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A framework for the investigation of
pleiotropy in two-sample summary data
Mendelian randomization
Jack Bowden,a*† Fabiola Del Greco M,b Cosetta Minelli,c
George Davey Smith,a Nuala Sheehand and John Thompsond

Mendelian randomization (MR) uses genetic data to probe questions of causality in epidemiological research, by
invoking the Instrumental Variable (IV) assumptions. In recent years, it has become commonplace to attempt
MR analyses by synthesising summary data estimates of genetic association gleaned from large and independent
study populations. This is referred to as two-sample summary data MR. Unfortunately, due to the sheer number
of variants that can be easily included into summary data MR analyses, it is increasingly likely that some do
not meet the IV assumptions due to pleiotropy. There is a pressing need to develop methods that can both detect
and correct for pleiotropy, in order to preserve the validity of the MR approach in this context. In this paper,
we aim to clarify how established methods of meta-regression and random effects modelling from mainstream
meta-analysis are being adapted to perform this task. Specifically, we focus on two contrasting approaches: the
Inverse Variance Weighted (IVW) method which assumes in its simplest form that all genetic variants are valid
IVs, and the method of MR-Egger regression that allows all variants to violate the IV assumptions, albeit in a
specific way. We investigate the ability of two popular random effects models to provide robustness to pleiotropy
under the IVW approach, and propose statistics to quantify the relative goodness-of-fit of the IVW approach
over MR-Egger regression. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd
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1. Introduction

The fundamental aim of Epidemiology is to determine the root causes of illness, with the focus of many
epidemiological analyses being to examine whether an environmental exposure modifies the severity, or
the risk of, disease. Of course, it is well known that causal conclusions cannot strictly be drawn from
mere statistical associations between an exposure and outcome, unless all possible confounders of the
association are identified, perfectly measured and appropriately adjusted for. Mendelian randomization
(MR) [1,2] offers an alternative way to probe the issue of causality in epidemiological research, by using
additional genetic information satisfying the Instrumental Variable (IV) assumptions. Briefly, the genetic
data must both predict the exposure and predict the outcome only through the exposure. Figure 1 shows
an illustrative causal diagram relating a single nucleotide polymorphism (SNP) Gj to an exposure, X and
outcome, Y , in the presence of an unmeasured confounder, U. Here, a single U is used to denote the
combined influence of all unmeasured confounders.

To state the IV assumptions more formally: the jth SNP must be: associated with X (IV1); independent
of U (IV2) and independent of Y given X and U (IV3). These assumptions are encoded by the arrows in
Figure 1. If IV1–IV3 are satisfied for variant Gj, then traditional IV methods can be employed to reliably
test for a causal effect using Gj, X and Y alone, without any attempt to adjust for U at all.
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An array of sophisticated techniques exist for estimating the causal effect with individual participant
data. However, the sharing of such data is often impractical and in recent years, it has become much more
common to attempt MR analyses using summary data estimates of SNP-exposure and SNP-outcome
associations based on large and independent populations [3,4]. This is referred to as two-sample summary
data MR [5, 6]. The SNPs in question are usually those identified as ‘hits’ in separate genome wide
association studies (GWAS). They are generally picked from distinct genomic regions in order to be
mutually independent, or not in linkage disequilibrium (LD). The veracity of this assumption can be
further scrutinised by using external data resources that catalogue LD structure across the genome (see
for example http://www.internationalgenome.org/). In many cases, this restriction still allows hundreds
of SNPs to be included in the analysis. If all of the incorporated genetic variables provide independent
and unbiased estimates of the same causal effect, then summary data MR can be reliably reduced to
a fixed effect meta-analysis of the set of causal estimates obtained using each genetic variant in turn.
Many assumptions are necessary for this to be true, however. For example, the SNPs must at the very
least be uncorrelated and valid IVs. They must also collectively satisfy additional modelling restrictions
with respect to the exposure and outcome, which will be discussed in detail in Section 2. Unfortunately,
due to the sheer number of variants that can now be easily included in such MR analyses (often with
limited knowledge of their functional role), it is increasingly likely that some fail to meet the fundamental
assumption of being a valid IV, due to pleiotropy.

Pleiotropy occurs when a single SNP affects multiple phenotypes related to the outcome [2, 7], and
is a potential barrier to obtaining reliable inferences via MR. Crucially, however, only pleiotropy of a
certain type poses a threat. For example, in Figure 1 Gj is a valid IV, but when X causally affects Y , Gj
will be associated with both X and Y (through X). Indeed, MR exploits this very fact to test for causality.
Pleiotropy is problematic when a SNP affects Y through phenotypic pathways other than X, because this
could invalidate its use as an IV. This is illustrated by the addition of dashed lines in Figure 2. For example
the dashed line linking variant Gj to U would make Gj invalid due to violation of IV2, and the dashed
line linking variant Gj to Y would make Gj invalid to due violation of IV3. From now on, we use the term
‘pleiotropy’ to refer to IV violations of this sort.

There is a pressing need to develop methods that can both detect and correct for pleiotropy in order to
preserve the validity of the MR approach. Indeed, some progress has already been made towards this goal
[8–11]. The aim of this paper is to clarify how established methods of meta-regression and random effects
modelling from mainstream meta-analysis have been adapted to perform this task. Specifically, we focus
on two contrasting approaches: The Inverse Variance Weighted (IVW) method [6, 12] which assumes in
its most basic form that IV1–3 hold (e.g. no pleiotropy) and is equivalent to a fixed effect meta-analysis;
and secondly a simple adaptation to the MR context of the method of Egger regression [13] used to adjust
for small study bias in meta-analysis (referred to as MR-Egger [9]). In doing so, we attempt to make use

Figure 1. Illustrative diagram showing the hypothesised causal relationship between a genetic variable Gj,
environmental exposure X and outcome Y .

Figure 2. Illustrative diagram showing the causal and parametric relationships between genetic variable Gj, X
and Y . Solid lines on their own define Gj as a valid IV, but the addition of dashed lines indicate violations of the

IV assumptions.
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of, extend and connect the work of Rücker et al. [14] and Henmi and Copas [15] for probing the issue
of small study bias in meta-analysis with the work of Del Greco et al [16] and Bowden et al [9, 17] for
detecting and accounting for pleiotropy in summary data MR analysis.

In Section 2, we clarify the assumptions necessary for a two-sample summary data MR analysis, by
starting from an underlying model for data at the individual level. In Sections 3 and 4, we explore how
the IVW and MR-Egger methods can be applied to pleiotropy-affected summary data, by drawing on the
meta-analytical framework of Rücker et al [14]. In Section 5, we look at the issue of estimating the causal
effect in practice, when some of the crucial assumptions are violated. In Section 6, we illustrate the meth-
ods discussed using an application that probes the causal effect of plasma urate levels on cardiovascular
disease risk. We conclude with a discussion and point to future research.

2. Modelling assumptions

We start by writing the assumed data generating model for subject i out of N, linking genetic data on
L uncorrelated variants Gi1,… ,GiL ≡ Gi., to their exposure Xi and outcome Yi in the presence of an
unobserved summary confounder Ui, as represented in Figure 2. X, Y and U are assumed to be continuous
and Gij represents the number of alleles of SNP j assigned to subject i (0,1 or 2) at the point of conception.
For simplicity, we ignore intercept terms in the models below:

Ui|Gi. =
L∑

j=1

𝜓jGij + 𝜖ui (1)

Xi|Ui,Gi. =
L∑

j=1

𝛾jGij + 𝜅xUi + 𝜖xi (2)

Yi|Xi,Ui,Gi. = 𝛽Xi + 𝜅yUi +
L∑

j=1

𝛼jGij + 𝜖yi (3)

Here, 𝛽 represents the causal effect of X on Y that we wish to estimate and 𝛾j represents the underlying
true association between SNP j and the exposure X (i.e. not through U). We assume that the genetic data
has been coded to reflect the number of exposure increasing alleles (be they ‘minor’ or ’major’), so that
𝛾j ⩾ 0. We define IV1 to be satisfied for variant j when 𝛾j is non-zero. Conversely, when they are non-
zero, the parameters 𝜓j and 𝛼j summarise all violations of IV2 and IV3 for SNP j, respectively. 𝜅x and
𝜅y represent the influence of all confounders on the exposure and outcome, respectively. Only when 𝜅x
and 𝜅y are both non-zero can confounding take effect, thus biasing a traditional observational analysis
so that the association between X and Y is not equal in general to 𝛽 (hence the need for IV methods). In
the main body of this paper, we will interpret all parameters indexing these (and subsequent) models as
fixed values in the ‘classical’ sense. Alternative Bayesian formulations are of course possible, a topic we
return to in the discussion.

