and PI3K or BCL
XL inhibitors may be efficacious in KRAS mutant lung 
cancer patients[43], it would be intriguing to evaluate 
MEK inhibitors in monotherapy or in combination with 
PI3K inhibitors or BCLXL in GC patients who carry this 
mutation. In GC patients, BRAF mutations are rare (2.2% 
in TCGA database) and are mostly represented by BRAF 
V599M[42]. The role of this mutation in GC is yet to be 
assessed. 

FGFR2
FGFR2 amplification is associated with tumor cell pro
liferation and survival of GC cell lines and indicates poor 
prognosis. In the TCGA classification, approximately 
9% of CIN GC patients had FGFR2 gene amplification. 
Several drugs and studies targeting this mutation are 
ongoing[5]. A phase Ⅱ randomized trial is evaluating 
the activity of AZD4547 (a FGFR 12 and 3 inhibitor) 
compared to paclitaxel in secondline treatment. Other 
ongoing trials are testing dovitinib in FGFR2 amplified GC 
patients or in combination with docetaxel[18].

C-MET
Mesenchymal epithelial transition factor (MET) alteration 
was rarely observed in GC (8%)[44]. MET is an RTK 
that interacts with its native ligand HGF. Deregulated 
expression of CMET in GC has been related to worse 
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prognosis. In fact, the HGF/cMET signal is involved in 
cancer growth, invasion, angiogenesis, antiapoptosis and 
epithelial to mesenchymal transition[45]. Two monoclonal 
antibodies, rilotumumab (an antiHGF antibody) and 
onartuzumab (an anti cMET antibody) were tested. In 
a phase Ⅰb/Ⅱ study, rilotumumab was effective and 
it improved PFS[46]. Based on these data, the phase Ⅲ 
RILOMET1 trial, conducted on selected c-MET amplified 
patients, evaluated OS and ORR in the experimental arm 
with rilotumumab plus ECX compared to control arm 
with placebo plus ECX. The trial results were negative, 
and demonstrated that rilotumumab does not improve 
survival[47]. A similar phase Ⅲ study called RILOMET2 is 
ongoing for Asian patients in the same setting[48]. 

Onartuzumab, a monoclonal antibody directed to cMET, 
was tested in METGastric study, in which patients were 
randomized to receive FOLFOX alone or in combination 
with onartuzumab. Once again, results were negative 
(OS: 11.0 mo in the experimental arm vs 11.3 mo in the 
control arm, HR = 0.82, P = 0.24)[49]. Recently results on 
a specific MET kinase inhibitor have been presented at 
ASCO 2016[50]. For the first time AMG337 was tested, 
in a phase Ⅰ study, in humans with solid tumors: 51 
patients were treated and among them 10 had MET
amplified gastrointestinal cancers: 4 partial responses 
and 1 complete response were observed. At the end of 
the study a maximum tolerated dose of 300 mg was 
reached. Although an expansion phase on MET-amplified 
patients was on the way, it was early interrupted for 
excess of toxicity. Despite these negative results, the 
interest on cMET as a potential molecular target for 
novel therapies has not vanished, since better molecular 
selection of the patients and optimal combination/drugs 
may finally achieve the expected results.

VEGF and VEGFR-2
Another frequently amplified gene in CIN subtype is 
VEGF, a mediator of angiogenesis that is essential for 
cancer growth and metastasis as it ensures oxygen 
and nutrients supply to proliferating cancer cells[51]. 
Bevacizumab, a monoclonal antibody that targets VEGF, 
was tested in the AVAGAST trial. This study did not meet 
its primary endpoint of improved OS (median OS 12.1 
mo vs 10.1 mo, HR 0.87 95%CI: 0.731.03, P = 0.1), 
but improvements in median PFS and tumor response 
rate were reported[52]. Similarly, the AVATAR trial showed 
no survival benefit with antiangiogenic therapy added to 
cisplatin and capecitabinebased regimens (HR 1.1)[53]. 
Although the addition of bevacizumab to standard 
therapy showed disappointing results, antiangiogenic 
strategy was further investigated beyond first line 
treatment. Ramucirumab, a fully human monoclonal 
IgG directed against VEGFR2, was evaluated both as 
single agent and in combination with chemotherapy[5456]. 
In the REGARD trial, ramucirumab demonstrated a 
statistically significant improvement when compared to 
the best supportive care in pretreated GC patients with 
advanced disease (OS: 5.2 mo vs 3.8 mo respectively, 
HR = 0.776; P = 0.047)[54]. In the RAINBOW trial, 

