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For many decades it has been known that tumor DNA is shed into the blood. As a consequence of technological limitations,

researchers were unable to comprehensively characterize circulating DNA. The advent of ultrasensitive and highly specific

molecular assays has provided a comprehensive profile of the molecular characteristics and dynamics of circulating DNA in

healthy subjects and cancer patients. With these new tools in hand, significant interest has been provoked for an innovative

type of tumor biopsy termed a “liquid biopsy”. Liquid biopsies are obtained by minimal invasive blood draws from cancer

patients. Circulating cancer cells, exosomes and a variety of molecules contained within the liquid biopsy including cell-free

circulating tumor DNA (ctDNA) can serve as promising tools to track cancer evolution. Attractive features of ctDNA are that

ctDNA isolation is straightforward, ctDNA levels increase or decrease in response to the degree of tumor burden and ctDNA

contains DNA mutations found in both primary and metastatic lesions. Consequently, the analysis of circulating DNA for

cancer-specific mutations might prove to be a valuable tool for cancer detection. Moreover, the capacity to screen for ctDNA

in serial liquid biopsies offers the possibility to monitor tumor progression and responses to therapy and to influence treat-

ment decisions that ultimately may improve patient survival. Here we focus on mutation detection in ctDNA and provide an

overview of the characteristics of ctDNA, detection methods for ctDNA and the feasibility of ctDNA to monitor tumor dynamics.

Current challenges associate with ctDNA will also be discussed.

The diagnosis, staging and therapeutic management of
tumors relies upon cancer imaging systems and histologic or
cytologic examination of tumor specimens.1,2 The widespread
integration of biomedical imaging systems with other diag-
nostic and screening tools has contributed to decreased mor-
tality rates for certain cancer types.1,2 Although a tumor
biopsy is a key diagnostic tool that also guides therapy,
tumor biopsies have limitations. For instance, tumor location
and size may limit the utility of biopsies. With regard to the
molecular diagnosis of DNA mutations, a tumor biopsy may
not fully capture the molecular heterogeneity within a
tumor.2–4 Consequently, a tumor may respond poorly when

only a portion of tumor cells within a tumor mass harbor
genetic mutations that render them susceptible to targeted
molecular therapies.4 Moreover, the molecular differences
between primary and metastatic tumor lesions not captured
by tumor biopsies may negatively impact overall tumor bur-
den in patients.3,5 Despite these limitations, tumor biopsies
remain a primary diagnostic tool as histopathologic examina-
tion of tumor specimens is required to render an accurate
medical diagnosis.

Recent technological advancements in next-generation
sequencing and quantitative polymerase chain reaction (PCR)
have contributed to the growing interest amongst clinicians and
researchers in an innovative type of biopsy termed a liquid
biopsy.2,5,6 In a liquid biopsy, blood is drawn, processed and
then analyzed for the presence of circulating tumor cells
(CTCs),7 cancer-derived exosomes8 and cell-free tumor DNA
(ctDNA).4 The major obstacle for liquid biopsies to be effective
as diagnostic and screening tools is sensitivity since the majority
of cells in the blood are normal cells and blood also contains
exosomes and cell-free DNA released by normal cells.4,9 For
example the frequency of cell-free DNA containing tumor-
associated mutations might be as low as 0.01%4,6,9 and between
0 and 6 CTCs have been detected per 7.5 mL of peripheral
blood.7,10 To meet this challenge, researchers have devised a
variety of highly sensitive and specific molecular diagnostic
techniques.6,10 An attractive feature of liquid biopsies is the
potential to monitor tumor progression and response to therapy
in a minimal-invasive manner.9 In addition, the analysis of
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serial liquid biopsies may lead to the identification of newly
acquired DNA mutations in therapy resistant tumors that make
them vulnerable to other cancer drugs.11

Circulating tumor cells (CTCs)10 and tumor-derived pro-
teins,12 RNAs.8 and ctDNA4 are considered as potential can-
cer biomarkers contained within a liquid biopsy. The
isolation, characterization and analysis of each of them have
their unique challenges. The advent of highly sensitivity PCR
methods and refinements to next-generation sequencing
(NGS) has sparked much interest in ctDNA as a viable tool
to provide diagnostic and prognostic information of cancers
monitoring.2 These include DNA mutations, epigenetic alter-
ations and other forms of tumor-specific abnormalities. Here,
we provide a discussion on the functionality of ctDNA as a
clinically feasible tool to monitor tumor development by
detecting tumor specific mutations.