The focus of this paper is to consider the case where only summary data estimates of the SNP-exposure
and SNP-outcome associations and their standard errors are available for each of the L variants. In order
to derive models for these two sets of L summary data estimates, we firstly define G−j as the (L−1)-length
vector of genetic variables without Gj. We now re-write models (2) and (3) as models for X|Gj and Y|Gj
only, by marginalising over (U,G−j) and (X,U,G−j), respectively:

Xi|Gij = (𝛾j + 𝜅x𝜓j)Gij + 𝜖
′

xij

where 𝜖
′

xij =
∑
l≠j

(
𝛾l + 𝜅x𝜓il

)
Gil + 𝜅x𝜖ui + 𝜖xi

(4)

Yi|Gij =
{
𝛽(𝛾j + 𝜅x𝜓j) + 𝜅y𝜓j + 𝛼j

}
Gij + 𝜖

′

yij

where 𝜖
′

yij = 𝛽𝜖
′

xij +
∑
l≠j

(
𝜅y𝜓l + 𝛼l

)
Gil + 𝜅y𝜖ui + 𝜖yi

(5)

Now the coefficients of Gij in (4) and (5) represent the underlying quantities that would be estimated
in principle with summary data for SNP j under our assumed model. Note that all other terms have been
subsumed into new residual error terms 𝜖

′

xij and 𝜖
′

yij.
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2.1. Two-sample Mendelian randomization

It is becoming increasingly common to perform summary data MR analyses using sets of genetic associ-
ation estimates with the exposure and outcome that have been gleaned from separate samples. The most
natural way of justifying this approach is to assume that the SNP-exposure and SNP-outcome samples,
whilst being independent, are homogeneous in the sense that models (4) and (5) hold for both. We will
refer to them as sample ‘1’ and ‘2’, with N1 and N2 subjects, respectively. For clarity, we now write
explicit models for the two sets of L SNP-exposure and SNP-outcome association estimates from the
two samples. We refer to the jth SNP-exposure association estimate as 𝛾̂j (with variance 𝜎2

Xj) and the jth

SNP-outcome association estimate as Γ̂j (with variance 𝜎2
Yj):

Sample 1: 𝛾̂j = 𝛾j + kx𝜓j + 𝜖Xj, var(𝜖Xj) = 𝜎2
Xj (6)

Sample 2: Γ̂j = 𝛼j + ky𝜓j + 𝛽(𝛾j + kx𝜓j) + 𝜖Yj var(𝜖Yj) = 𝜎2
Yj (7)

From (4) and (5), the magnitude of 𝜎2
Xj and 𝜎2

Yj are affected by the allele frequencies of SNPs in G−j
and the sample size (N1 or N2). Because they relate to homogeneous but independent samples, 𝜖Xj and
𝜖Yj can be considered as mutually independent. Finally, although they must be estimated from the data,
it is common practice to assume that the variances 𝜎2

Xj and 𝜎2
Yj are known. We will refer to the various

assumptions and simplifications made in Section 2.1 as the ‘Two-Sample Assumptions’ (TSA).
We now state some additional assumptions that are commonly utilised by the IVW or MR-Egger

approaches for causal inference (vis estimation of 𝛽), based on models (6) and (7) and the TSA. All of
these assumptions are re-stated for clarity in Table I.

2.2. Additional assumptions

2.2.1. The NOME assumption. A pragmatic assumption from the MR literature is to assume 𝜎2
Xj is small

enough to be treated as zero. This would be strictly true if N1 were infinite, but is frequently reasonable
because large study sizes (often over 100 000) are now common and rising year-on-year. This is referred
to as the NO Measurement Error (NOME) assumption in Bowden et al [17].

2.2.2. The InSIDE assumption. If assumptions IV2 and IV3 are satisfied for variant j (𝛼j = 𝜓j = 0),
then the total pleiotropic effect of variant j on the outcome is also zero. However, their violation does not
necessarily preclude valid causal inference: consistent estimation of the causal effect is still possible if the

Table I. Assumptions used in two-sample MR analyses.

Assumption Description

IV assumptions
IV1 𝛾j > 0: SNP predicts exposure (not through U).
IV2 𝜓j = 0: No SNP-confounder association.
IV3 𝛼j = 0: No residual SNP-outcome association

after controlling for X and U.

TSA
TSA1 Models (6) and (7) hold for population 1 and 2.
TSA2 𝜖Xj in (6) and 𝜖Yj (7) independent

of each other and any other terms.
TSA3 𝜎2

Xj and 𝜎2
Yj in (6) and (7) known.

NOME assumption 𝜎2
Xj = 0: Negligible uncertainty in

SNP-exposure assxociation.

InSIDE assumption (under IV2)
General InSIDE Sample covariance cov(𝛼j, 𝛾j) → 0 as L → ∞.
Perfect InSIDE Sample covariance cov(𝛼j, 𝛾j) = 0 for data at hand.

VIS assumption (under IV2) 𝛾j ≠ 𝛾i for some i and j not equal to i
Some variation in instrument strengths present.
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magnitude of the pleiotropy in equation (7), 𝛼j+ky𝜓j, is independent of the SNP-exposure associations, 𝛾j
+ kx𝜓j. This was first identified as a crucial assumption for causal inference in the econometrics literature
by Kolesar et al [18] and was independently derived for use in MR by Bowden et al [9], who termed it the
InSIDE assumption (Instrument Strength Independent of Direct Effect). Because 𝜓j is a common factor
of both the instrument strength and pleiotropy terms, by far the most natural way to imagine that InSIDE
could hold (even in principle) is if IV2 holds (𝜓j = 0) and the magnitude of the pleiotropy not via U (𝛼j)
is independent of 𝛾j across the instruments. We will therefore adopt this convention when referring to
InSIDE from now on.

If the InSIDE assumption is satisfied then the sample covariance of the 𝛼js and 𝛾js will tend to zero as
the number of variants, L, increases. We will refer to this as ‘general’ InSIDE. However, if the sample
covariance of the 𝛼js and 𝛾js is exactly zero for the data at hand, we will say that InSIDE is ‘perfectly’
satisfied.

2.2.3. The VIS assumption. If the SNP-exposure association parameter estimates 𝛾̂1,… , 𝛾̂L were all iden-
tical, then their sample variance would be zero. If this were the case, it would rule out using the 𝛾̂js as an
explanatory variable in any regression model (specifically MR-Egger regression). We therefore define the
VIS (Variation in Instrument Strength) assumption as being satisfied when the aforementioned sample
variance of the true parameter values 𝛾1,… , 𝛾L is non-zero.

2.2.4. NOME, InSIDE and VIS under a weighted analysis. In practice when implementing the IVW and
MR-Egger regression approaches, the analysis has traditionally been weighted by the standard error of the
SNP-outcome association estimates, 𝜎Yj, to improve efficiency. For consistency, this is the approach we
will subsequently follow. In order to define the NOME, InSIDE and VIS assumptions within the context
of this weighted analysis (or any other weighted analysis), it is necessary to divide the relevant parameter
by the chosen weight. For example, for VIS to be satisfied in a analysis weighted by 𝜎Yj, we require
some variation between the weighted instrument strength terms 𝛾j∕𝜎Yj. Similar transparent modifications
would also be required for NOME and InSIDE.

