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Abstract

Background—Inbred mice are genetically identical but nonetheless demonstrate substantial 

variability in complex behaviors such as activity levels in a novel environment. This variability has 

been associated with levels of parental care experienced early in development. Although maternal 

effects have been reported in biparental and uniparental strains, there have been no investigations 

of paternal effects in non-biparental strains in which offspring are reared exclusively by mothers.

Methods—In the uniparental inbred Balb/cJ mouse strain, we examined the relationship of 

paternal open-field activity to the activity of both male and female offspring in the open-field. 

Potential mediators of paternal transmission of behavior were examined, including maternal care, 

growth parameters, litter characteristics, and time the father was present with the pregnant mother 

prenatally.

Results—An association of paternal open-field activity with the open-field activity of female but 

not male offspring was found. Variation in maternal postnatal care was associated with female but 

not male offspring activity in the open-field but did not mediate paternal effects on offspring 

behavior. Paternal effects on offspring growth parameters were present, but these effects also did 

not mediate paternal effects on behavior.

Conclusions—Paternal transmission of complex traits in genetically identical mice reared only 

by mothers suggests a nongenetic mechanism of inheritance potentially mediated by epigenetic 

factors. The exclusion of multiple mediators of paternal effects on offspring suggests the 

possibility of germline paternal inheritance via sperm of complex phenotypes in inbred mice. 

Future studies are required to examine these interesting possibilities.
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Despite being genetically homogenous, inbred mice exhibit substantial and stable variability 

in complex phenotypes such as activity levels during a test of open-field exploration (1). 

Because they are genetically identical, inbred mice are well-suited for the study of 

nongenetic factors related to phenotypic variation. There is evidence from a number of 

experimental paradigms indicating that early life experience affects gene expression and 

behavior in rodents (1–14). In particular, variability in mother–infant interactions predicts 

variability in adult offspring on a number of behavioral measures, including the open-field 

test, and this variability is associated with variability in epigenetic modifications (3,4).

The contribution of maternal factors to offspring behavior is well-studied in both rats and 

mice (4,7,9–12,15–19). Although studies of paternal factors are few, there have been some 

reports from animal models of the nongenetic paternal transmission of phenotypes such as 

coat color and fertility (20,21). Human studies also suggest nongenetic paternal effects on 

the phenotypes of offspring. For instance, increased paternal age is a risk factor for 

schizophrenia, autism, and decreased IQ (22–30). In a pilot experiment we found that 

offspring from fathers separated by extreme differences in open-field behavior had 

behavioral differences in the open-field test resembling the behavioral differences of their 

fathers (Figure 1 in Supplement 1). Here we replicated these findings and tested the 

hypothesis that normal variations in paternal behavior in the open field before mating will 

predict normal variations in offspring open-field behavior in adulthood. We found this to be 

true only in female offspring and provide some preliminary evidence that pre- and postnatal 

effects might override paternal contributions in males. We also provide data to suggest that 

paternal contributions to offspring phenotype are pleiotropic and sexually dimorphic. The 

finding of nongenetic paternal contributions to offspring phenotypes has important 

implications for understanding complex inheritance patterns of psychiatric disorders and 

might provide a useful model for studying mechanisms underlying the origins of complex 

disease.

Methods and Materials

Animals

Balb c/J mice were used for all experiments (Jackson, Bar Harbor, Maine). Before mating 

and after weaning, mice were group-housed in sex-specific cages (5 mice/cage) and 

maintained on a 12-hour/12-hour light/dark cycle with food and water available ad libitum. 

All animal protocols were reviewed and approved as meeting appropriate ethical standards 

by Columbia University’s and New York State Psychiatric Institute’s Institutional Animal 

Care and Use Committee boards.

Mating

Ten-week-old male mice were housed with 2–3 females (10 weeks old) for 2 weeks and then 

were removed. To score maternal behavior specific to each litter, females were singly housed 

after 18 days after mating until delivery.