Origins and Molecular Characteristics of ctDNA
In healthy individuals, cell free DNA (cfDNA) is released into
the circulation by cells undergoing apoptosis.13,14 Apoptotic
cells shed DNA fragments approximately 185 to 200 bp in
length.14,15 In contrast, cfDNA of cancer patients is derived
from both non-malignant and malignant cells. Interestingly,
the percentage of circulating DNA derived from cancer cells
ranges from 3% to as much as 93%.16 Since cancer cells die
through multiple mechanisms that ultimately lead to DNA
cleavage such as apoptosis, necrosis and autophagy,17 ctDNA
displays less uniformity in size and integrity relative to cfDNA
in healthy individuals.14,15,17 Some researcher groups report
that ctDNA has less integrity and is smaller relative to
cfDNA13–15 while others report the opposite.18,19 These con-
flicting results may be a result of the different DNA isolation
methods used and the sample sources tested. More recently,
one study showed that decreased cfDNA integrity and
increased cfDNA concentrations distinguish normal individu-
als from patients with primary and metastatic breast cancer.20

A second study used single-base pair resolution sequencing to
demonstrate that the shorter DNA fragments in cancer patient
plasma preferentially contained tumor-associated copy number
alterations.21 Collectively, these two reports suggest that the
isolation and analysis of short DNA fragments may improve
the sensitivity of detection of ctDNA. Irrespective of DNA frag-
ment size, the ability to detect and quantify ctDNA fragments
carrying tumor-specific mutations has maintained interest in
ctDNA as a useful tool to monitor tumor growth.

Detection of ctDNA
Given that the frequency of mutant DNA alleles in cfDNA is as
low as 0.01%,4 highly sensitive and specific detection methods
are required for ctDNA to serve as a clinically feasible
approach. Here we provide a brief description of the ctDNA
detection methods capable of such high specificity and sensitiv-
ity. Initial studies on ctDNA relied upon real-time allele-spe-
cific PCR to detect mutations of interest.22 However, primarily
patients with high tumor burden, and thus higher ctDNA levels

in the plasma,23 were chosen for these studies as the sensitivity
and specificity of real-time PCR approaches is limited.22 Digital
PCR (dPCR) has increased sensitivity and specificity relative to
real-time PCR.22 With dPCR, a DNA sample is segregated
using limiting dilution such that individual DNA molecules are
captured within water-oil emulsion droplets or chambers.24 A
portion of the droplets or chambers will contain no DNA while
others will contain individual DNA molecules. The segregated
individual DNA molecules may be wild type or mutant in
nucleotide sequence. Using unique sets of primers and probes,
mutant and normal DNA sequences are amplified, quantified
and the percent mutant allele frequency determined. For liquid
biopsy samples, dPCR is capable of detecting mutant alleles
with a fractional abundance of 0.005%25 to 0.04%.26 There are
several advantageous features to dPCR including precision,
sensitivity and increased resistance to PCR inhibitors.24,26,27 In
addition, dPCR is capable of absolute measurements of rare
DNA alleles without the need for a standard curve.24,28,29

Recently novel modifications to dPCR have been introduced
with the intention of detecting highly infrequent mutant DNA
molecules in plasma.9,30–32 The ability to detect these extremely
rare mutant DNA molecules might allow for efficient screening
and diagnosis of cancers at earlier stages with liquid biopsies.

The analytical sensitivity of dPCR is one advantageous fea-
ture that is counterbalanced by the limited capacity of dPCR to
interrogate multiple genomic alterations simultaneously.33 With-
out prior and precise knowledge of the DNA rearrangements,
translocations and mutations of interest, dPCR is compromised
in its utility to detect cancer and monitor tumor growth. Massive
parallel sequencing, also known as next-generation sequencing
(NGS), offers to circumvent this limitation as NGS has the abili-
ty of detect multiple somatic DNA alterations simultaneous-
ly.33–35 Early ctDNA studies with NGS demonstrated the ability
of NGS to detect chromosomal rearrangements and chromo-
somal copy number changes.35,36 In the setting of metastatic
prostate cancer, Heitzer and colleagues36 devised a genome-wide
NGS approach capable of identifying novel genomic alterations
in ctDNA associated with the emergence of metastatic tumor
clones. Impressively, this approach provided genomic cancer
profiles in 2 days thus making it a more feasible test in a clinical
setting.36 A shortcoming of most NGS-based approaches is the
low sensitivity that renders them unfit to be reliable molecular
diagnostic tests.34,35,37 More recently, Newman and colleagues
devised an ultrasensitive NGS-based approached termed CAncer
Personalized Profiling by deep Sequencing (CAPP-Seq) with the
ability to detect mutant allele fractions as low as 0.02% and with
96% specificity.38 Importantly, CAPP-Seq reduces cost to
approximately $200–300 US dollars per test.33 Further refine-
ments to both dPCR and NGS may ultimately make ctDNA can-
cer screening a reality.