3. Mendelian randomization under violations of IV3

In this section, we discuss the motivation for using the meta-analytical methods of IVW and MR-Egger
regression, when all the assumptions outlined in Table I are satisfied except IV3. We will therefore use
the following simplified versions of models (6) and (7) as our starting point:

Data generating model under: IV1-2, TSA, NOME, InSIDE and VIS

SNP-exposure: 𝛾̂j = 𝛾j
(8)

SNP-outcome: Γ̂j = 𝛼j + 𝛽𝛾j + 𝜖Yj, var(𝜖Yj) = 𝜎2
Yj (9)

In order to easily discuss violations of IV3, we define the sample mean and variance of the 𝛼 terms
as 𝜇𝛼 and 𝜎2

𝛼
, respectively. Specifically, we shall investigate four important special cases of model (9)

that are defined and differentiated by the chosen values of 𝜇𝛼 and 𝜎2
𝛼
. Under model (9), the 𝛼j term is the

sole source of additional variation in the SNP-outcome association estimates (given the SNP-exposure
estimates), apart from the residual error term 𝜖Yj. There may of course be factors inducing additional
heterogeneity in the SNP-outcome associations other than pleiotropy, so in practice we can think of 𝛼j
as representing the combination of all these sources. For simplicity, we will continue to refer to this as
pleiotropy.

We start by assuming that IV3 actually holds for all variants in model (9), which is consistent with
𝛼j = 𝜇𝛼 = 𝜎2

𝛼
= 0. We call this case (a) and it is the natural starting point for an MR analysis. In this case,

model (9) can be simplified to the following linear model with no intercept:

Γ̂j

𝜎Yj
=
𝛽𝛾j

𝜎Yj
+ 𝜖j, var(𝜖j) = 1. (10)

Both sides of the equation are divided by 𝜎Yj in order to make the variance homoscedastic and clarify
the mechanics of model fitting under a weighted analysis. An overall estimate can be calculated from
model (10) using standard regression theory, which yields the well known meta-analytic formulae:

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd Statist. Med. 2017, 36 1783–1802
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𝛽IVW =
∑L

j=1 wj𝛽j∑L
j=1 wj

, wj = 1∕var(𝛽j) = 𝛾2
j ∕𝜎

2
Yj. (11)

In the MR context, this is referred to as the IVW estimate [6, 12]. Formula (11) can alternatively be
derived by calculating a weighted average of the set of ratio estimates of causal effect, 𝛽j = Γ̂j∕𝛾j, obtained
using each SNP in turn, where the weight given to 𝛽j is the inverse of its variance, 𝜎2

Yj∕𝛾
2
j , as in a fixed

effect meta-analysis.
It is precisely assumptions IV2 and IV3 that dictate the intercept in (10) should be constrained to zero.

The NOME assumption dictates the simple form for var(𝛽j) because this means that the denominator of
𝛽j can be treated as a constant (even though in truth it is the random variable 𝛾̂j).

3.1. Testing and accounting for balanced pleiotropy

The variance of the IVW estimate under case (a) (the fixed effect model), is given by:

Var(𝛽IVW) = 1∑L
j=1 wj

. (12)

The value of 1 the numerator in (12) is a direct consequence of the fact that the variance of the residual
error in model (10) is equal to 1. As suggested by Del Greco et al [16], the data can be scrutinised to
assess this assumption by calculating Cochran’s Q statistic with respect to the L IV estimates as follows:

Q =
L∑

j=1

(
Γ̂j

𝜎Yj
−
𝛽IVW𝛾j

𝜎Yj

)2

=
L∑

j=1

wj(𝛽j − 𝛽IVW)2. (13)

If true, Q follows a 𝜒2 distribution on L-1 degrees of freedom. If the L estimates exhibit over-dispersion
or heterogeneity (as will often happen) then, under model (9), this must be due to pleiotropy and an
extension to the basic model is required. The most natural first extension, we argue, would be to allow
for ‘balanced’ pleiotropy. That is, we relax IV3 to allow non-zero 𝛼js but assume they have zero mean
(e.g. 𝜇𝛼 = 0, 𝜎2

𝛼
> 0). We call this case (b) and re-write model (10) as:

Γ̂j√
𝜎2

Yj + 𝜎2
𝛼

=
𝛽𝛾j√
𝜎2

Yj + 𝜎2
𝛼

+ 𝜖j, var(𝜖j) = 1. (14)

Model (14) is justified for any L under Perfect InSIDE, because this allows pleiotropy to be treated
as independent residual error with respect to the explanatory variable 𝛾j. It is only strictly valid under
General InSIDE as L → ∞. Fitting model (14) is equivalent to performing a standard additive random
effects meta-analysis [19, 20]. That is, we can obtain a new IVW point estimate and variance for the
causal effect under model (14) by applying formulae (11) and (12) and replacing wj = 𝛾2

j /𝜎2
Yj with w∗

j =
𝛾2

j /(𝜎2
Yj + 𝜎

2
𝛼
) using a plug-in estimate for 𝜎2

𝛼
(for example the DerSimonian and Laird estimate [19]). We

will refer to the IVW estimate obtained by fitting model (14) as 𝛽ARE
IVW . The two IVW estimates 𝛽IVW and

𝛽ARE
IVW do differ, because under the latter the variance component 𝜎2

𝛼
is used to re-weight the contribution

of the jth IV estimate. The variance of 𝛽ARE
IVW is additionally inflated via w∗

j to account for heterogeneity
due to pleiotropy. When a large value of 𝜎2

𝛼
is estimated from the data, this will have the effect of evening

out the weight given to each ratio estimate in the analysis by making them a less direct function of each
estimate’s precision.

3.1.1. Multiplicative random effects models. The following multiplicative random effects model [21,22]
could instead be applied to the summary data estimates in the presence of observed heterogeneity:

Γ̂j

𝜎Yj
=
𝛽𝛾j

𝜎Yj
+ 𝜙1∕2

𝜎Yj
𝜖j, var(𝜖j) = 1. (15)

If adopted, model (15) returns the same point estimate for 𝛽 as under the fixed effect IVW model, 𝛽IVW .
That is, the variance component 𝜎2

𝛼
is not allowed to influence its point estimate. However, the addition of
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the scale parameter 𝜙1∕2 allows the variance of 𝛽IVW to increase when heterogeneity is detected. Specifi-
cally, 𝜙 is estimated from the variance of the residual error using 𝜙̂IVW = Q

L−1
where Q is defined in (13).

The variance of the IVW estimate under model (15) is then set to

var(𝛽IVW) =
𝜙̂IVW∑L

j=1 wj

,

so that it is 𝜙̂IVW times the variance under the fixed effect model - case (a).
If the additive pleiotropy model (14) is actually correct then the residual error of the multiplicative

pleiotropy model (15) is miss-specified, because the constant term𝜙1∕2 should be replaced with
√

1 + 𝜎2
𝛼

𝜎2
Yj

,

which will usually result in a small loss of efficiency. One reason to prefer the multiplicative model in
the general meta-analysis context, is that 𝛽IVW is known to be more robust to small study bias than 𝛽ARE

IVW
[15]. We will subsequently show that the same principle holds true in the MR context, when ‘directional’
pleiotropy is present in the data, a notion to which we now turn our attention.