Paternal Behavior

Fathers were tested in a novel open-field test at 9 weeks of age (see following).
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Maternal Behavior

Maternal behavior was scored 2 times/day during the light phase (9:00 AM and 1:00 PM) 

for a total of 50 measurements 1 min apart during each period (total of 100 measurements/

day) for the first week of life. We find, as reported by others, maternal behaviors decrease 

during the first week of the postnatal period. Behavioral data were log transformed to obtain 

normal distributions.

Open-Field Behavior

Offspring were tested at 9 weeks of age. Activity in an open field is quantified in four 

Plexiglas open-field boxes 43 cm2 × 43 cm2 with two sets of 16 pulse-modulated infrared 

photobeams (MED Associates, Georgia, Vermont). Data were analyzed on the basis of 2 

zones: center (25% total area) and surround (75% total area). Behavioral data were log 

transformed to obtain normal distributions. In the case of offspring, mice were tested both 

under light (200 lux, first test) and on the following day in dark conditions (second test). 

Testing in the dark increases the spread of data by increasing the number of animals and 

amount of time that animals will spend in center regions. Light and dark measures are highly 

correlated, suggesting that both measures are testing similar constructs (1). In the present 

study, behavioral measures from the dark are used for analyses. Similar but weaker paternal 

effects were seen for measures of offspring behavior in the light.

Weight Measurements

Offspring were weaned at 4 weeks and weighed at this time. Adult body weight was 

measured at the time of death. Body weight was measured on a scale with sensitivity to .001 

g. Brain weights were measured on a scale with sensitivity to .0001 g. Mice were killed by 

cervical dislocation; brains were removed and weighed. The brain was then hemisected, and 

the right and left hippocampus were removed and weighed individually. Total hippocampal 

weight was calculated by adding left and right measurements.

Statistical Analyses

Statistical analyses were performed with StatView software (College Station, Texas). To 

control for multiple testing, factor analysis and multiple regression analysis was used.

Factor Analysis

Open-field measures were highly correlated within individuals (Figure 1 in Supplement 1). 

Factor analysis was used to reduce five open-field behavioral measures (distance traveled in 

the center area [cen], percent of total distance traveled in the center area [% p], time in the 

center [time], entries into the center [ent], and total distance traveled [tp]) to a single latent 

variable. Open-field factor scores were used as a measure of open-field behavior for 

subsequent analyses.

Multiple Regression

Multiple regression was used to control for potential confounders and mediators of the 

associations we found. In each case we first created a model with a single dependent and 

independent variable. Next we added potential confounders to the model. Finally, we added 
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potential mediators to the model containing potential confounders. Variables were median 

normalized and center on the mean before regression analysis.

Results

Paternal Contributions to Offspring Phenotype

There was a significant positive association of paternal behavior in the open-field test before 

mating with female but not male offspring behavior in the open field (Table 1). A number of 

potential confounders and mediators of this effect were entered into correlation matrices for 

female (Table 1) and male offspring (Table 1). The relationship of litter-specific variables to 

each other was also assessed (Table 1). In females but not males, there was a negative 

association of paternal open-field behavior with female hippocampus weight and a trend (p 
= .1) for a positive association of maternal arched-back nursing with open-field behavior. In 

males but not females, there were significant positive associations of paternal open-field 

behavior with body weight at weaning and brain weight in adulthood and a trend (p < .1) for 

an association with adult body weight. There was a trend (p < .1) for a positive association 

of maternal arched-back nursing with adult body weight. Litter size was positively 

associated with male but not female weight at weaning, adult body weight, and hippocampus 

weight. At the litter level there was a trend (p < .1) for an association of paternal open-field 

behavior with the percent females in a litter.

