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Objectives: Several cholinergic nuclei, and in particular the nucleus basalis of Meynert, are localised to
the substantia innominata in the basal forebrain. These nuclei provide major cholinergic innervation to
the cerebral cortex and hippocampus, and have an essential role in cognitive function. The aim of this
study was to investigate volumetric grey matter (GM) changes in the substantia innominata from
structural T1 images in Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and healthy older
participants using voxel-based morphometry.

Methods: Participants (41 DLB, 47 AD and 39 controls) underwent 3 T T1 magnetic resonance imaging
and cognitive assessments. Voxel-based morphometry analysis used SPM8 with a substantia innominata
brain mask to define the subspace for voxel GM analyses. Group differences, and selected behavioural
and clinical correlates, were assessed.

Results:Compared with that in controls, bilateral GM loss in the substantia innominata was apparent in
both AD and DLB. Relative to controls, significant bilateral GM loss in the substantia innominata was
observed in DLB and AD. In DLB, significant associations were also observed between substantia
innominata GM volume loss, and the levels of cognitive impairment and severity of cognitive
fluctuations.

Conclusions: Relative to that controls, atrophy of the substantia innominata was apparent in DLB and
AD, and is associated with specific clinical manifestations in DLB. # 2016 The Authors. International
Journal of Geriatric Psychiatry Published by John Wiley & Sons Ltd.
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Introduction

Dementia with Lewy bodies (DLB) is a common type
of dementia, which accounts for up to 20% of cases
at post-mortem (Holmes et al., 1999). Patients with
DLB display a range of symptoms including
cognitive and visuospatial deficits and, in particular,
exhibit the characteristic symptom of fluctuating
cognition (McKeith, 2006; McKeith et al., 2005).
These features are associated with the occurrence of

other commonly observed neuropsychiatric DLB
symptoms, including visual hallucinations
(Collerton et al., 2005). Whilst there is a significant
overlap between DLB and Alzheimer’s disease (AD)
in terms of symptoms, in the early stages of DLB,
individuals typically display more severe
visuoperceptual, attentional and executive function
deficits, with relative preservation of memory,
compared with similarly impaired AD patients
(Metzler-Baddeley, 2007). The manner in which the

# 2016 The Authors. International Journal of Geriatric Psychiatry Published by JohnWiley & Sons Ltd. Int J Geriatr Psychiatry 2017; 32: 615–623

RESEARCH ARTICLE

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


cholinergic pathways are affected in DLB compared
with other dementias may explain these differences.
For example, when compared with those with AD
and Parkinson’s disease (PD), individuals with DLB
show a more marked loss of cholinergic neurons
and greater alterations in cortical and subcortical
cholinergic receptors (Francis and Perry, 2007;
Tiraboschi et al., 2002). The cholinergic deficits
shown in DLB may also influence prominent
symptoms such as visual hallucinations (Onofrj
et al., 2013; Perry et al., 1990b; Tiraboschi et al.,
2002), and the importance of these deficits upon
cognitive symptoms is reinforced by the greater
response to cholinesterase inhibitors in this group
compared with AD (Aarsland et al., 2004).

Cholinergic deficits in DLB are likely to be driven
by the degeneration of cholinergic neurons within
the basal forebrain (Lippa et al., 1999). The
substantia innominata (SI) forms part of the basal
forebrain and predominantly contains the nucleus
basalis of Meynert (NBM), where the cholinergic
nuclei in the NBM are the main source of cholinergic
innervation and project to cortical areas (Gratwicke
et al., 2013, 2015). The NBM has an essential role
in cognitive and attentional function (Baxter and
Chiba, 1999; Niewiadomska et al., 2009) and is
therefore likely to have an important patho-
aetiological role in DLB. However, the cholinergic
basis of cognitive and attentional dysfunction, and
the relationship of the NBM with these features,
has not been well-researched in DLB, with only a
limited number of studies to date. For example,
Grothe et al. (2014) observed that NBM, but not
rostral basal forebrain volume, was reduced in DLB
compared with AD, and that the NBM volume was
also associated with visuoperceptual function in the
former. Previous studies have assessed the SI in
DLB and AD using magnetic resonance imaging
(MRI), where grey matter (GM) loss was observed
relative to controls, and was more apparent in AD
compared with DLB (Whitwell et al., 2007). In
contrast, Hanyu et al. (2007) observed SI thinning
in AD and DLB compared with controls, where this
was more marked in AD patients.