patients were randomized to receive paclitaxel with or 
without ramucirumab. Median OS was 9.63 mo for the 
combination therapy and 7.36 mo for paclitaxel alone (HR 
= 0.807, 95%CI: 0.6780.962; P = 0.017)[55]. Recently, 
a novel VEGFR2 tyrosine kinase inhibitor, apatinib, was 
evaluated in Asian patients who had previously received 
2 or 3 lines of chemotherapy[57]. Patients exposed to 
apatinib had an improved median OS (6.5 mo vs 4.7 
mo; HR = 0.709; 95%CI: 0.5370.937; P = 0.156) and 
median PFS (2.6 mo vs 1.8 mo; HR = 0.444; 95%CI: 
0.3310.595; P < 0.001) compared to patients who 
received placebo. Therefore, multitarget TKIs represent 
another potential approach to block angiogenesis by 
simultaneously targeting VEGFR and other signaling 
pathways. Notably, the role of antiangiogenic strategy 
seems to gain importance in subsequent lines of 
treatment, but its role in first-line therapy is still unclear. 
An ongoing randomized phase Ⅲ trial is assessing the 
potential survival benefit of ramucirumab in combination 
with cisplatin and capecitabine given upfront[56].

GC WITH MICROSATELLITE INSTABILITY
According to the TCGA’s molecular classification, the 
enrichment for microsatellite instability (MSI) chara
cterizes a distinct molecular subgroup of GC. MSI occurs in 
about 15%30% of GCs, and more frequently correlates 
with intestinal histotype, location in the distal part of the 
stomach, female gender and older age at diagnosis[5,58,59]. 

MSI is a genetic alteration consisting of the expansion 
or contraction of regions of repetitive nucleotide sequences, 
called microsatellites. The alteration is triggered by a 
dysfunction of DNA mismatch repair (MMR) enzymes, 
caused by mutations in one of several different DNA mis
match repair genes (i.e., MLH1 or MSH2). In a single cell, 
biallelic inactivation of MMR genes causes an increased 
mutation rate (genomic instability) due to the failure of 
DNA mismatch repair that usually occurs during normal 
DNA synthesis[60].

Defective DNA mismatch repair is the hallmark of Lynch 
syndrome. Moreover, approximately 15% of sporadic 
colorectal cancers also displays MSI since both alleles of 
a MMR gene are inactivated[61]. Different MMR genes are 
probably involved in MSIhigh (MSIH) sporadic gastric 
cancer without MLH1 hypermethylation, which represents 
the main mechanism leading to MMR deficiency in MSI 
GC[62,63]. 

MSIH colorectal cancer have better prognosis com
pared to MSI low, and should not receive adjuvant 
chemotherapy with fluoropyrimidine after resection for 
stage Ⅱ disease[64]. In gastric cancer, 5FU is frequently 
used and information about sensitivity to this agent may 
be very useful. A metaanalysis of Zhu et al[65] showed 
a 37% mortality risk reduction and improved median 
OS in patients with MSIH compared to MSIL(low) or 
microsatellite stable (MSS) GC patients. The relationship 
between MMRd, MSI and survival has been examined in 
patients with resectable GC randomized to surgery alone 
or perioperative chemotherapy within the MRC MAGIC 
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trial. MSI and MLH1 deficiency was associated with a 
better outcome in patients treated with surgery alone 
while it had a negative prognostic effect in those treated 
with chemotherapy[62].

Despite MSI cases generally lack of targetable 
amplifications, mutation in PIK3CA, ERBB3, ERB22 and 
EGFR are noted[5,59]; BRAF V600E mutations, commonly 
seen in MSI colorectal cancer, are absent in MSI GC[5]. 
However, the predictive role of these mutations in MSI 
GC population is uncertain. The combination of olaparib 
with paclitaxel as secondline therapy was found to be 
more active compared with paclitaxel alone in patients 
with metastatic or recurrent GC. Although the trial did 
not meet its primary endpoint (namely PFS), olaparib 
prolonged survival in patients with low levels of ataxia 
telangiectasia mutated, a key activator of DNA damage 
response[66]. A phase Ⅲ trial in this setting is under way 
and detailed analysis in MSI GC could be attractive.

