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Abstract

microRNAs (miRNAs) are a unique class of short endogenous RNAs that became known in the 

last few decades as major players in gene regulation at the post-transcriptional level. Their 

regulatory roles make miRNAs crucial for normal development and physiology in several distinct 

groups of eukaryotes including plants and animals. The common notion in the field is that 

miRNAs have evolved independently in those distinct lineages, but recent evidence from non-

bilaterian metazoans, plants, as well as various algae raise the possibility that already the last 

common ancestor of these lineages might have employed a miRNA pathway for post-

transcriptional regulation. In this review we present the commonalities and differences of the 

miRNA pathways in various eukaryotes and discuss the contrasting scenarios of their possible 

evolutionary origin and their proposed link to organismal complexity and multicellularity.

Introduction

MicroRNAs (miRNAs) are short endogenous ~21-24 nucleotides long, single-strand RNAs 

derived from hairpin transcripts that regulate gene expression in both animals and plants 1–5. 

miRNAs repress gene expression by binding to a complementary mRNA target thereby 

mediating translational inhibition, degradation or cleavage 3. They belong to a group of 

functional small RNAs, which in addition to miRNAs include short interfering RNAs 

(siRNAs) responsible for RNA interference (RNAi) and Piwi-interacting RNAs (piRNAs) 

(For review on piRNAs see 6). While siRNAs and miRNAs share important features and are 

both produced by the ribonuclease Dicer 7, they are responsible for different cellular tasks 

and can be discerned from one another by unique characteristics (Fig. 1). Since their 

discovery in Caenorhabditis elegans more than two decades ago 8,9 it has become clear that 

miRNAs play a role in a broad variety of biological processes and are essential for normal 

development of animals and plants 2,3,10,11. The apparent rise in the number of miRNAs 

during the course of animal evolution and their involvement in regulating development 
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raised the possibility that they might have contributed to the evolution of animal 

complexity 12,13.

The lack of sequence homology between miRNA families in plants and animals as well as 

differences in miRNA biogenesis and mode of action have led to the notion that miRNAs 

have evolved independently in the two kingdoms from an ancient siRNA mechanism that 

already existed in the last common ancestor of all eukaryotes. However, recent studies 

relating plant and animal miRNAs unexpectedly raised again the old questions: Did the 

common ancestor of all animals have miRNAs? Do miRNAs of plants and animals share a 

common origin? How many times did miRNAs evolve? This review will attempt to re-

address these questions.

Is the lack of miRNA sequence homology between distinct lineages 

sufficient to determine convergence of the miRNA pathway?

An early phylogenetic comparison of miRNAs revealed over 35 conserved families of 

miRNAs among bilaterian animals, and the pattern of conservation largely appeared to 

correlate with the accepted phylogeny. This led to the proposal that miRNAs are rarely lost 

once they have evolved14,15. Consequently, since no sequence similarity was detected 

between animal and plant miRNAs, they were considered to have evolved independently 16. 

This line of thought extends also to several other lineages (Fig. 2). For instance, none of the 

8 miRNAs of the demosponge Amphimedon queenslandica is shared with other non-

poriferan animals. Moreover, no conserved miRNAs could be detected between 

demosponge, calcareous and homoscleromorph sponges. This led to the extreme possibility 

that the miRNA pathway evolved convergently multiple times even within sponges 13,17. 

Further, the traditional view that sponges are the sister group to all other animal lineages is 

under debate as several studies point to comb jellies (Ctenophora), which lack miRNAs, 

being the first animal lineage to diverge 18–20. If Ctenophora was indeed the first animal 

lineage to diverge, an independent origin of animal miRNAs can be supported.

Similarly, until recently, no shared miRNAs were observed between plants and green algae, 

suggesting convergent origin of the miRNA pathway in these two main groups of 

Viridiplantae (Fig. 2) 21. However, a new study annotating small RNAs of the liverwort 