It is unclear to what extent cognitive deficits and
cognitive fluctuations depend upon the NBM in
DLB, despite evidence to suggest the involvement
of cholinergic dysfunction (McKeith et al., 2000;
Pimlott et al., 2006). Therefore, the aims of the
present study were to perform a GM evaluation of
the SI in AD, DLB and healthy older individuals,
and to examine their clinical correlates using
diffeomorphic anatomical registration through

exponentiated lie algebra voxel-based morphometry
(DARTEL-VBM).

Methods

Participants

A total of 127 participants (Mage=78.26 years;
SDage=7.33 years), including 47 with probable AD
(McKhann et al., 1984), 41 with probable DLB
(McKeith et al., 2005) and 39 similarly-aged healthy
controls, were recruited from a community-dwelling
population of patients referred to local Old Age
Psychiatry, Geriatric Medicine or Neurology Services.
Control participants were recruited from friends and
spouses of patients and from a bank of volunteer
participants held by the university and local clinical
research network. Participants were recruited from
two separate studies: Study 1 (31 AD, 23 DLB and 23
controls) and Study 2 (16 AD, 18 DLB and 16
controls).

Exclusion criteria for all participants included
contraindications for MRI, a previous history of
alcohol or substance misuse, significant neurological
history or psychiatric illness, focal brain lesions or
the presence of other severe or uncontrolled medical
illness, which was verified through the examination
of participant medical records. All participants, or
where appropriate, their nearest relative, provided
written informed consent, and the study was approved
by the local research ethics committee.

Measures

Assessment of global cognitive measures included the
mini-mental state examination (MMSE; Folstein
et al., 1975) and the Cambridge Cognitive
Examination (CAMCOG; Roth et al., 1986). Motor
parkinsonism was measured with Part III of the
Unified Parkinson’s Disease Rating Scale (UPDRS-III;
Goetz et al., 2008). For individuals with dementia,
neuropsychiatric features were assessed using the
Neuropsychiatric Inventory (NPI; Cummings et al.,
1994), where symptom frequency and severity across
a range of domains (e.g. depression, anxiety and
hallucinations) were rated by a carer/informant,
providing a total score as a marker of symptom
severity. In the current study, the NPI total score and
hallucinations sub-score were specifically examined
(McKeith et al., 2000). Cognitive fluctuations were
assessed using the Clinician Assessment of
Fluctuations (CAF) Scale (Walker et al., 2000).
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Magnetic resonance imaging

All participants underwent clinical and neuropsycho-
logical assessments, before undergoing T1-weighted
magnetic resonance (MR) scanning on a 3 T MRI
system using an eight-channel head coil (Intera Achieva
scanner, Philips Medical Systems, Eindhoven, the Neth-
erlands). Participants were scanned using one of two
similar T1 sequences: Study 1, whole brain, three-
dimensional (3D) magnetisation-prepared rapid acqui-
sition gradient echo (MPRAGE), sagittal acquisition,
matrix size 216 (anterior–posterior)×208 (superior–in-
ferior)×180 (right–left), repetition time=8.3ms, echo
time=4.6ms, inversion time=1250ms, flip angle=8°,
SENSE factor=2, voxel output 1×1×1mm3; Study 2,
whole brain, 3D MPRAGE, sagittal acquisition, matrix
size 240 (anterior–posterior)×240 (superior–infe-
rior)×150 (right–left), repetition time=9.6ms, echo
time=4.6ms, inversion time=1250ms, flip angle=8°,
SENSE factor=2, voxel output 0.94×0.94×1.2mm3.

Image analysis

DARTEL-VBM analysis was conducted using SPM8
(http://www.fil.ion.ucl.ac.uk/spm), running on MATLAB

7.9 (MathWorks, Natick, MA, USA). First, MR images
were segmented into GM, white matter (WM) and
cerebrospinal fluid (CSF) using SPM8’s standard uni-
fied segmentation module (Ashburner and Friston,
2005). Second, a GM population template was derived
from the entire image dataset using the DARTEL tech-
nique (Ashburner, 2007). Third, after an initial affine
registration of the DARTEL template to the GM tissue
probability map in Montreal Neurological Institute
(MNI) space (http://www.mni.mcgill.ca/), nonlinear
warping of the segmented images was then performed
to match the MNI space DARTEL template. Fourth,
GM images were then Gaussian smoothed (8mm full
width at half maximum) and modulated, re-
establishing the original tissue volume prior to spatial
normalisation. The voxel size of processed images was
1.5× 1.5×1.5mm3.