The hypothesis of an increased activity of immuno
therapy in MSI noncolorectal cancer has recently generated 
interest. In fact, the increased number of somatic mutations 
may amplify the number of neoantigens, thus stimulating 
the immune system and conferring higher sensitivity to 
PD1 blockade to tumor[67,68]. Interestingly, the tendency to 
have a lymphocytic infiltrate, observed in MSI tumors, likely 
reflects immune activation of Tcells directed against 
tumor-specific carboxy-terminal frameshift peptides that 
are associated with MSI[69]. In addition to that, genomic 
aberrations in tumor cells lead to aberrant PDL1 ex
pression, suggesting a predictive role for MSI. 

MSI has already been reported as a strong predictive 
factor for the use of immune checkpoint inhibitors in 
the treatment of patients with colorectal cancer[70]. The 
immunerelated objective response rate and immune
related 6mo PFS rate were 40% and 78%, respectively, 
for patients with dMMR and 0% and 11% for those with 
MMRproficient cancer, with a higher median PFS and 
survival in the cohort with dMMR colorectal cancers vs 
2.2 and 5.0 mo, respectively, in the cohort with MMR
proficient tumors. Le et al[68] enrolled 41 consecutive 
patients (9 patients with MMR deficient solid tumors other 
than colorectal cancer, only 1 patient with GC) to explore 
the activity of PD1 blockade according to MMR status in 
non colorectal cancer too. Although data are not ready 
for clinical application, 30% of GC have been shown to 
present with a burden of nonsynonymous mutations that 
may define who are the optimal candidates for immune 
checkpoint inhibitors treatment[71]. Of note, a phase 
2 study of pembrolizumab in subjects with advanced 
gastric or gastroesophageal junction adenocarcinoma 
who progressed after firstline therapy with platinum 
and fluoropyrimidine is currently recruiting participants[72]. 
Muro et al[73] have recently reported the activity of pem
brolizumab in GC in a phase Ⅰ trial. The authors showed 
a decrease in tumor burden in 41% of the study patients. 
The ORR was 32% in Asian patients and 30% in nonAsian 
patients[73]. A phase 2 trial of nivolumab or nivolumab 
plus ipilimumab is recruiting patients to evaluate the 
response to checkpoint inhibitors in MSIH gastrointestinal 

cancers[74]. Interestingly, a preventive vaccine, setup 
using neopeptides frequently affecting MSI tumorigenesis, 
has been shown to delay the onset of dMMR tumors. 
It remains to be proven if vaccination against these 
neopeptides might be a promising approach for novel 
adjuvant treatment strategies in patients with MSIH 
tumors[75].

GC WITH GENOMIC STABILITY
GS GCs account for around 20% of all the tumors analyzed 
by the TCGA project. This subtype occurs with equal 
frequency in males and females. GS gastric tumors are 
enriched for the diffuse histological variant [58% according 
to Lauren’s classification) and for the poor cohesive variant 
(58% according to World Health Organization (WHO) 
classification]. One quarter of GS GCs arise in the antrum, 
about 20% in the gastroesophageal junction/cardia, 
and approximately 15% in the gastric body/fundus. The 
principal somatic genomic alterations observed in GS gastric 
tumors involve CDH1, ARID1A and RHOA. In addition, a 
recurrent interchromosomal translocation (between CLDN18 
and ARHGAP26) implicated in cell motility was found in GS 
gastric tumors[5].