Pellia endiviifolia revealed three miRNAs with high similarity to the green alga 

Chlamydomonas reinhardtii miRNAs 22,23. This emphasizes the great importance of 

sampling many species from each phylum in order to fully perceive the extent of miRNA 

sequence conservation but also highlights the inherent difficulty of annotating miRNAs with 

high confidence 24. Further, shallow sequencing depth as well as neglecting certain 

developmental stages and environmental conditions may mask the full miRNA repertoire of 

an organism and hence possible homology. Regardless of these caveats, the prevailing view 

is that the miRNA pathways of animals and plants evolved convergently 14,16,21,25–28. In 

fact, this would mean that the miRNA pathway evolved independently at least 9 times (in 

bilaterians, in cnidarians; twice in sponges; in land plants; in green algae; in brown algae, in 

slime molds and in excavates; Fig. 2) 5,8,9,13,17,22,29–32.
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However, we suggest an alternative explanation: it might be possible that sequence turnover 

rates are high in plants and non-bilaterian animals, leaving no trace of shared miRNA 

sequences between contemporary lineages. In support of this scenario, plant miRNA genes 

are born and lost at high rates 33,34, hence only a handful of expressed miRNAs are 

conserved among distant plant lineages 35. Comparison of Arabidopsis thaliana and 

Arabidopsis lyrata small RNAs has shown that 33% of the miRNA families are not 

conserved between the two species, hence were gained or lost during the ~10 million years 

(Myr) since they diverged 33. Analysis based on genome data and small RNA sequencing 

from Capsella rubella, a very close relative of Arabidopsis, estimated that the net flux rate 

(birth–death) for miRNA genes in Arabidopsis is 1.2 - 3.3 genes per Myr 34. A high turnover 

rate of miRNAs is also suggested in green algae as only one miRNA is conserved between 

the two green algae Chlamydomonas and Volvox that separated about 200 million years ago 

(MYA) 36,37. Within Bilateria, a recent study demonstrates that despite impressive examples 

of conservation, miRNA loss is much more common than previously appreciated 38. Further, 

major losses of miRNAs have been reported within flatworms, a rapidly evolving lineage, 

perhaps as part of a morphological simplification trend 39. Regardless, while the turnover of 

most bilaterian miRNAs might be higher than initially estimated, it is still lower than that of 

plants and estimated at 0.8 to 1.6 genes or possibly even only 0.3 genes per Myr in 

Drosophila 40,41.

Insights into evolution of miRNAs from understudied eukaryotic groups

As bilaterians have preserved many conserved miRNA families in comparison to plants, it is 

useful to consider outgroups to bilaterians. Among the non-bilaterians, placozoans and 

ctenophores do not possess miRNAs 18, while in the sponge Amphimedon only 8 miRNAs 

have been identified so far 13. The phylum Cnidaria (corals, sea anemones, jellyfish and 

hydroids) represents the sister group of Bilateria, which has branched off about 600 

MYA 19,20. A pioneering study of small RNAs in the sea anemone Nematostella vectensis 
indicated that this species possesses at least 40 miRNAs, yet only one of them, miR-100, is 

shared with Bilateria 13. Remarkably, miR-100 is conserved almost over the full length of 

the miRNA, yet shifted by one nucleotide in the seed region, which was predicted to have 

significant consequences on the target specificity 13. miR-100 function and its targets are not 

well conserved in Bilateria 42 making its extreme sequence conservation in the sea anemone 

puzzling. However, lack of target conservation is true for most of the well-conserved 

bilaterian miRNAs, as they are frequently rewired into different genetic networks 43. 

Interestingly, sequencing of small RNAs of the cnidarian Hydra magnipapillata revealed 126 

miRNAs with no sequence similarity to those of Bilateria (hence no evidence of miR-100) 

and only two shared miRNAs with Nematostella 44. These results suggest a rather fast 

turnover of miRNAs within Cnidaria and highlight the risk of misinterpreting lack of 

miRNA sequence homology as a lack of homology of the miRNA system.

In a recent study of Nematostella small RNAs obtained from several developmental stages 

the miRNA complement was expanded to 87 miRNAs 45. Interestingly, miR-9422 of 

Nematostella shares 16 of its positions, including the seed sequence with Arabidopsis 
miR-156a.. This sequence similarity is unlikely to have occurred randomly as the chance of 

observing such a sequence identity between Nematostella and shuffled Arabidopsis miRNAs 
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is very small (random sampling P-value < 0.01) 45. As miR-156 is conserved from mosses to 

higher plants 5,46,47, its similarity to miR-9422 could be an evidence for a miRNA conserved 

between animals and plants, thus supporting the hypothesis that miRNAs were inherited 

from the last common ancestor of the two groups. Taken together, in light of the potential 

high turnover rate, it is questionable whether lack of sequence homology can serve as a 

proof for multiple cases of convergent evolution of this pathway. Hence, additional features 

must be taken into account.