3.2. Testing and accounting for directional pleiotropy

‘Directional’ pleiotropy occurs when the mean value of the pleiotropy distribution, 𝜇𝛼 , is non-zero [9].
We will show how this can be addressed by performing MR-Egger regression. We first consider the
special case where 𝜇𝛼 is non-zero but 𝜎2

𝛼
= 0. This means that 𝛼j = 𝜇𝛼 for all j in model (7). Although

this appears highly unlikely, it is actually what MR-Egger regression (as proposed in [9]) assumes in its
simplest form. We call this case (c), which can be written as

Γ̂j

𝜎Yj
=
𝜇𝛼

𝜎Yj
+ 𝛽

𝛾j

𝜎Yj
+ 𝜖j, var(𝜖j) = 1 (16)

MR-Egger regression fits model (16) under case (c) to give an estimate for the intercept 𝜇𝛼 and causal
effect 𝛽. In order to distinguish them from the IVW estimate, we will refer to the MR-Egger estimate for
the causal effect 𝛽 as 𝛽1E and the mean pleiotropic effect 𝜇𝛼 as 𝛽0E, where

(
𝛽0E

𝛽1E

)
= (ZTZ)−1ZT

̂𝚪, for Z =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜎−1
Y1 𝛾1𝜎

−1
Y1

𝜎−1
Y2 𝛾2𝜎

−1
Y2

. .

. .

. .

𝜎−1
YL 𝛾L𝜎

−1
YL

⎞⎟⎟⎟⎟⎟⎟⎠
, ̂𝚪 =

⎛⎜⎜⎜⎜⎜⎜⎝

Γ̂1𝜎
−1
Y1

Γ̂2𝜎
−1
Y2
.

.

.

Γ̂L𝜎
−1
YL

⎞⎟⎟⎟⎟⎟⎟⎠
.

The variance of the MR-Egger estimate is equal to the lower diagonal element of (ZTZ)−1 but when
𝜎Y1,… , 𝜎YL are all exactly equal, this reduces to

var(𝛽1E) =
1∑L

j=1

(
𝛾̂j− ̄̂𝛾
𝜎Yj

)2
. (17)

This simple formula indicates that the variance of 𝛽1E is essentially dictated by the variance of the
SNP-exposure associations. It also reinforces the importance of the VIS assumption for MR-Egger: its
causal estimate is simply undefined when no such variation exists.

Case (c) allows for directional pleiotropy but assumes that the pleiotropic effect is the same across
all variants. This means that pleiotropy induces bias but no additional heterogeneity, which implies that
the residual error about model (16) equals 1. We can test the plausibility of this assumption via a simple
adaptation of the Q

′
statistic due to Rücker et al [14] to our context:

Q
′ =

L∑
j=1

1

𝜎2
Yj

{
Γ̂j −

(
𝛽0E + 𝛽1E𝛾j

)}2 =
L∑

j=1

wj

(
𝛽j −

𝛽0E

𝛾j
− 𝛽1E

)2

, (18)

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd Statist. Med. 2017, 36 1783–1802

1789



J. BOWDEN ET AL.

where wj =
𝛾2

j

𝜎2
Yj

as before. If case (c) is correct then Q
′

should follow a 𝜒2 distribution with L-2 degrees

of freedom. If a non-zero intercept 𝛽0E is estimated and the Q
′
statistic is significantly larger than L−2, a

more reasonable model might be that directional pleiotropy is inducing bias and additional heterogeneity
into the MR summary data estimates (𝜇𝛼 ≠ 0, 𝜎2

𝛼
>0). We call this case (d) and re-write model (16)

accordingly as an additive random effect model [14]:

Γ̂j√
𝜎2

Yj + 𝜎2
𝛼

=
𝜇𝛼√
𝜎2

Yj + 𝜎2
𝛼

+
𝛽𝛾j√
𝜎2

Yj + 𝜎2
𝛼

+ 𝜖j, var(𝜖j) = 1. (19)

As for case (b), model (19) is valid for any L under perfect InSIDE and as L → ∞ under General
InSIDE. Updated estimates 𝛽ARE

0E and 𝛽ARE
1E could be obtained by changing the definition of the design

matrix Z so that the jth row is equal to

⎛⎜⎜⎜⎝
1√

𝜎2
Yj + 𝜎2

𝛼

,
𝛾j√

𝜎2
Yj + 𝜎2

𝛼

⎞⎟⎟⎟⎠
and where 𝜎2

𝛼
is substituted with a suitable estimate. For the reasons already outlined in the case of the

IVW model, we have so far preferred not to use the additive pleiotropy model (19) in practice to fit MR-
Egger regression. We have instead opted to preserve the original fixed effect MR-Egger point estimates,
and to scale up their variance if heterogeneity is detected, by fitting the multiplicative model:

Γ̂j

𝜎Yj
=
𝜇𝛼

𝜎Yj
+ 𝛽

𝛾j

𝜎Yj
+ 𝜙1∕2

𝜎Yj
𝜖j, var(𝜖j) = 1. (20)

Under model (20), additional heterogeneity can be taken into account by estimating 𝜙 via 𝜙̂E = Q
′∕

(L − 2) and scaling up the variance of the MR-Egger estimates to be 𝜙̂E times their value under case (c).

3.3. When will the IVW and MR-Egger methods be unbiased?

Table II attempts to clarify the additional assumptions that are required for unbiased estimation of 𝛽 by
the IVW and MR-Egger methods under cases (a) to (d). We use the word ‘additional’ to distinguish them
from baseline assumptions (which we define as TSA, NOME and IV2) as well as those that are implied by
each case (such as IV3 in case (a)). If a specific case automatically invalidates a method, so that unbiased
estimation is not possible in general, we mark it with an ‘×’.

Table II. Requirements for unbiased estimation of 𝛽 by the IVW and MR-Egger
regression approaches for special cases (a) to (d).

Case (model) Pleiotropy Unbiased estimation
baseline & implied distribution of 𝛽 possible under additional assumptions?
assumptions 𝜇𝛼 𝜎2

𝛼
IVW MR-Egger

(a): No pleiotropy 0 0 IV1 VIS
(Fixed effect IVW)
TSA,NOME,IV2
IV3, Perfect InSIDE

(b): Balanced pleiotropy 0 > 0 IV1, General InSIDE VIS, General InSIDE
(Random effect IVW)
TSA,NOME,IV2
(c): Directional pleiotropy ≠ 0 0 × VIS
(Fixed effect MR-Egger)
TSA,NOME,IV2
Perfect InSIDE
(d): Directional pleiotropy ≠ 0 > 0 × VIS, General InSIDE
(Random effect MR-Egger)
TSA,NOME, IV2
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Under case (a) (no pleiotropy), assumptions IV2 and IV3 hold which means that Perfect InSIDE is
satisfied because cov(0, 𝛾j) ≡ 0. The IVW method therefore only requires IV1 to hold and MR-Egger
only requires VIS to hold in order to be unbiased.

Under case (b) (balanced pleiotropy), both methods are consistent (asymptotically unbiased as L → ∞)
under the General InSIDE assumption because heterogeneous pleiotropy contributes to the residual error.
Under cases (c) and (d) (directional pleiotropy), the IVW estimate cannot consistently estimate 𝛽 in
general because it does not adjust for a non-zero mean pleiotropic effect. Under case (c), Perfect InSIDE
is satisfied because cov(𝜇𝛼, 𝛾j) = 0. The only additional assumption required by MR-Egger for unbiased
estimation is VIS. Under case (d), MR-Egger requires both VIS and General InSIDE to be consistent.

4. Can we navigate between models using Rücker’s framework?

Moving from the underlying model in case (a) to those in (b), (c) and finally (d) represents a natural way
to progressively relax assumption IV3 using heterogeneity statistics when performing MR. Following
the approach of Rücker et al in the general meta-analysis context, we would start by assuming all genetic
variants are valid - case (a) - but move to case (b) if Cochran’s Q is sufficiently extreme with respect to
a 𝜒2

L−1 distribution, in order to allow for balanced pleiotropy. We would then assess whether directional
pleiotropy is present by fitting model (c) and calculate the heterogeneity about this model via Rücker’s
Q

′
. If the difference Q − Q

′
is sufficiently extreme with respect to a 𝜒2

1 distribution, we would infer that
directional pleiotropy is an important factor, and adopt model (c). Finally, we would assess whether Q

′

is sufficiently extreme with respect to a 𝜒2
L−2 distribution. If so, we would opt for model (d) to account

for the fact that pleiotropy is inducing heterogeneity and bias.
Unfortunately, this framework does not seamlessly translate to the MR setting, because IVW model

(10) is not strictly nested within MR-Egger model (16). This means that Q − Q′ is only approximately
𝜒2

1 distributed. Q′ may in fact be larger than Q, making Q−Q′ negative. The equivalent IVW and Egger
regression models assumed by Rücker et al, are nested so that the equivalent Q − Q′ difference has the
required distribution.