Determination of the substantia innominata brain mask

In order to perform a voxel GM assessment of the SI,
an MNI space brain mask was derived by a single
operator (S. J.C.) manually delineating the boundaries
of this structure on coronal sections of a T1-weighted
MRI brain template image (Figure 1(A–D)). The
procedure was based on a previously reported
protocol demonstrating relatively high intrarater

(0.87–0.95) and interrater (0.81–0.89) reliability (Choi
et al., 2012; George et al., 2011; Shin et al., 2012). In
brief, starting at the coronal slice where hemispheric
crossing of the anterior commissure was visible
(Figure 1(A)), the ventral globus pallidus and base of
the brain including the anterior perforated space set
the dorsal and ventral borders of the SI, respectively.
The medial border of the SI was defined by a vertical
line extending downwards from the ventrolateral
aspect of the stria terminalis. The lateral border
extended to the medial aspect of the putamen.
Definition of the SI borders was then applied to all
four contiguous brain slices (anterior→posterior),
ending at the level the anterior commissure fully
emerges from the temporal lobe (Figure 1(D)). Sizes
of the left and right SI segmentations were 111 and
122voxels, respectively (template voxel size
1×1×1mm3).

Statistical analysis

The CAMCOG, MMSE, CAF and UPDRS-III scores
were compared between AD, DLB and controls using
one-way analysis of variance. Group differences in
gender, and the proportion of individuals taking
cholinesterase inhibitor medications, were compared
using chi-squared tests. Group differences in GM
volume were assessed using the general linear model
in SPM8, and statistical significance was estimated
from the distributional approximations of Gaussian
random fields (Friston et al., 1994). Age and total
intracranial volume (GM+WM+CSF and TIVSPM8)
were entered into the design matrix as nuisance
variables. Multiple regression analyses were also
performed to investigate effects of GM loss on
clinical and cognitive variables separately in AD
and DLB. Predictors entered into the regression
model included age, TIVSPM8 and the variable of
interest. The SI binary mask image defined the brain
volume subspace for voxel analyses. Statistical maps
were set at a threshold of puncorrected≤0.05 and
interpreted as significant if their voxel family-wise
error (FWE)-corrected p-value within the SI volume
subspace (pFWE) was ≤0.05.

Results

Participant characteristics

As expected, CAMCOG and MMSE scores were
similar between AD and DLB but significantly differed
from controls (Table 1). UPDRS-III scores were
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significantly higher in DLB compared to AD and con-
trols. Total NPI, NPI hallucinations and CAF scores
were all significantly higher in DLB than AD. The

proportion of individuals receiving cholinesterase
inhibitors did not significantly differ between
dementia groups.

Figure 1 Generation of left (green) and right (red) substantia innominata brain masks on a magnetic resonance imaging T1 brain template for voxel
grey matter analyses. Masks were derived from four contiguous coronal sections (anterior→ posterior) starting at the level of the hemispheric crossing
of the anterior commissure (A), ending at the level at which the anterior commissure fully emerges from the temporal lobe (D). Red and green regions
show the segmentations containing the substantia innominata. Blue arrows depict the location of the anterior commissure. R, right; L, left. [Colour
figure can be viewed at wileyonlinelibrary.com]

Table 1 Demographic and group characteristics

Control (n = 39) AD (n = 47) DLB (n = 41)

Mean SD Mean SD Mean SD Test statistic p-value

Gender (male/female) 25/14 33/14 26/15 χ2 = 0.6 0.8
ChEI use (yes/no) N/A 40/7 32/9 χ2 = 0.7 0.4
Age (years) 77.0 6.4 79.0 8.8 78.6 6.2 F(2, 124) = 0.8 0.4
MMSE 29.0 1.0 20.8 4.0 20.9 5.0 F(2, 124) = 62.0 <0.0011