Another indication for evolutionary homology of animal and plant miRNA pathways comes 

from sequencing the genome and the small RNA repertoire of the symbiotic unicellular 

dinoflagellate Symbiodinium kawagutii, an outgroup to both plants and animals (Fig. 2), 

which revealed many potential shared miRNAs with plants and animals 48. miRNAs have 

also been described in excavates, a group of unicellular eukaryotes that includes the 

parasites Giardia lamblia and Trichomonas vaginalis 32,49. Several putative miRNA families 

from excavates have sequence homology to conserved animal and plant miRNAs. However, 

unlike most plant and animal miRNAs those peculiar excavate miRNAs are produced from 

snoRNAs and tRNAs and exhibit some additional irregular features. Furthermore, the 

possibility of horizontal gene transfer from a host to its symbiont or parasite could be an 

alternative explanation for the potential homology in these cases. Thus, further confirmation 

of these data from dinoflagellate and excavates is required. Yet, if those small RNAs are 

verified as bona fide miRNAs, this will be of great importance because it will strongly 

support the placement of the pathway’s origin before the split of plants and animals.

The biogenesis of miRNAs and its potential role in clarifying the pathway’s 

evolutionary history

The discussion whether plant and animal miRNA pathways evolved in a common ancestor 

or independently from an ancient RNAi mechanism must include the differences and 

similarities in miRNA biogenesis (Fig. 3). miRNAs are synthesized as primary hairpins (pri-

miRNAs) and are processed to pre-miRNAs by cutting the hairpin stem, followed by 

cleaving the hairpin loop 3,7. Next, they are loaded on to an Argonaute (AGO) protein and 

one RNA strand is selected for complementary target mRNA inhibition or cleavage 3,7. In 

animals, the first step is conducted by a specialized microprocessor complex comprised of 

the RNAse III Drosha with the aid of the RNA binding protein Pasha (DGCR8 in 

vertebrates), while the second step of cleavage is performed by the RNAse III Dicer (Fig. 

3) 7. In plants, the Dicer homolog, DICER-LIKE 1 (DCL1), is responsible for both 

processing events required for miRNA maturation, conducting the two exact same steps in 

the same order 2,28. In both plants and animals Dicer is crucial for processing the precursor 

miRNA (pre-miRNA) into mature miR/miR* dsRNA duplexes 2,7,25,50. However, Dicers are 

common in many eukaryotes and also take part in non-miRNA activities such as RNAi via 

endogenous siRNA biogenesis and viral defence 25,51 and therefore cannot be used as an 

argument for the common origin of miRNAs. Phylogenetic and structural analyses indicate 

that animal Drosha proteins are related to plant and animal Dicers, suggesting that in 

animals Drosha may have evolved following a duplication of the common ancestor of Dicer 

and Drosha and further specialised in the first processing step of miRNAs 25,52. A very 
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recent study found that miRNAs in Chlamydomonas are processed by DICER-LIKE3 

(DCL3), a Dicer homolog that exhibits a domain organization similar to that of Drosha 53. 

This finding hints at a possible evolutionary link between miRNA biogenesis in green algae 

and animals.

Both Drosha and Pasha homologs were found in Cnidaria 13,54 and in two sponge 

lineages 13,17, for which independent evolution of the miRNA pathway has been proposed . 

Thus, Drosha and Pasha were already present in the common ancestor of all sponges, 

Cnidaria and Bilateria and likely served miRNA-related functions, although their 

involvement in the miRNA pathway in the first two lineages remains to be shown. If Drosha 

and Pasha have an ancestral function in miRNA processing in these lineages, the only 

explanation for the lack of homology of miRNA sequences in distinct sponge lineages would 

be high turnover rates of miRNA genes (see above). Nevertheless, it should be noted that 

Drosha and Pasha are known to be involved also in non-miRNA related functions in 

mammalian cells that range from ribosomal RNA maturation to cleavage of specific mRNAs 

(reviewed in 55). The tendency to associate the presence of the microprocessor components 

with the presence of miRNAs in basally-branching lineages may thus be misleading.