Therefore, we can only informally use a Q − Q′ to decide whether MR-Egger regression represents
a better fit than IVW. We therefore suggest the user considers moving from IVW model’s (a) and (b) to
MR-Egger model’s (c) and (d) when Q−Q′ is large and positive, and the MR-Egger intercept parameter
estimate is sufficiently far from zero and precise.

4.1. An illustrative example

Figure 3 (left) shows an illustrative scatter plot of SNP-outcome and SNP-exposure associations consis-
tent with case (a) (solid black dots, no pleiotropy) and case (b) (hollow black dots, balanced pleiotropy).
Under both cases (a) and (b) the points yield a regression line perfectly through the origin. This means
that the IVW and MR-Egger causal estimates would be identical (𝛽IVW = 𝛽1E). Under case (a), 𝜙̂IVW and
𝜙̂E would be approximately equal to each other and to 1, and under case (b) 𝜙̂IVW and 𝜙̂E would be
approximately equal to each other with a value greater than 1 (2 in this instance). For the solid black data,
Cochran’s Q would provide no evidence to support a move from the basic model (a) and the IVW esti-
mate. For the hollow black data, Cochran’s Q would suggest sticking with the IVW estimate, but to allow

Figure 3. Scatter plot of SNP-outcome versus SNP-exposure estimates for four fictional MR analyses. Left: under
cases (a) (solid black dots) and (b) (hollow black dots). Right: under cases (c) (solid black dots) and (d) (hollow

black dots).

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd Statist. Med. 2017, 36 1783–1802

1791



J. BOWDEN ET AL.

for over-dispersion due to balanced pleiotropy by moving to model (b). Because the MR-Egger estimate
is identical to the IVW estimate, this means that 𝛽0E = 0 and Q−Q

′
= 0. Therefore, no evidence exists to

support moving to model (c) and the MR-Egger estimate.
Figure 3 (right) shows an illustrative scatter-plot of SNP-outcome and SNP-exposure associations con-

sistent with case (c) (solid black dots, homogeneous directional pleiotropy) and case (d) (hollow black
dots, heterogeneous directional pleiotropy). Under both cases (c) and (d) the points are consistent with
a regression line with the same non-zero intercept. Under case (c), 𝜙̂E is equal to 1 whereas 𝜙̂IVW is
much larger (4 in this instance). Under case (d) 𝜙̂E is equal to 2 whereas 𝜙̂IVW is again larger (5 in this
instance). Now, the solid black data would support a move from model (a) (and the IVW estimate) to
model (c) (and the MR-Egger estimate) because Q, 𝛽0E and Q−Q

′
are ‘large’, but Q

′
on its own is not. The

hollow black dots would additionally yield a large enough Q
′

in order to opt for model (d), thereby sug-
gesting inference should be based on the MR-Egger estimate accounting for heterogeneity and bias due
to pleiotropy.

As in the general meta-analysis context, heterogeneity statistics such as Q and Q′ are only strictly valid
under the assumption that the precision of SNP-exposure and SNP-outcome estimates are known, despite
being estimated from the data. Likewise, their power to ‘detect’ heterogeneity will be small when the
number of genetic variants, L, is small. This could mean that, even if model (d) were true, it may often
not be possible to infer this by rejecting models (a), (b) and (c) at the historically popular 5% significance
level. Furthermore, choosing a model (and by extension a causal estimate) that depends on the value of a
statistical test (i.e ‘testimation’ [23,24]) could also induce unwanted bias. Additional research is required
to fully understand the operating characteristics of the schema suggested here in realistic data settings,
especially the use of heterogeneity statistic estimators, before they can be confidently used in practice.

4.1.1. A measure of relative fit. In Figure 3 (left), we see strong evidence that the IVW estimate is a
reliable measure of causal effect. Because it is also guaranteed to be more precise, there is no reason
whatsoever to prefer the MR-Egger estimate. Conversely, in Figure 3 (right), we see strong evidence that
the IV assumptions have been violated in a meaningful way and the MR-Egger approach has more appeal.
We therefore seek a statistic that will favour the IVW approach a priori unless MR-Egger regression is
a demonstratively better fit to the data. A simple statistic, QR encapsulates this reasoning, and is again
closely connected to the work of Rücker et al [14]. It simply measures the relative value of the residual
heterogeneity under both the IVW and MR-Egger methods:

QR =
(

Q
′

Q

)
(21)

QR will generally lie in the unit interval, but because the MR-Egger and IVW models are non-nested,
in rare cases the inequality 0 ⩽ Q

′ ⩽ Q will not hold. In Figure 3 (left), we see that (under case (a) or (b))
QR is approximately equal to 1, which tells us that the IVW method is to be preferred over MR-Egger. In
Figure 3 (right), we see that QR is equal to 1/4 in case (c) and 2/5 in case (d), indicating that inferences
from the MR-Egger approach should be given due consideration. In the limit, if the IVW approach was an
increasingly bad fit to the data relative to MR-Egger, then QR would tend to zero and MR-Egger should
be the preferred choice.

5. Sensitivity analysis

5.1. Estimation under violations of IV2 and IV3

In Section 3, we assumed that IV2 held to demonstrate how established meta-analytic methods can, in
theory, be transparently adapted to the MR setting. We now explore, from a theoretical standpoint, how
IV2 and IV3 violation distort the causal estimand identified by the IVW and MR-Egger approaches. To
do this, we return to and assume models (8) and (9) hold, set 𝜅x = 𝜅y = 1, but allow the 𝜓j terms to be
non-zero. When this is the case, the true estimand for the causal effect identified by variant j using the
ratio method is:

𝛽j = 𝛽 +
𝛼j + 𝜓j

𝛾j + 𝜓j
(22)
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We now make an additional simplifying assumption that the SNP-outcome standard error is constant
across variants (𝜎Yj = 𝜎Y ). When this is true, the fixed effect IVW estimand is equal to

𝛽IVW = 𝛽 +
∑L

j=1(𝛾j + 𝜓j)(𝛼j + 𝜓j)∑L
j=1(𝛾j + 𝜓j)2

= 𝛽 +
cov(𝛾j + 𝜓j, 𝛼j + 𝜓j) + E[𝛾j + 𝜓j]E[𝛼j + 𝜓j]

var(𝛾j + 𝜓j) + E[𝛾j + 𝜓j]2
, (23)

and the fixed effect MR-Egger estimand is equal to

𝛽1E = 𝛽 +
cov

(
𝛾j + 𝜓j, 𝛼j + 𝜓j

)
var(𝛾j + 𝜓j)

, (24)

where E[.], cov(.) and var(.) refer to sample expectations, covariances and variances, respectively. If IV2
were satisfied (𝜓j = 0 for all j,) then the MR-Egger estimand tends to 𝛽 as L grows large under General
InSIDE because the numerator of the bias term in (24) will tend to zero. If, in addition, the sample mean
of the 𝛼js were zero (General InSIDE plus balanced pleiotropy) then the IVW estimand would also tend
to 𝛽 as L grew large because the numerator of the bias term in (23) would tend to zero.