CAMCOG 96.5 3.3 67.8 13.5 69.5 14.9 F(2, 124) = 74.1 <0.0011

UPDRS-III 1.2 1.7 2.6 2.4 24.4 13.7 H2 = 86.1 <0.0012

NPI (total) N/A 9.3 8.7 13.5 11.0 U88 = 1026.5 0.04
NPI (hallucinations) N/A 0.2 0.8 2.1 2.1 U88 = 1521.0 <0.001
CAF N/A 1.5 3.0 5.9 4.7 U88 = 1380.5 <0.001
TIVspm8 (mL) 1500.0 133.8 1495.4 134.0 1525.0 154.4 F(2, 124) = 0.4 0.6

SD, standard deviation; ChEI, cholinesterase inhibitor; MMSE, mini-mental state examination; CAMCOG, Cambridge Cognitive Examination;
NPI, Neuropsychiatric Inventory; UPDRS-III, Unified Parkinson’s Disease Rating Scale (Section III); TIV, total intracranial volume; CAF,
Clinical Assessment of Fluctuations; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; N/A, not applicable.
1Post hoc test: Controls>AD, DLB (p< 0.001), AD versus DLB (p> 0.90) (Gabriel’s).
2Post hoc test: DLB> controls, AD (p< 0.001), controls versus AD (p = 0.14) (Mann–Whitney U).
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Voxel grey matter analysis

SPM8 analysis showed significant bilateral GM loss
(pFWE≤0.05) in the SI in AD compared to controls
(Figure 2(A, B) and Table 2). Bilateral GM loss in

the SI was also apparent in DLB, compared to
controls (pFWE≤0.05; Figure 2(C, D) and Table 2).
No significant differences were observed between AD
and DLB for either contrast (AD>DLB or
DLB>AD), and no significant SI atrophy was found

Figure 2 Significant grey matter loss of the substantia innominata in Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) compared with
controls. Results are superimposed on a magnetic resonance imaging T1 brain template image and displayed neurologically (left is left) in the coronal
(A, C) and axial (B, D) views. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 2 Location and peak significance of voxel GM analyses in the substantia innominata using DARTEL-VBM

Voxel level (pFWE-corr) Extent (k) t, Z MNI coordinates (x, y, z) (mm)

Group effects
Controls versus AD 0.03 9 2.8, 2.7 18, 2, �12

0.04 8 2.6, 2.6 �18, 2, �12
Controls versus DLB 0.002 28 3.7, 3.6 18, 2, �12

0.02 20 2.9, 2.9 �18, 2, �12

AD versus DLB No significant differences
Regression
MMSE 0.05 9 2.7, 2.5 �9, 2, �12
CAF 0.05 36 �2.7, �2.5 14, 3, �12

GM, grey matter; DARTEL-VBM, diffeomorphic anatomical registration through exponentiated lie algebra voxel-based morphometry; MNI,
Montreal Neurological Institute; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; MMSE, mini-mental state examination; CAF,
Clinician Assessment of Fluctuations.
This table depicts the corrected voxel-level significance (pFWE-corr), spatial extent (k), t and Z scores and MNI coordinates.
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in controls that exceeded AD or DLB. Of note, results
did not significantly differ when we controlled for the
effect of the different MRI sequence used in the two
groups of participants.

Regression analyses

The effects of SI volume loss upon MMSE, CAF, NPI
and NPI hallucinations scores were separately
evaluated in AD and DLB using multiple regression
analyses, where age and TIVSPM8 were included as

covariates. In DLB, a significant positive association
(pFWE≤0.05) was shown between MMSE and GM
volume in the left SI (Figure 3(B, C) and Table 2).
In addition, a significant negative association
(pFWE≤0.05) was also shown between CAF scores
and GM volume in the right SI (Figure 4(B, C) and
Table 2) in DLB. Associations between SI volume
and total NPI scores, and between GM SI volume
and NPI hallucination scores, were not statistically
significant. There were no significant associations
between any of these measures and GM SI volume
in AD.