The site of miRNA biogenesis seems to differ between plants and animals. In plants, both 

processing steps by DCL1 take place in the nucleus, while in animals the first step 

performed by Drosha occurs in the nucleus and the second cleavage by Dicer occurs in the 

cytoplasm 3,16. However, several studies in animals reported the presence of Dicer in the 

nucleus (reviewed in 55). Whether the nuclear localization of Dicer in animals is a relic of an 

ancient miRNA-processing pathway or a secondary adaptation is an open question.

In plants and animals Dicer requires protein partners in order to accurately cleave pre-

miRNAs (Fig. 3) 2,7. In plants, DCL1 is assisted by the RNA binding proteins SERRATE 

(SE) and HYPONASTIC LEAVES1 (HYL1), both crucial for miRNA biogenesis and 

development 2,56,57. While a SE homolog, Ars2, is known in animals as a partner of the 

microprocessor and Dicer 58, no HYL1 homologs were found in bilaterian animals. These 

differences in the biogenesis were taken as additional evidence for an independent evolution 

of plant and animal miRNAs. However, homologs for both SE and HYL1 were recently 

reported in the sponge Amphimedon and in several cnidarians including Nematostella, all 

possessing dsRNA binding motifs 54. This suggests that a HYL1-like protein was present in 

the last common ancestor of plants and animals and was lost in multiple lineages, including 

Bilateria 54. The lack of any known animal Dicer partners such as Loquacious (Loqs), TRBP 

or PACT 7,59–61 in Nematostella 54 suggests that HYL1 may constitute a Dicer partner in 

Cnidaria.

The miR/miR* duplexes in both plants and animals are similar: they are ~22nt-long with 

imperfect complementarity between the two strands and a 2nt 3'-overhang2,3,7. However, 

unlike in bilaterian animals, the stem-loop precursor in plants is long and variable 16. 

Interestingly, sponges and slime molds present longer pre-miRNAs than their bilaterian 

counterparts 13,30. Those longer and more variable miRNA precursors are reminiscent of 

siRNA precursors. Interestingly, the miR-2024 family in Nematostella has members that are 

bona fide miRNAs whereas other members of the family show processing variability that is 
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typical for siRNAs (Fig. 1b and c) 45. This suggests that transformation of a miRNA into a 

siRNA or vice versa can happen in animals like in plants 62 and that the siRNA-like features 

of some miRNAs are not sufficient in order to rule out a common origin for plant and animal 

miRNAs.

Differences can also be found in the genetic structure of miRNA genes in plants and 

animals. In animals, roughly 50% of miRNA genes are located in clusters, often comprised 

of different mature miRNAs 16,63. In plants, fewer cases of miRNA clusters are found, 

mostly encoding miRNAs of the same family with noticeable homology 1664. Nevertheless, 

a few clusters of non-homologous miRNAs were discovered in plants, predicted to target 

related proteins 64. Interestingly, the sea anemone Nematostella has only two repetitive 

clusters, both of miR-2024, similarly to plants 45. Hence, it seems that while having different 

frequencies, the same genomic topologies can be found in both kingdoms.

Another genomic pattern separating animal miRNAs from those of plants is the location of 

miRNA genes. Approximately 30% of animal miRNA genes are located in introns of pre-

mRNAs 16,65. In contrast, only three tested examples of intronic miRNAs are known so far 

in plants 66–68. The hypothesis that this distinction supports an independent origin of 

miRNA is undermined by a recent study on the green alga Chlamydomonas. This study 

found that unlike in plants, 50% of the miRNAs in Chlamydomonas are embedded within 

introns of protein-coding genes, similar to animals 53. These results can support a common 

origin of the animal and plant miRNA pathways, assuming higher plants lost this genomic 

feature.

In both plants and animals, binding of small RNAs to extensively complementary target 

RNAs induces degradation of the small RNA by adenosine or uracil addition (‘tailing’) and 

3ʹ-to-5ʹ exonucleolytic decay (‘trimming’) 1,69. siRNAs in flies and PIWI interacting RNAs 

(piRNAs) in germ cells of all animals are protected from these processes by 2ʹ-O-

methylation of their 3ʹ ends performed by the methyltransferase Hua enhancer 1 

(HEN1) 1,27. In plants, HEN1 is responsible for the methylation of both siRNAs and 

miRNAs 1,2,70, while bilaterian miRNAs do not undergo this modification 27. Interestingly, 

HEN1 was found to be expressed throughout the body in Nematostella 54 and not only in 

germ cells, suggesting a non-restricted function. Moreover, periodate treatment proves that a 

major fraction of the Nematostella miRNAs is methylated, similar to plants 13,45. One can 

speculate that the common ancestor of animals and plants possessed methylated miRNAs, a 

feature later lost in bilaterians possibly due to the loss of high complementarity between 

miRNAs and their targets (see next section).