CDH1
The CDH1 gene is located on chromosome 16q22.1 
and encodes Ecadherin, which belongs to the cadherin 
superfamily of calciumdependent cell adhesion molecules. 
Ecadherin plays a welldocumented role in the progression 
of epithelial cancers. Inactivating mutations in the CDH1 
gene are frequently found in gastric cancer, especially 
in hereditary diffuse gastric cancer[76]. CDH1 promoter 
methylation is also frequently found in sporadic gastric 
cancer[77]. During epithelial tumorigenesis, the protein 
is downregulated and Ecadherin has been categorized 
as a tumor suppressor gene[78]. Li et al[79] reported that 
in diffusetype GC, CDH1 mutation is associated with 
shortened patients survival, independently from disease 
stage. In the analysis of the TGCA Research Network 
CDH1 somatic mutations were enriched in the GS 
subtype (37% of cases). Therefore, the prognostic value 
of CDH1 as well as its potential as therapeutic target in 
gastric cancer has yet to be fully understood and explored.

ARID1A
Inactivating mutations of ARID1A were found in GS 
gastric cancer, as in the EBVsubtype[5]. The ARID1A 
gene, located in chromosome 1p35.3, encodes adenine
thyminerich interactive domaincontaining protein 1A, 
which participates in chromatin remodeling, therefore is 
involved in regulating cellular processes including DNA 
repair, differentiation, and development[80]. As shown 
by Wang et al[81], loss of ARID1A expression was signifi-
cantly correlated with tumor stage and grade; moreover, 
it was also significantly correlated with poor survival in 
GC patients. Restoring ARID1A expression in gastric 
cancer cells significantly inhibited cell proliferation and 
colony formation, whereas silencing ARID1A expression 

Garattini SK et al . Molecular classifications of gastric cancers



201 May 15, 2017|Volume 9|Issue 5|WJGO|www.wjgnet.com

in gastric epithelial cell lines significantly enhanced cell 
growth rate[81]. 

RHOA
Rho belongs to the Rasrelated family of small molecular 
weight GTPbinding proteins, and it works as a molecular 
switch between the GDPbound inactive form and the 
GTPbound active form[82]. It regulates cytoskeletal 
organization, cell adhesion, intracellular membrane tra
fficking, gene transcription, apoptosis, and cell cycle 
progression[83]; moreover, it activates STAT3 to promote 
tumorigenesis[84]. RhoA plays a role in these processes 
through a variety of effectors including ROCK1, mDia and 
protein kinase N[85]. mDia is involved in nucleation and 
polymerization of actin filaments, while ROCK intervenes 
in induction of actinomyosin bundles and contractility. 
The balance between mDia and ROCK regulates cell mor
phogenesis, adhesion, and motility activities. In addition, 
the RhoROCK pathway is involved in Rasmediated 
transformation, the amoeboid movement of tumor cells in 
the threedimensional matrix, and transmigration of tumor 
cells through the mesothelial monolayer[86]. According 
to the TCGA, RHOA mutations were clustered in two 
adjacent aminoterminal regions that are predicted to be 
at the interface of RHOA with ROCK1 and other effectors, 
leading to a modulation of signaling downstream of 
RHOA[5]. Interestingly, diffusetype GCs, characterized 
by malignant phenotype and stromal differentiation, 
frequently have gainoffunction mutations of RHOA[87].

The TCGA network discovered a recurrent inter
chromosomal translocation between claudin 18 (CLDN18) 
and Rho GTPaseactivating protein 6 (ARHGAP26), 
resulting in the CLDN18-ARHGAP26 fusion gene, which 
primarily occurs in GS GC[5]. ARHGAP26 (also known 
as GTPase Regulator Associated with Focal Adhesion 
Kinase, GRAF) is a GTPaseactivating protein that facili
tates conversion of RHO GTPases to the GDP state and 
has been implicated in enhancing cellular motility[88]. 
CLDN18 is a component of the tight junction adhesion 
structures[89]. Yao et al[90] showed that expression of 
CLDN18-ARHGAP26 fusion gene in gastric epithelial cells 
resulted in epithelial–mesenchymal transition, which is 
indicative of cell transformation in cancer development. 
A recent trial tested IMAB362, a chimeric IgG1 antibody 
against CLDN18.2 showing clinical activity in patients 
with 2 + /3 + immunostaining[91].

The CLDN18–ARHGAP fusions were mutually ex
clusive with RHOA mutations; within the GS subtype, 
30% of cases had either RHOA or CLDN18–ARHGAP 
alterations[5]. 

Given the role of RHOA in cell motility, modulation of 
RHOA may contribute to the disparate growth patterns 
and lack of cellular cohesion that are hallmarks of diffuse 
tumors.