Cancer Surveillance With ctDNA
A small number of studies have examined the feasibility of
ctDNA in detecting early stage cancers and fewer still have
considered ctDNA for screening pre-symptomatic cancer
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patients.39–43 Since effective screening of asymptomatic
patients requires prior knowledge of mutations in genes com-
monly altered in low grade cancers, ctDNA is most suited for
the detection of advanced cancers with well-known muta-
tions. Complicating matters further is the observation that
healthy subjects have detectable mutations in their circulating
DNA. For instance, during minimal-invasive prenatal testing,
Amant and coworkers detected genomic alterations in 3 of 4,000
asymptomatic pregnant women that were later confirmed to
have malignancies by magnetic resonance imaging and biopsy.40

In addition, the percentage of individuals with mutations in the
blood increases with age44,45 at a rate that exceeds the clinical
incidence of hematological malignancies in the general popula-
tion.44 Moreover, independent studies reported that mutations
in KRAS and TP53 in the circulating DNA of non-cancer con-
trol subjects range from 1 to 3.6%.46 Collectively these studies
suggest that cfDNA of healthy subjects contains mutations that
might pose a significant challenge in accurately diagnosing and
screening patients for cancer.47 On the other hand, pre-
symptomatic testing for cancer might be more feasible with
ctDNA than originally thought. Interestingly, Sausen and cow-
orkers demonstrated that pancreatic cancer recurrence was pre-
dicted 6.5 months earlier with ctDNA detection relative to CT
scanning48; thus supporting the notion that ctDNA might be
useful in screening and diagnosing asymptomatic patients.
Additional studies combining ctDNA analysis with biomedical
imaging will ultimately determine the benefits of ctDNA in can-
cer surveillance as an adjunct diagnostic test.

Monitoring tumor burden and responses to therapy using

ctDNA

Studies in multiple cancers have shown a pattern where ctDNA
levels buildup as tumors progress and then decline following
surgery or drug treatment.23,32,37,49,50 Thus it seems logical that
ctDNA levels might be used as a surrogate marker of tumor bur-
den and therapeutic responses. Conceptually, ctDNA has clear
advantages to monitor tumor burden and therapeutic response
compared with protein cancer markers and biomedical imaging.
For instance, ctDNA has a half-live of approximately 2 h9 while
proteins persist in the blood for weeks to months,51,52 thus anal-
ysis of ctDNA should permit a more rapid assessment of tumor
changes within hours rather than weeks to months.53 Tumor
specific protein markers have the limitation of being elevated in
circumstances not related to tumor growth54 while elevated
ctDNA levels are associated with tumor changes. Moreover, a
direct comparison of ctDNA, CTC and cancer antigen 15–3 lev-
els in the same patients revealed that ctDNA levels showed a
greater correlation with tumor burden and the earliest measure
of response to therapy,23 suggesting that ctDNA levels more
accurately predict tumor changes relative to protein markers55

(Fig. 1). With regard to imaging techniques, increases in ctDNA
levels predicted tumor recurrence much earlier than convention-
al tumor imaging techniques.38,48,56

The genetic basis of resistance by tumors to targeted molec-
ular therapies has recently been determined.57–60 Non-small

cell lung cancers (NSCLC) bearing activating mutations in the
EGFR gene are extremely sensitive to the small molecule inhib-
itors erlotinib and gefitinib.59 In approximately 50% of NSCLC
patients resistance to EGFR inhibition is driven by a gatekeeper
mutation in the EGFR kinase domain that changes threonine
790 to a methionine (T790M). The T790M mutation increases
the affinity of the EGFR kinase domain for ATP while decreas-
ing its affinity to erlotinib and gefitinib. In the case of colorectal
cancers, mutations in KRAS (G12R and G13D) activate surviv-
al pathways that drive resistance to EGFR monoclonal anti-
bodies.56 With such precise knowledge of the molecular basis
of response to targeted therapies, the possibility of detecting
resistance in a minimal-invasive manner in the blood has been
examined.61,62 As might be predicted, detection of the T790M
gatekeeper mutation was shown to correlate with therapy resis-
tance and disease progression for NSCLC patients treated with
EGFR inhibitors.11,63 Impressively, in some cases, T790M-
driven resistance was detected 16 weeks before tumor progres-
sion was detectable with radiographic imaging.63 In colon can-
cer, ctDNA analysis revealed that the presence of mutant
KRAS was associated either primary or acquired resistance to
EGFR inhibition.62,64 Upon withdraw of anti-EGFR antibodies,
mutant Ras levels dropped and relatively novel mutations asso-
ciated with either primary or acquired resistance were found in
NRAS, MET, ERBB2, FLT3, EGFR and MAPK21.62

Thus far, several studies show that the analysis of ctDNA
levels is a powerful tool to monitor tumor dynamics and
response to therapy. In analyzing ctDNA, novel mutations
associated with resistance to conventional and targeted thera-
py have been identified.62,65 These newly identified mutations
might offer new avenues of treatment for cancer patients
with advanced disease.