In sum the relationship of fathers’ open-field behavior to offspring phenotype differed 

between male and female offspring with an increase in open-field behavior of fathers before 

mating predicting an increase in adult levels of open-field behavior in female but not male 

offspring and a decrease in the weight of the female offspring’s hippocampus. Whereas in 

males, fathers’ open-field behavior predicted differences in general growth parameters 

including increased weight at weaning, adult body weight, and total brain weight but no 

change in the weight of the hippocampus (Table 1). Additionally, male but not female 

offspring appeared sensitive to litter size with negative effects on open-field behavior and 

positive effects on weaning weight, adult weight, and hippocampus weight (Table 1).

Multiple regression analysis was performed in a stepwise fashion on the association of the 

open-field behavior of fathers and female offspring. First, maternal care including arched-

back nursing and licking and grooming were entered into the model as possible confounders. 

The association remained significant (Table 2). Next, potential mediators were entered into 

the model. These included: maternal arched-back nursing, maternal licking and grooming, 

litter size, percent females in litters, weight at weaning, adult body weight, brain weight, and 

hippocampus weight. When all variables were entered into the model, the association of 

paternal open-field behavior with female offspring open-field behavior continued to be 

significant (Table 2). A similar analysis was performed on male offspring that indicated the 

association of litter size with male offspring behavior remained highly significant in the 

complete model (Table 2).
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Germline Versus Prenatal Effects of Fathers on Offspring Phenotype

A possible explanation for paternal effects on offspring phenotypes was that fathers who 

behaved differently in the open field had different effects on the prenatal environment (Table 

3). In our experimental design, fathers were housed with pregnant females for between 7 and 

14 days after conception. We reasoned that an effect of fathers on the prenatal environment 

would be greater when the father was present for a longer period. To examine this we 

calculated the time that a father spent with a pregnant female and entered this into the 

regression model. The calculation was based on a fixed 2-week period that males were 

housed with females, an estimated 21 day gestation period, and the date of birth (e.g., pups 

that were born 21 days after males were housed with females had fathers present for 14 days 

of the prenatal period). Entering the time that fathers spent with pregnant mothers into the 

regression model had no effect on the association of paternal and female offspring behavior, 

consistent with a germline mechanism of transmission. Suggesting that prenatal effects of 

fathers might be important in males, there was a significant association of paternal time with 

the pregnant mother and male offspring open-field behavior factor scores. Of note, there was 

a significant negative interaction of paternal open-field behavior with the amount of time 

spent with the mother (i.e., the less time that fathers were present post conception the more 

of an effect there was of a father’s open-field behavior on male offspring open-field 

behavior). This result suggests the interesting possibility that paternal prenatal effects might 

override paternal germline effects on male offspring open-field behavior. Future experiments 

using in vitro fertilization would help to validate the presence of germline transmission.

Paternal Contributions to Growth Parameters of Offspring

Significant correlations from Table 1 indicated that fathers might influence other offspring 

phenotypes. We used multiple regression models to further assess the associations of 

paternal open-field behavior with female offspring hippocampus weight and male offspring 

weight at weaning. The association of paternal behavior with female hippocampus weight 

was unchanged and remained significant in the complete model (Table 4). There was a 

significant positive association of brain weight with hippocampus weight and a significant 

negative association of weight at weaning with the adult weight of the hippocampus in 

female offspring (Table 4). The association of the father’s open-field behavior with the 

weight of male offspring at weaning became stronger in the complete model (Table 4). Male 

offspring weight at weaning was significantly associated with multiple variables. There was 

a positive association with litter size, prenatal time with father, and maternal licking and 

grooming. There was a negative association with maternal arched-back nursing. 

Interestingly, as was the case with male offspring open-field behavior, there was a negative 

interaction of a father’s open-field behavior with the time spent with the pregnant mother, 

supporting the possibility that fathers influence male offspring through both germline and 

prenatal mechanisms.

Discussion

We examined the relationship of paternal behavior in the open field to offspring phenotypes 

in Balb/cJ mice. Balb/cJ mice are highly anxious-like and have been found to be sensitive to 

early developmental interventions (10,31,32). They are also noted to have a high degree of 
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variability in brain development (33–35). Large within-strain variability and sensitivity to 

environmental factors make Balb/cJ mice ideal for the study of nongenetic factors 

contributing to phenotypic variation.