Rho/Rhokinase inhibitors have been explored as 
putative therapeutic targets in various diseases, including 
cancers[92]. The development of drugs that inhibit Rho 
GTPase signaling would be of great potential in this 

setting. 

Other notable patterns
The GS subtype exhibited elevated expression of cell 
adhesion pathways, including the B1/B3 integrins, 
syndecan1mediated signaling, and angiogenesis
related pathways. Also in the GS subtype, hierarchical 
clustering of samples and pathways revealed several 
notable patterns, including elevated expression of mitotic 
network components such as AURKA/B and E2F, targets 
of MYC activation, FOXM1 and PLK1 signaling and DNA 
damage response pathways[5]. Specific inhibitors of 
AURKA are currently under investigation in phase Ⅰ/Ⅱ 
clinical trials in advanced GC[93]. PLKs, mitotic kinases of 
the polo family, play a pivotal role in the normal cell cycle, 
and their overexpression is involved in the pathogenesis 
of multiple human cancers[94]. PLK1 is overexpressed in 
approximately 80% of human tumors, including gastric 
cancer, and it is associated with poor prognosis[94]. 
Currently, inhibitors of PLK1 are being developed[95]. In 
a phase Ⅰ trials enrolling patients with advanced solid 
cancers, including gastric cancer, volasertib, a potent 
and selective PLK inhibitor that induces mitotic arrest 
and apoptosis, demonstrated anticancer activity with a 
manageable safety profile[96].

EBV ASSOCIATED GC
Latent EBV infection is associated with about 10% of 
GCs, as demonstrated by in situ hybridization EBV 
encoded miRNA detection, by whole genome sequencing 
or by PCR EBV genome detection[5]. 

EBV associated GC has been related to different 
epidemiological and clinicopathological features. In a 
metaanalysis of 39 casecontrol studies, Bae et al[97] 
investigated the strength of association between EBV 
infection and GC risk, and showed a 10 fold increase 
(95%CI: 5.8917.29). It was also reported that there 
is a higher risk of EBV associated GC in Far East Asia if 
compared to Europe[98].

In a metaanalysis of 70 studies the pooled pre
valence of EBVpositive GC resulted 8.7% (95%CI: 
7.5%10.0%) with similar distributions across the three 
analyzed geographic regions (America, Asia and Europe). 
Moreover, a twofold difference in male/female ratio 
favored men as to prevalence of EBV positive GC. The 
antral location was less frequently associated with EBV 
infection when compared to other types. In contrast, 
there was no statistically significant difference in the 
proportion of EBVpositive disease between intestinal 
(9.5%; 95%CI: 7.2%12.5%) and diffuse (7.6%; 
95%CI: 5.7%10.3%) histology[98]. 

In addition, EBVpositive GC was more prevalent in 
younger patients compared to older subjects[99].

As to possible therapeutic approaches, Kim et al[100] 
observed that EBV infected GC patients had a higher rate 
of alteration in pathways related to immune response 
which may also be related to a more favorable prognosis 
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in these patients. According to TCGA, PD-L1 gene was 
frequently amplified in EBVpositive GC, adding proofs 
to the hypothesis of higher immunogenicity of this class 
of GC. Based on the evidence that 15% of EBV positive 
GC harbor amplification of chromosomal region 9p24.1, 
the locus of PDL1 and PDL2, potential role of PDL1 
expression in EBVpositive GC was investigated in a 
study[101]. In EBVassociated GC, PDL1 expression was 
present in 50% (16/32) and 94% (30/32) of tumor and 
immune cells, respectively. In contrast, EBVnegative 
GC showed a lower PDL1 expression (10% and 39% of 
tumor and immune cells, respectively, P < 0.001), thus 
providing a further rationale for testing PD1 expression 
in this GC subtype to potentially identify a predictive 
response factor for immunomodulatory therapeutic 
strategies. 