In order to investigate the bias of the IVW and MR-Egger estimators under increasing IV2 violation,
we explore the value of their underlying estimands, by firstly generating three independent fixed vectors
of L = 50 𝛼, 𝛾 and 𝜓 parameters with means 1/2, 2 and 1/2, respectively. For clarity, care was taken to
ensure that the sample covariance of all 50 𝛼 and 𝛾 parameters was very close to zero, so that Perfect
InSIDE is satisfied across all variants when the 𝜓j terms are 0 (IV2 satisfied). The full parameter vectors
are given in Table A1 in the Appendix. In addition, Figure A.1 in the Appendix plots the bias term of the
MR-Egger causal estimand in equation (24) under IV2 when the included set of instruments is increased
sequentially from 2 to 50. This is shown to illustrate the point that, even when 𝛼j and 𝛾j are generated by
independent processes (i.e. under General InSIDE), a sufficiently large number of variants is needed to
ensure that their scaled sample covariance (i.e. the MR-Egger bias term) settles at 0. In Figure 4 (left),
we plot the vector 𝛾 versus the vector 𝛼 to show the instrument strength and pleiotropic effect parameters
are uncorrelated under IV2 and Perfect InSIDE. We label the axes with the addition of ‘0 × 𝜓’ to stress
why this is the case.

In Figure 4 (right), we plot 𝛾+3𝜓 versus 𝛼+3𝜓 to show the instrument strength and direct pleiotropic
effect parameters when IV2 and InSIDE are violated. In this case, non-zero 𝜓 parameters induce a strong
positive correlation between the combined instrument strength and pleiotropy terms. We now define the
sensitivity parameter

𝜌A = cor(𝛾 + A𝜓, 𝛼 + A𝜓).
That is, 𝜌A equals the correlation between the instrument strength and direct effect due to pleiotropy when
𝜓j is set to A × 𝜓j. In Figure 4 (left), 𝜌0 = 0 and in Figure 4 (right), 𝜌3 = 0.62.

In Figure 5 (left), we plot the value of 𝛽IVW and 𝛽1E in equations (23) and (24) as a function of A and 𝜌A
for 𝛽 = 0. Their values can therefore be interpreted as a bias. Because the mean pleiotropic effect is non-
zero, 𝛽IVW is biased even under InSIDE, whereas 𝛽1E is not. However, we see that 𝛽1E is more strongly

Figure 4. Left: Scatter plot of 𝛾 + 0 × 𝜓 versus 𝛼 + 0 × 𝜓 parameters, where 𝛼 and 𝛾 are generated to satisfy
Perfect InSIDE. Right: Scatter plot of 𝛾 + 3 × 𝜓 versus 𝛼 + 3 × 𝜓 .
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Figure 5. Theoretical bias in the MR-Egger estimand 𝛽1E (blue) and IVW estimand 𝛽IVW (red) as a function of
InSIDE violation via 𝜌A for directional pleiotropy (left) and balanced pleiotropy (right). [Colour figure can be

viewed at wileyonlinelibrary.com]

affected by violations of InSIDE than 𝛽IVW . When A ⩾ 4.2 and 𝜌A ⩾ 0.8, 𝛽1E is actually further away
from the truth than 𝛽IVW . In Figure 5 (right), we plot the value of the IVW and MR-Egger estimands
as in Figure 5 (left) when 𝛼j is replaced with 𝛼j − 𝛼̄, in order to make the pleiotropy balanced at A=0.
Consequently, when 𝜌0 = 0, 𝛽IVW is unbiased. Furthermore, the IVW estimand is less biased than the 𝛽1E
for A ⩾ 2.5 and 𝜌A ⩾ 0.65.

5.2. Fixed versus additive random effects for IVW

In Section 3, we cautioned against using the additive random effects IVW estimate 𝛽ARE
IVW as opposed to

the fixed effect estimate 𝛽IVW when directional pleiotropy is present. In order to explain the reason for
our caution, we plot the value of the additive random effects IVW estimand, 𝛽ARE

IVW versus its fixed effect
counterpart (at 𝛽=0) using our fixed parameter constellation under increasing violations of the InSIDE
assumption as before.

We calculated 𝛽ARE
IVW using equation (11) by plugging in the estimand for 𝛽j from equation (22) and

using random effects weights w∗
j = (𝛾j + A𝜓j)2∕(𝜎2

Yj + 𝜎
2
𝛼
). In order to specify these weights, we set 𝜎Yj

equal to a constant value of 0.3, and then used the DerSimonian and Laird method to estimate 𝜎2
𝛼

for each
given value of A. Figure 6 shows the results for the two previously discussed scenarios of directional
pleiotropy using (𝛼, 𝛾, 𝜓) and balanced 𝛼 pleiotropy using (𝛼− 𝛼̄, 𝛾, 𝜓). In order to aid interpretation, the
x-axis includes scales for 𝜌A and, additionally, the amount of heterogeneity as measured by Higgins’ I2

statistic [25]: (Q − (L − 1))/Q.
Under the directional pleiotropy scenario (Figure 6, top-left), both 𝛽ARE

IVW and 𝛽IVW are biased even when
the InSIDE assumption is satisfied (𝜌A = 0). The directional pleiotropy manifests itself as heterogeneity
about the fixed effect IVW estimate (as measured by Cochran’s Q statistic), and at 𝜌A=0, I2=0.45. As 𝜌
increases 𝛽IVW is more robust than 𝛽ARE

IVW , staying closer to the true value of zero for 𝜌A ⩽ 0.8. This occurs
because the observed heterogeneity is caused, disproportionately, by 𝛽j terms emanating from variants
with a weaker SNP-exposure association, because their bias terms in equation (22) will (in general) be
the largest.

When it detects heterogeneity, the additive random effects estimate compounds the problem by re-
weighting the ratio estimates more evenly across the board, thereby giving more weight to the weaker
(and more biased) ratio estimates. The fixed effect estimate, and by extension the multiplicative random
effects estimate, naturally gives ratio estimates from variants with weaker SNP-exposure associations
little weight in the analysis, regardless of whether heterogeneity is detected or not.

Under the balanced pleiotropy example (Figure 6, top-right), both 𝛽IVW and 𝛽ARE
IVW are unbiased at 𝜌A=0.

At 𝜌A=0, I2 is very close to zero also, indicating that almost all of the heterogeneity observed in the
directional pleiotropy case discussed earlier at 𝜌A=0 was due to bias (i.e. non-zero 𝜇𝛼). As 𝜌A increases,
𝛽IVW and 𝛽ARE

IVW remain close together. This is because there is no longer a directional trend in the 𝛽js as a
function of the jth SNP-exposure association. In order to stress this point, Figure 6 (bottom) shows funnel
plots of the inverse standard errors versus their causal estimands 𝛽j at 𝜌A = 0 under directional (bottom-
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Figure 6. Top: Theoretical bias of the fixed effect estimand 𝛽IVW (red solid line) and additive random effect
estimand 𝛽ARE

IVW (red dashed line) as a function of InSIDE violation in the case of directional pleiotropy (left) and
balanced pleiotropy (right). Bottom: Funnel plots of the inverse standard errors versus their causal estimands 𝛽j
at 𝜌=0 and 𝜎Y = 0.3 for directional pleiotropy (left) and balanced pleiotropy (right). [Colour figure can be viewed

at wileyonlinelibrary.com]

left) and balanced (bottom-right) pleiotropy. Inverse standard errors used in the y-axis are calculated under
NOME. The funnel plot is used as a graphical tool to aid detection of small study bias in meta-analysis
[26] and has been transferred to the MR setting by Bowden et al [9]. Only in the directional pleiotropy
case will asymmetry be observed in the funnel plot. That is, imprecise causal effect estimates are not
seen to ‘funnel’ in towards the more precise causal estimates equally from either side, but appear to be
skewed in one particular direction. Therefore, funnel plot asymmetry is a sure sign that a large difference
will exist between the fixed and additive random effects IVW estimates, as well as between the IVW and
MR-Egger estimates.