Figure 1. Tumor burden and plasma ctDNA levels show a direct

correlation. As tumor burden increases, ctDNA accumulates in the

plasma. With therapeutic intervention, tumor burden and ctDNA

levels decrease. Thus, ctDNA can serve as a surrogate marker of

tumor progression and regression. [Color figure can be viewed at

wileyonlinelibrary.com]
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Current Challenges and Limitations
Although ctDNA represents a promising “real time” tool for
tumor characterization and is now being extensively studied,
there are still many challenges that need to be overcome before
it’s routinely used by clinicians. One major challenge with anal-
ysis of ctDNA is sensitivity and specificity. ctDNA is not always
detectable in peripheral blood due to the extremely low level
presented in the blood. In addition, current digital PCR meth-
od preferably measures relatively longer fragments, i.e., >120
bp, while smaller fragments derived from tumors are not
detected efficiently.66 Therefore, the results from ctDNA analy-
sis might be false negative. Many studies have shown an aver-
age of 70–80% concordance between tumor somatic mutations
and the presence of ctDNA.67,68 This could be improved by the
advances in genomic approaches that have higher sensitivity to
identify all ctDNA in the blood. Additionally, we do not have a
standard and validated procedure for samples handling and liq-
uid biopsy analysis, both aspects would affect the final results.
A standard operation procedure should be established and be
strictly followed to ensure we get the right information from
ctDNA analysis.

In addition to ctDNA, CTCs, cell free RNAs and exosomes
also attract extensive attention for their potential clinical appli-
cation. Compared to these measurements, which can address

tumor status at DNA, RNA and protein levels, ctDNA results
are restricted to genomic alterations. Some drug resistance can
only be reflected by mRNA or protein expression analysis, such
as AR-V7.69 In this situation, ctDNA analysis may not be a
good choice to monitor tumor development. In contrast to
tumor tissues, ctDNA represents mainly the genome of dying
tumor cells, or the cells that respond to therapy, one cannot
ruled the exist of resistant cells or subpopulations that contain
few or no dying cells based on ctDNA analysis. Selection of the
appropriate time points for ctDNA screening will be very
important in some situation. Also, results from ctDNA analysis
cannot determine the exact origin of a mutation, i.e., whether it
is somatic or germline. The discovery of germline mutations
might be an important indication for genetic screening for the
patients’ family members as well.

Conclusion and perspectives

The shedding of ctDNA into the circulation offers researchers
and clinicians a novel target that carries the same DNA muta-
tions found in primary and metastatic cancer lesions. Access to
ctDNA is minimal-invasive and simple as it involves a standard
blood draw. With newly developed ultrasensitive and specific
methods to detect and characterize genomic alteration present
in ctDNA the opportunity exists to monitor tumor progression

Figure 2. Clinical application of ctDNA as a tool for cancer monitoring. ctDNA can be obtained from plasma and in combination with digital

PCR and next-generation sequencing (Next-Gen Seq) might allow for detection of cancers at their earliest stages. In some reports, ctDNA

detection predicts cancer recurrence or progression months earlier than conventional cancer imaging methods. ctDNA could be applied in

cancer diagnosis, prognosis and therapy monitoring. [Color figure can be viewed at wileyonlinelibrary.com]
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and recurrence. Tumor burden and recurrence have been
shown to directly correlate to ctDNA levels in patients and the
frequency of ctDNA molecules carrying mutations that confer
resistance to cancer therapies. In some studies, detection of
ctDNA is superior in predicting tumor recurrence relative to
conventional tumor imaging techniques. With further refine-
ments to the methods to detect and quantify ctDNA, it may be
possible to screen asymptomatic patients with ctDNA to detect
cancers at their earliest stages (Fig. 2). As discussed above,
many limitations associated with ctDNA still exist. Further

studies should be launched to validate the potential of ctDNA
for routine clinical use. However, based on the large amounts
of promising data and with the rapid advances and the
decreased cost of next-generation sequencing, we anticipate
there is much promise in influencing cancer patient treatment
and survival with ctDNA. In addition to ctDNA, cfRNA,
CTCs, circulating exosomes or blood platelets are also promis-
ing as novel liquid biopsy candidates.70–72 The advantages and
disadvantages of these technologies are worth to be further
explored.
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