Besides PDL1 and PDL2 expression, PIK3CA muta
tions, DNA hypermethylation, and JAK2 mutations are 
also present[5]. In a large retrospective study, 855 GC 
specimens were analyzed to verify protein expression 
levels and prognostic values of PIK3CA, JAK2, PDL1 and 
PDL2. Only 59 samples were found to be EBV positive. 
PIK3CA and PDL2 were more highly expressed in EBV 
positive GC than in negative ones, but no prognostic 
value of PIK3CA, JAK2, PDL1 or PDL2 was found. No 
differences in JAK2, PDL1 or PDL2 expression were seen 
between EBV positive and negative cases. Moreover, 
the expression of PIK3CA, JAK2, PDL1 or PDL2 was 
not significantly associated with any clinico-pathological 
feature, maybe due to the small number of EBVassociated 
GC cases, and the prognostic value of these mutations 
remains uncertain[102]. 

THE ACRG CLASSIFICATION
The ACRG proposed a different molecular classification 
for gastric cancer in 2015[7]. This classification has some 
overlapping features with the one proposed by TCGA 
even though some differences can be highlighted. The 
clustering process included a first subdivision into MSI 
(22.7%, better prognosis, mainly intestinal type) and 
EMT tumours (15.3%, worse prognosis mainly diffused 
type) with two exclusive gene expression profiles, the first 
characterized by the loss of function of genes involved in 
the MMR and the second by alterations in cell adhesion, 
angiogenesis, and motility. Notably, the MSI subtype 
was associated with a hypermutation in genes such as: 
KRAS (23.3%), PI3KPTENmTOR pathway (42%), ALK 
(16.3%) ARID1A (44.2%), ERBB2 (16.3%) and ERBB3 
(14%). The remaining tumours were further divided 
into MSS/TP53+ (26.3%, P53 function intact) and MSS/
TP53 (35.7%, loss of oncosuppressor function). In terms 
of survival, the MSI subtype showed the best overall 
prognosis, followed by MSS/TP53+, MSS/TP53 and 
MSS/EMT. The MSI/TP53+ subtype was more frequently 
associated with EBV infection if compared to the other 
groups and showed an active TP53 pathway and a higher 
prevalence (compared to MSI/TP53) of APC, ARID1A, 

KRAS, PI3KCA, and SMAD4 mutations. Finally, the MSI/
TP53subtype showed the highest prevalence of TP53 
mutations, relevant copy number variations (CNVs), a 
greater aneuploidy and recurrent focal amplifications in 
MDM2, ROBO2, GATA6, MYC. ERBB2, EGFR, CCNE1 and 
CCND1. These latter two amplifications were mutually 
exclusive, so they could be considered driver alterations.

A comparison of the ACRG categories with the TCGA 
subtypes showed similarities in the tumors with MSI, 
while GS was approximated to MSS/EMT, EBV to MSS/
TP53+, and CIN to MSS/TP53. Nevertheless, in the TCGA 
cohort the EBV positive cancers represented a separated 
subgroup (with a favourable phenotype), whereas in 
the ACRG classification EBV infection occurred more 
frequently in the MSS/TP53+ subtype, without CNVs, 
hypermethylation or hypermutation. Moreover, PI3KCA 
and ARID1A mutations were more prevalent in EBV+ 

gastric cancers compared to MSS subtypes. 
Although both the MSS/EMT and the GS molecular 

subgroups included tumors with a prevalent diffuse 
histology, the TCGA classification showed a lower per
centage of Lauren’s diffuse subtype compared to the 
ACRG database (24% vs 45% respectively); additionally, 
CDH1 and RHOA mutations did not appear prevalent in 
the MSS/EMT subgroup, unlike the GS subtype. Finally, 
GS tumours were also present in the ACRG MSS/EMT, 
MSS/Tp53 + and MSS/tp53 molecular subgroups. All 
these findings showed that the GS and the MSS/EMT 
subgroups were not equivalent. 

The comparison of the CIN TCGA subtype to ACRG 
MSS/TP53 subtype showed that the first is quite 
homogeneously distributed in the subtypes classified by 
ACRG.

Overall survival associations were weaker when using 
the TCGA genomic scheme in the ACRG cohort compared 
to the original prognosis trends: While the MSI subtype 
showed a better prognosis in both classifications, there 
were no differences in prognosis in CIN and GS subtypes 
when they were identified based on application of the 
TCGA classification on the ACRG patient population.