Figure 3 Association between substantia innominata grey matter volume and mini-mental state examination (MMSE) in dementia with Lewy bodies.
Graph shows the relationship at the most significant voxel (red arrow). Results are superimposed on a magnetic resonance imaging T1 brain template
image and displayed neurologically (left is left) in the coronal (B) and axial (C) views. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

The present study examined GM volume changes
exclusively within the SI in AD, DLB and similarly-
aged healthy individuals using DARTEL-VBM. Three
main findings emerge from this study. Firstly, GM loss
was observed in both AD and DLB relative to healthy
controls. Secondly, a positive association was observed
between MMSE and SI volume in DLB, whilst lastly in
the same group of patients, a negative association was
shown between SI volume and CAF scores.

In the present study, SI volume was reduced in
dementia groups compared with healthy controls,
which was consistent with previous studies (Grothe
et al., 2014; Hanyu et al., 2005; Whitwell et al.,

2007). In addition, atrophic changes within the SI
appeared to be associated with dementia severity and
cognitive fluctuations in DLB. Deficits in cognition
and cognitive fluctuations are key symptoms in DLB
(McKeith et al., 2005), and whilst the cholinergic
system has a key role in cognitive and attentional
function (Baxter and Chiba, 1999; Niewiadomska
et al., 2009), the influence of the cholinergic system
upon cognitive fluctuations is not currently well
understood in DLB. The present study therefore
suggests that the SI contributes to the symptom of
cognitive fluctuations in DLB, although other evidence
has suggested that cognitive fluctuations may also
depend upon changes in other brain networks and
neurotransmitter systems, as well as cortico-thalamic

Figure 4 Association between substantia innominata grey matter volume and fluctuation score in dementia with Lewy bodies. The graph shows the
relationship at the most significant voxel (red arrow). Results are superimposed on a magnetic resonance imaging T1 brain template image and
displayed neurologically (left is left) in the coronal (B) and axial (C) views. [Colour figure can be viewed at wileyonlinelibrary.com]
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disturbances (Delli Pizzi et al., 2015; Francis et al.,
2006; Peraza et al., 2014). There was no association
between visual hallucinations and SI volume, de-
spite the support for the role of cholinergic dys-
function in visual hallucinations (McKeith et al.,
2000; Perry et al., 1990a). However, other choliner-
gic nuclei aside from the NBM may play a more
prominent role in visual hallucinations; certainly, a
previous VBM study showed that in PD patients
with dementia, visual hallucinations were associated
with pedunculopontine nucleus atrophy (Janzen
et al., 2012).

Strengths of the current study include the relatively
large AD and DLB cohorts, the acquisition of higher-
field 3 T MRI data compared with previous studies
assessing the SI in DLB (Hanyu et al., 2005; Whitwell
et al., 2007), the use of rigorous and validated
methodologies for imaging and the extensive clinical
and cognitive profiling of participants. There are
several study limitations. Firstly, despite following a pre-
viously reported protocol (Choi et al., 2012; George
et al., 2011; Shin et al., 2012), these findings should still
be considered tentative, given the relatively small size,
proximity and subsequent methodological challenges
surrounding the automated GM segmentation of the
SI and of similar structures from MR images. Secondly,
there were no pathologically confirmed diagnoses,
although the applied clinical diagnostic criteria were
associated with high diagnostic specificity (Ferman
et al., 2011; Knopman et al., 2001). Lastly, although
the examination of a significant omnibus effect across
groups, followed by appropriate post hoc tests, would
have allowed a more systematic approach to the group
analyses, this approach is potentially too conservative,
and where focal changes between different types of
dementia and healthy ageing are often relatively small,
potentially important findings can be overlooked.
Whilst not statistically significant, the GM loss
appeared to be more widespread in DLB than in
AD, and this may reflect the heterogeneity of the
DLB patient group.

In summary, the present study examined the GM
volume changes in the SI in AD, DLB and similarly
aged healthy individuals using DARTEL-VBM. These
results suggest that GM atrophy and the clinical
correlates of the SI may be important in
understanding some of the clinical manifestations of
DLB, which warrants further investigation.
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Key points

• It is unclear to what extent cognitive deficits and
cognitive fluctuations in dementia with Lewy
bodies depend upon the nucleus basalis of Meynert.

• The extent of substantia innominata grey matter
loss, relative to controls, was greater in dementia
with Lewy bodies than Alzheimer’s disease.

• Significant associations between substantia
innominata grey matter volume loss and clinical
measures were observed.
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