5.3. Estimation under violations of NOME

So far, in this paper, we have assumed that the NOME assumption is satisfied. In truth, however, NOME
will never hold exactly because the variance of the SNP-exposure association, 𝜎2

Xj will always be positive,
so that 𝛾̂j ≠ 𝛾j. In this context, we can think of IVW and MR-Egger approaches as fitting regression
models using an explanatory variable that is affected by measurement error. This is known to induce
an attenuation in the subsequent effect estimates towards zero due to ‘regression dilution’ [27, 28]. The
implications of NOME violation on the two approaches is discussed at length in separate work by Bowden
et al [17], but are summarised below.

For clarity, suppose that the pleiotropy distribution and additional assumptions defining either case (a)
or (b) holds (Table II) so that both the IVW and MR-Egger methods yield unbiased estimates for 𝛽 under
NOME (i.e. when 𝜎2

Xj = 0 for all j). When NOME is in fact violated for variant j (𝜎2
Xj > 0), the expected

attenuation in its individual ratio estimate, 𝛽j, can be approximated by:

E[𝛽j] ≈ 𝛽

(Fj − 1

Fj

)
,
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where Fj = 𝛾̂2
j ∕𝜎

2
Xj. Because it is a weighted average of ratio estimates, the expected attenuation in the

IVW estimate, 𝛽IVW , can therefore be approximated by substituting Fj in the above formula with F̄ =∑L
j=1 wjFj∕

∑L
j=1 wj, where wj are as defined in (11). The attenuation in the IVW estimate can be alleviated

by increasing the strength of each instrument through Fj so that IV1 is more strongly satisfied.
In contrast, the extent of attenuation in the MR-Egger estimate, 𝛽1E, due to NOME violation is not

governed by the same F statistic. It can instead be accurately gauged using a modification of the I2

statistic applied directly to the entire set of SNP-exposure associations (and referred to as I2
GX in [17])

as below:

E[𝛽1E] ≈ 𝛽I2
GX , where I2

GX = (QGX − (L − 1))∕QGX for QGX =
L∑

j=1

(𝛾̂j∕𝜎Yj − 𝛾̂j)2

𝜎2
Xj∕𝜎

2
Yj

,

where ̄̂𝛾 is the mean of the weighted 𝛾̂js. The I2
GX statistic measures the spread of variation in the estimated

instrument strengths (the 𝛾̂js) relative to their average uncertainty. It lies between 0 and 1 but is generally
reported as a percentage. An I2

GX close to 100% ensures that the attenuation will be minimal, and means
that the VIS assumption is strongly satisfied.

In most circumstances, the extent of attenuation is likely to be far worse for MR-Egger than for the
IVW estimate. Bowden et al [17] employ the method of Simulation Extrapolation (SIMEX) [29, 30] to
adjust the MR-Egger estimate for this dilution. Briefly, this involves generating pseudo-data sets based on
the original summary data estimates, but under increasingly strong violations of the NOME assumption,
to obtain a series of increasingly diluted parameter estimates. A statistical model is then fitted to this
series in order to extrapolate back to the estimate that would have been obtained if NOME had been
satisfied. In the next section, we show the SIMEX approach applied in practice to both the IVW and
MR-Egger estimates.

6. Assessing the causal role of plasma urate on CHD risk

Although traditional epidemiological studies have suggested that urate levels are associated with a range
of cardiometabolic diseases, it is not certain whether the relationship is causal. Recently, Mendelian
randomization has been applied to assess the possibility of a causal link [31, 32]. Specifically, White
and colleagues [32] conducted a two-sample summary data MR analysis to assess the causal role of
plasma urate levels in influencing cardiovascular disease risk. Summary data estimates of the association
of 31 uncorrelated genetic variants with plasma urate concentration were obtained from the genome
wide association studies catalogue http://www.genome.gov/gwastudies/ with p-values less than 5×10−7.
Estimates for the association of the 31 variants with cardiovascular disease risk were obtained from
a seperate study population using CARDIoGRAM [3], currently the largest genetic association study
measuring cardiovascular outcomes. Here, we repeat and extend the analysis of White et al’s for the IVW
and MR-Egger approaches, using the methods described thus far. Full results are shown in Table III.

Figure 7 (left) shows a scatter plot of the SNP-exposure and SNP-outcome association estimates, where
the genetic data has been recoded in order to make the SNP-exposure associations positive. The SNP-
outcome association estimates represent log-odds ratios of CHD for a 1 standard deviation increase in
plasma urate. Figure 7 (right) shows the corresponding funnel plot, which can be interpreted as discussed
in Section 5. The vertical (and horizontal) lines show the causal effect estimates (and 95% confidence
intervals) inferred by IVW and MR-Egger regression.

We start our MR analysis by assuming that all variants are valid IVs and that the NOME, IV2, IV3
and InSIDE assumptions hold, which justifies the use of the fixed effect IVW model (10). The NOME
assumption seems reasonable for these data under the IVW method, due a large mean F statistic across
the genetic variants of 247 (with the weakest being 22 and the strongest being 4886). The IVW estimate
𝛽IVW suggests that a one unit increase in plasma urate increases the log-odds ratio of CHD by 0.163.
However, there is evidence of heterogeneity among the 31 ratio estimates, Cochran’s Q statistic on 30
degrees of freedom is 63.9, and the scale factor estimate 𝜙̂IVW = 2.13. We therefore relax assumption
IV3 to allow each variant to have a pleiotropic effect (assuming it is ‘balanced’ under InSIDE) and
perform random effects analysis. Applying the multiplicative random effects model (15) and so scaling
up the variance of the fixed effect IVW estimate by 𝜙̂IVW , the p-value for 𝛽IVW from a resulting t-test
is equal to 0.02. Applying the additive random effects model (14), we estimate the pleiotropic variance
parameter 𝜎2

𝛼
to be 0.093, which yields an adjusted point estimate for 𝛽ARE

IVW of 0.222 (an increase of 35%).
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Table III. IVW and MR-Egger regression analyses of the urate data.

Model
Parameter Est S.E. t-value p-value Heterogeneity statistics

IVW approach under model (14)
𝛽ARE

IVW 0.222 0.093 2.43 0.021 I2 = 53%, 𝜎2
𝛼

= 0.093
IVW approach under model (15)

𝛽IVW 0.163 0.067 2.45 0.020 Q = 63.9 (p=3×10−4), 𝜙̂IVW = 2.13
IVW approach+SIMEX under model (15)

𝛽IVW 0.164 0.067 2.47 0.020 -

MR-Egger regression under model (20)
𝛽0E 0.008 0.005 1.61 0.11 -
𝛽1E 0.048 0.096 0.50 0.62 Q

′
= 58.6 (p=9×10−4), 𝜙̂E= 2.02

MR-Egger regression+SIMEX under model (20)
𝛽0E 0.008 0.005 1.59 0.12 -
𝛽1E 0.05 0.097 0.51 0.61 -

Summary stats: I2
GX = 99%, F̄ = 247, Q − Q

′
= 5.25, QR = 0.917

Figure 7. Left: scatter plot of the summary data estimates for the lipids data, with the IVW and MR-Egger slope
estimates. Right: corresponding funnel plot of the same data. ARE = additive random effects estimate 𝛽ARE

IVW , MRE
= fixed effect/multiplicative random effects estimate 𝛽IVW .

Because both the fixed and additive random effects estimates should be targeting the same quantity under
balanced pleiotropy plus InSIDE, this large difference suggests that the pleiotropy could have a significant
directional component.

Given the large and significant Q statistic, we now apply MR-Egger regression to these data to probe
if there is indeed evidence for directional pleiotropy. We firstly assume that the pleiotropy is directional
but constant and fit the fixed effect MR-Egger model (16) under the NOME assumption. The NOME
assumption seems reasonable for these data under the MR-Egger method, because the I2

GX statistic is
equal to 99.2% and so a less than 1% dilution in its causal estimate is expected.