CONCLUSION
While the advent of novel molecular classifications has 
faded the “one size fitall” era, a more profound under
standing of the underpinning tumour biology has set the 
dawn of a more contemporary clinical approach called 
precision medicine. At present, the two aforementioned 
genomic classifications of GC represent the state-of-the-art 
achieved so far. Somehow it is possible to find an overlap 
between the TCGA and ACRG subtypes even though 
some difference can still be found. Emerging data clearly 
individuate a category of GC characterized by MSI that 
may benefit from immunotherapeutic approaches. For this 
subgroup, with good prognosis, the development of anti 
PD1/PDL1 drugs could be the leading research avenue. 
High mutational burden is also a driving feature of EBV 
positive GC that could be targeted with immunotherapy as 
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efficaciously as in MSI tumours.
It is also possible to clearly segregate another class 

of GC classified either as GS or MMS/EMT, in which the 
prevalent deregulation is represented by EMT pathway 
alterations. Development of inhibitors of HGF/cMet 
pathway, Rho/Rhokinase, AURKA/AURKB, PLK1 could 
be a strategy adopted in the near future.

The category corresponding to CIN, and partially to 
MSS/TP53, represents a cluster of GC with high CNV 
variation leading to deregulation of specific biological 

targets such as receptors and kinases. Since these driver 
alterations are mostly mutually exclusive, they could be 
easily targeted using specific monoclonal antibodies or 
TKIs. On the other side, tumour heterogeneity may limit 
the efficacy of targeted strategies through alternative 
mechanisms of primary and acquired resistance[103].

The overall landscape is complex and our knowledge 
on this topic is still just at the starting point and novel trials 
should be designed accordingly (Table 1)[3,1922,38,39,47,49,5255,

57,66,91]. Doubtlessly, dissecting and genotyping different 

Trial name Phase 
of study

Line of treat-
ment

Selected biomarker Treatment arms n Primary 
endpoint

Outcomes

CIN
TOGA[3] Ⅲ First HER2 expression/

amplification
CF/CX 296 OS OS: 13.8 mo vs 11.1 mo (HR = 0.74, P = 0.005)

CF/CX + 
trastuzumab

298 PFS: 6.7 mo vs 5.5 mo (HR = 0.71, P = 0.0002)
ORR: 47% vs 35% (P = 0.001)

LOGiC[19] Ⅲ First HER2 expression/
amplification

CapeOX 273 OS OS: 12.2 mo vs 10.5 mo (HR = 0.91, P = 0.34) 
CapeOx + lapatinib 272 PFS: 6.0 mo vs 5.4 mo (HR = 0.82, P = 0.038)

ORR: 53% vs 39% (P = 0.003)
TyTAN[20] Ⅲ Second HER2 amplification 

by FISH
Paclitaxel 129 OS OS: 11.0 mo vs 8.9 mo (HR = 0.84, P = 0.104) 

Paclitaxel + 
lapatinib

132 PFS: 5.4 mo vs 4.4 mo (HR = 0.85, P = 0.244) 
ORR: 27% vs 9% (P < 0.001)

JACOB[21] Ⅲ First HER2 expression/
amplification

Pertuzumab + tFP OS Ongoing
Placebo + tFP

GATSBY[22] Ⅱ/Ⅲ Second HER2 expression/
amplification

TAX 117 OS OS: 8.6 mo vs 7.9 mo (HR = 1.15, P = 0.86)
T-DM1 228 PFS: 2.9 mo vs 2.7 mo (HR = 1.13, P = 0.31)

ORR: 19.6% vs 20.6%
EXPAND[38] Ⅲ First Unselected CX 449 PFS OS: 10.7 mo vs 9.4 mo (HR = 1.0, P = 0.95)

CX + cetuximab 445 PFS: 5.6 mo vs 4.4 mo (HR = 1.09, P = 0.32)
REAL-3[39] Ⅲ First Unselected EOC 275 OS OS: 11.3 mo vs 8.8 mo (HR = 1.37, P = 0.013)