We found that the behavior of female but not male offspring in the open field was associated 

with the behavior of fathers in the open-field test before mating. The association of paternal 

behavior with the behavior of female offspring in genetically identical mice indicates that 

fathers can influence complex phenotypes of their offspring through nongenetic mechanisms 

even when they are not present during rearing. Importantly, the association of father’s 

premating open-field behavior was not limited to offspring behavior but also influenced the 

size of the female offspring hippocampus and the weight of male offspring at weaning, thus 

indicating that whatever is being transmitted has pleiotropic and sexually dimorphic effects. 

These findings might offer some insight into the sexual dimorphism within human mental 

disorders and their association with other medical problems such as diabetes and heart 

disease (36,37).

The mechanism for the transmission of paternal effects on offspring phenotypes is currently 

unknown. Epigenetic variability has been associated with variability in rodents for many 

behaviors, including activity in the open field, and has also been associated with the effects 

of maternal care on offspring behavior (3–5,7). Thus, epigenetic factors are excellent 

candidates for mediating paternal effects. Prenatal stress has also been found to affect the 

behavior of offspring (11). Arguing against prenatal effects in females, the time fathers spent 

with pregnant females did not influence paternal effects on female offspring. However, in 

male offspring, there was evidence for a prenatal effect of fathers where the presence of a 

father for longer periods was positively associated with male offspring open-field factor 

scores. There was a negative interaction of the father’s open-field behavior and prenatal 

time, suggesting the possibility that a father’s prenatal effects override germline effects and 

that an effect of fathers on male offspring behavior might be seen if germline effects could 

be isolated with in vitro fertilization.

Germline paternal transmission across multiple generations in rats has been documented for 

the effects of endocrine disrupters on male fertility (38,39). In mice, fathers heterozygous for 

a mutation in the gene, Smarca5, that encodes the chromatin remodeler Snf2h transmitted 

effects on coat color to offspring who did not inherit the mutation (21). The effects of a 

mutation in the mouse Kit gene that leads to a heritable white tail phenotype were 

transmitted to nonmutant offspring through transfer of Kit-specific microRNAs (20). In 

humans, paternal age was associated with increased rates of schizophrenia and autism and 

decreased IQ in offspring (24,25,28). Starvation during the prepubertal slow growth phase in 

grandfathers was found to have effects on the health and longevity of grandsons but not 

granddaughters (40–42). Germline transmission of behavioral traits has potentially important 

therapeutic implications. Nongenetic factors such as epigenetic modifications and levels of 

microRNAs can be influenced by experience (7,15,43,44). Therefore, the presence of 

nongenetic germline inheritance introduces the possibility of influencing heritable factors 

through treatment before conception. Definitive evidence for germline transmission of a 

paternal effect could be obtained with studies using in vitro fertilization to isolate paternal 

germline contributions from possible effects on prenatal or postnatal environments. The 
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study of paternal contributions to normal variation in Balb/c mice, therefore, represents a 

potentially useful model for studying heritable nongenetic mechanisms contributing to the 

development of disorders with complex patterns of inheritance such as those present in most 

psychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Paternal Prenatal Time with Pregnant Mother

Variable Model 1 Coeff SEM Model 2 Coeff SEM

Female Offspring OF Factor

 Father OF factor .416a .170 .418a .192

 Prenatal time with father .027 .139

 Time × father OF factor −.008 .131

Male Offspring OF Factor

 Father OF factor .052 .027 .233 .144

 Prenatal time with father .281 .084b

 Time × father OF factor −.204 .080a

Assessing for prenatal effects of fathers on offspring behavior in the open-field (OF) test. The amount of time that a father was present after 
conception and an interaction term of this amount of time × father’s OF behavior are entered into the regression model for the association of the 
father’s and offspring’s OF behavior. Male and female offspring are evaluated separately. Significant effects are noted.

Coeff, coefficient.

a
p < .05.

b
p < .005.
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