Under this model, MR-Egger estimates a non-zero mean pleiotropic effect of 0.008 and, because this
is in the same direction, a reduced causal effect estimate, 𝛽1E, of 0.048. Calculating the residual hetero-
geneity about the MR-Egger fit using Rücker’s Q

′
statistic yields Q

′ = 58.6 with a p-value of 9×10−4.
We next allow for directional and heterogenous pleiotropy under the InSIDE assumption by fitting mul-
tiplicative random effects model (20), and scale up the variance of the fixed effect MR-Egger estimates
by a factor of 𝜙̂E = 2.02. Under this analysis, the p-value for the mean pleiotropic effect (or intercept)
parameter estimate 𝛽0E is 0.12 and the p-value for the causal effect estimate 𝛽1E is 0.62. The ratio statis-
tic QR is 0.917 indicating that the MR-Egger model explains approximately 8% more of the variation in
the SNP-outcome association estimates than the IVW approach and the difference Q − Q′ is also large.
Although the NOME assumption appears to be sensible for these data, for completeness, we use the
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Figure 8. SIMEX adjustment applied to the IVW (left) and MR-Egger (right) causal effect estimate. [Colour
figure can be viewed at wileyonlinelibrary.com]

SIMEX method to adjust for NOME violation in the IVW and MR-Egger fits (under multiplicative ran-
dom effects models only). R code to perform this method can be found in [17]. The results are shown in
Figure 8 and Table III.

In summary, careful analysis of these data suggest that the large positive causal association of urate
concentration with CHD risk is potentially unreliable due to the presence of directional pleiotropy man-
ifesting itself as heterogeneity among the causal effect estimates. Whilst the application of an additive
random effects model accounting for balanced pleiotropy (via the IVW estimate) increases the causal
effect estimate further still, MR-Egger regression suggests that the pleiotropy has a positive directional
element, and consequently adjusts the causal estimate down towards zero. For these data, there is good
evidence that MR-Egger provides a better fit than IVW.

7. Discussion

In this paper, we have attempted to explain the many and varied assumptions that are necessary to apply
standard meta-regression and random effects methodology from mainstream meta-analysis to summary
data MR. We have also tried to explore the consequences for each method when some of the key assump-
tions (e.g. IV2, IV3, InSIDE and NOME) are violated, and clarified cases where the violation of one
assumption (e.g. IV2 and VIS) acts to promote violation of another (e.g. InSIDE and NOME). We hope
that those applying the IVW and MR-Egger regression approaches can use this work to gain a more
informed understanding of their strengths and limitations. One such limitation of MR-Egger regression
is that it is known to be far less efficient than the IVW method. For this reason, we also gave particular
emphasis to examining the properties of the more established IVW estimate under both additive and mul-
tiplicative random effects models. We therefore view it as an important finding that the additive approach
is less robust to directional pleiotropy, echoing the results of Henmi and Copas [15] for mainstream meta-
analyses affected by small study bias. This point was indeed highlighted in the analysis of the urate data
affected in Section 6, whereby the IVW estimate actually increased under an additive random effects
model in response to positive directional pleiotropy, rather than decreasing towards zero.

In practice, we would encourage users to report the full set of analyses described here, using the various
heterogeneity and instrument strength statistics introduced as a guide to the relative importance that could
be placed on each method for the data at hand.

7.1. Limitations

A major limitation of this work is that we have assumed throughout that the two-sample assumptions
hold, in particular that the SNP-exposure and SNP-outcome association estimates gleaned in separate
populations provide information on a common (i.e. identical) set of parameters. This will not be true, for
example, in the presence of gene-environment interactions if the distribution of the environmental fac-
tor differs in the two samples. As further work, it is vital to understand the consequences for inference if
this assumption is violated. In particular, it would be interesting to see whether the approaches discussed
would remain valid under weaker assumptions. For example, if the parameters indexing the two popu-
lation models were not identical, but were instead generated from a common distribution. A Bayesian
implementation would then seem natural.
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Another major limitation of this work is that we assumed additive linear models with no interaction
terms for the SNP-outcome association estimates. As shown by Didelez and Sheehan [33], such a model
is required for consistent estimation of the causal effect. In practice (and in our real data example) MR
analyses are generally performed with respect to a binary outcome yielding log-odds ratios for the SNP-
outcome associations. In this case, when a causal effect between the exposure and outcome exists, ratio
estimates of causal effect gleaned from individual variants will be attenuated towards the null by varying
amounts due to the non-collapsibility of the odds-ratio [34]. This is enough to invalidate our models in its
own right. Furthermore, if the data were collected using case-control sampling, as is also common, then
log-odds ratio estimates are also susceptible to ascertainment bias [35]. It will be important to develop
summary data methodology to properly account for these two issues as well.

A further limitation of our proposed framework for investigation of pleiotropy, is that it is purely
based on statistical evidence, and ignores any a priori biological knowledge of possible pleiotropy for
individual variants. As more is learned about the association between individual variants and multiple
health outcomes, analyses that ignore this additional information will appear increasingly uninformed as
well as inefficient.

Finally, we return to the InSIDE assumption. When explaining this assumption and exploring the
impact of its violation on the IVW and MR-Egger approaches, we assumed for simplicity that IV2 held.
However, it is still possible in theory for InSIDE to hold even when IV2 is violated, albeit in fairly
contrived circumstances. For example, suppose that IV2 and IV3 are violated for all variants but the
pleiotropy via one route is perfectly negatively correlated with pleiotropy via the other, so that 𝛼j = −𝜓j.
Alternatively, suppose that IV3 is satisfied for all variants (𝛼j = 0) but the magnitude of violation of
IV2 is the same across variants (𝜓j = 𝜓). In both cases, the covariance between the instrument strength
and direct effect is zero because the pleiotropy is constant, and Perfect InSIDE holds. Whether these
facts could somehow be exploited to improve the performance of MR-Egger regression is a subject for
further investigation.

Appendix

Table A1. Model parame-
ters used for the theoretical
calculations in Section 5.

Variant 𝛼 𝛾 𝜓

1 0.89 1.62 0.11
2 0.92 3.86 0.27
3 0.51 1.79 0.97
4 0.64 2.42 0.54
5 0.52 1.94 0.63
6 0.44 3.14 0.66
7 0.69 2.11 0.03
8 0.76 3.78 0.60
9 0.68 1.06 0.26
10 0.64 3.24 0.13
11 0.08 3.23 0.80
12 0.38 3.14 0.91
13 0.84 0.97 0.67
14 0.09 3.96 0.99
15 0.67 2.43 0.49
16 0.39 0.85 0.99
17 0.28 2.20 0.11
18 0.02 1.69 0.93
19 0.97 1.04 0.78
20 0.44 0.77 0.16
21 0.48 0.53 0.92
22 0.89 0.85 0.50
23 0.46 1.83 0.86
24 0.06 2.04 0.34
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Table A1. Continued.

Variant 𝛼 𝛾 𝜓

25 0.80 0.72 0.20
26 0.84 1.57 0.05
27 0.24 0.52 0.94
28 0.97 2.54 0.88
29 0.79 3.66 0.52
30 0.12 0.80 0.19
31 0.14 0.58 0.48
32 0.63 2.15 0.19
33 0.92 2.80 0.51
34 0.60 0.76 0.21
35 0.03 2.44 0.11
36 0.28 3.88 0.50
37 0.85 2.34 0.03
38 0.21 1.82 0.20
39 0.45 1.56 0.35
40 0.65 1.08 0.96
41 0.96 0.67 0.99
42 0.99 3.38 0.09
43 0.95 2.19 0.64
44 0.05 0.72 0.71
45 0.51 0.73 0.98
46 0.89 0.70 0.07
47 0.58 0.80 0.86
48 0.90 0.56 0.40
49 0.73 2.61 0.96
50 0.23 2.23 0.38

Figure A.1. Theoretical bias of the MR-Egger estimand using the parameter values of Table A1, as the number
of included SNPs is increased sequentially from 1:2 to 1:50. Note: the parameters of Table A1 are generated
independently so that General InSIDE is satisfied under IV2 for any subset of the 50 SNPs, but that Perfect InSIDE

is satisfied when all 50 are considered.1800
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