EOC + 
panitumumab

278 PFS: 7.4 mo vs 6.0 mo (HR = 1.22, P = 0.068)
ORR: 42% vs 46% (P = 0.42)

RILOMET -1[47] Ⅲ First MET positive by 
IHC HER2 negative

ECX 305 OS OS: 11.5 mo vs 9.6 mo (HR = 1.37, P = 0.016)
ECX + rilotumumab 304 PFS: 5.7 mo vs 5.7 mo (HR = 1.30, P = 0.016)

ORR: 39.2% vs 30% (OR = 0.67, P = 0.027)
METGastric[49] Ⅲ First MET positive by 

IHC HER2 negative
mFOLFOX 562 OS OS: 11.3 mo vs 11.0 mo (HR = 0.82, P = 0.244) 

mFOLFOX + 
ornatuzumab

PFS: 6.8 mo vs 6.7 mo (HR = 0.90, P = 0.429) 
ORR: 41% vs 46% (P = 0.253)

AVAGAST[52] Ⅲ First Unselected CX 387 OS OS: 10.1 mo vs 12.1 mo (HR = 0.87, P = 0.1)
CX + bevacizumab 387 PFS: 5.3 mo vs 6.7 mo (HR = 0.80, P = 0.037)

ORR: 37.4% vs 46.0% (P = 0.03)
AVATAR[53] Ⅲ First Unselected CX 102 OS OS: 11.4 mo vs 10.5 mo (HR = 1.11, P = 0.55)

CX + bevacizumab 100 PFS: 6.0 mo vs 6.3 mo (HR = 0.89, P = 0.47)
ORR: 34% vs 41% (P = 0.35)

REGARD[54] Ⅲ Progression 
after TP

Unselected BSC 117 OS OS: 3.8 mo vs 5.2 mo (HR = 0.77, P = 0.047)
BSC + ramucirumab 238 PFS: 1.3 mo vs 2.1 mo (HR = 0.48, P < 0.001)

RAINBOW[55] Ⅲ Second Unselected Paclitaxel 335 OS OS: 7.4 mo vs 9.6 mo (HR = 0.80, P = 0.017)
Paclitaxel + 

ramucirumab
330 PFS: 2.9 mo vs 4.4 mo (HR = 0.63, P < 0.0001)

Apatinib[57] Ⅲ Third or 
more

Unselected Placebo 91 OS OS: 4.7 mo vs 6.5 mo (HR = 0.70, P = 0.015)
Apatinib 176 PFS: 1.8 mo vs 2.6 mo (HR = 0.44, P < 0.001)

ORR: 0% vs 2.84% (P = 0.16)
MSI 

NCT01063517[66]

Ⅱ
Second ATM expression Paclitaxel 62 PFS OS: 8.3 mo vs 13.1 mo (HR = 0.56, P = 0.01)

Paclitaxel + olaparib 61 PFS: 3.55 mo vs 3.91 mo (HR = 0.80, P = 0.13)
NCT02589496 Ⅱ Second Unselected Pembrolizumab RR Ongoing

GS
FAST[91] Ⅱ First CLDN18.2 EOX 161 PFS OS: 8.7 mo vs 12.5 mo (HR = 0.5)

EOX + IMAB362 PFS: 5.7 mo vs 7.9 mo (HR = 0.5, P = 0.001)

Table 1  Clinical outcomes of recent trials in gastric and esophagogastric adenocarcinomas

Most significant target-oriented phase Ⅱ and phase Ⅲ trials are presented. In the table are shown in order: name of the trial, phase of the study, line of 
treatment, biomarker selection, treatment arms, number of enrolled patients, primary endpoint and key outcome results. tPF: Trastuzumab + Platinum 
+ fluorouraci; PF: Platinum + fluoropyrimidine; TAX: Taxane, CF: Cisplatin + fluorouracil; CX: Cisplatin + capecitabine; EOC (or ECX): Epirubicin + 
oxaliplatin + capecitabine; BSC: Best supportive care; CIN: Chromosomal instability; GS: Genomical stability; MSI: Microsatellite instability.

Garattini SK et al . Molecular classifications of gastric cancers



204 May 15, 2017|Volume 9|Issue 5|WJGO|www.wjgnet.com

tumour subtypes and setting apart patients with different 
diseases will represent the future of gastrointestinal 
oncology. The key landmark comprehensive efforts made 
by TCGA and ACRG have just paved the way for precision 
oncology.
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