The mode of action of miRNAs varies between plants and animals

In both plants and animals siRNAs and miRNAs require a class of AGO proteins to execute 

gene regulatory functions 71–73. The mature miRNA duplex is loaded onto AGO, a core 

component of the RNA induced silencing complex (RISC) (Fig. 3) 3,74–76. The guide RNA 

strand is selected by AGO and directs RISC to the complementary RNA transcript 3. AGO 

proteins are conserved throughout all classes of life, from archaea and bacteria to 

eukaryotes, where they participate mostly in small non-coding RNA related 
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mechanisms 25,71,77–80. Furthermore, the four structural domains of AGO proteins and their 

endonuclease and RNA-binding activity are highly conserved 71,74. Target slicing by siRNA-

guided AGO is used in a wide variety of organisms to protect cells from viruses and 

transposons 81. In plants, in addition to those activities AGO proteins can cleave mRNA 

targets, thus controlling their expression. However, this gene regulation mechanism requires 

a miRNA guide loaded into the AGO protein 3. Similar to siRNAs, plant miRNA target 

binding requires a nearly-full complementarity between the miRNA and its target, leading to 

the endonucleolytic cleavage of the target by AGO between position 10 and 11 of the 

miRNA, often resulting in a strong effect on a small number of targets 1,82–84. The AGO 

proteins of prokaryotes that usually target foreign DNA also cleave their targets at the same 

position as plant AGOs, suggesting this is an ancient mode of action 77,85,86. In contrast, in 

bilaterians, every miRNA potentially regulates a large number of targets because miRNA-

mRNA recognition requires only a 7 nucleotides "seed" sequence, residing in positions 2-8 

of the miRNA (Fig. 4) 4. Unlike in plants, the vast majority of animal AGOs do not induce 

miRNA target cleavage. Instead, animal RISC induces translational repression of targets by 

blocking translation initiation r elongation or by deadenylation 1,74. This mode of action 

results in relatively weak modulation of less than 2-fold both at the RNA and protein 

levels 87,88. An advantage of translational repression is its reversibility that allows rapid 

expression of existing blocked mRNAs in a given condition, time or location 89,90. The 

destabilization and translational inhibition of targets is not performed directly by AGO, but 

by a partner protein known as GW182 in Drosophila or TNRC6 in vertebrates 91–94. 

Interestingly, GW182 proteins evolve very rapidly, making detection of homology even 

within bilaterians quite challenging 95.

The degree of complementarity between the miRNA and its mRNA target has been 

considered as a major factor in determining the mode of target repression. High 

complementarity, as seen in plants, promotes target cleavage by AGO, while seed-matching 

leads to translational inhibition and is the common mode of action of bilaterian 

miRNAs 74,92,96. The boundaries between plant and animal miRNA mode of action are 

becoming somewhat more blurry as there is more translation inhibition in plants than 

previously appreciated 83,84,97,98. However, even this type of inhibition requires nearly full 

complementarity as short matches limited to the seed region were shown to confer no target 

inhibition in plants 83,84. Surprisingly, miRNA-mediated translational inhibition in plants 

also depends on a GW-repeat protein called SUO 99. GW182 of animals and SUO of plants 

do not share detectable homology. However, it is tempting to consider the possibility of a 

common origin of those two proteins that cannot be detected anymore due to the extremely 

fast evolution of the GW182 family.

In Bilateria there are only a handful of examples for miRNA mediated target cleavage due to 

full complementarity of the miRNA to the target 100,101. For instance, in a genome-wide 

screen, only a single transcript was shown to be cleaved by a perfectly-matching miRNA in 

C. elegans 6. Further, the majority of AGO proteins in Bilateria have lost their 

endonucleolytic activity 74,102,103. However, endonucleolytic activity of the vertebrate 

AGO2 protein was shown to be evolutionary conserved due to its role in processing a single 

miRNA, miR-451, which cannot be detected by Dicer 43,104,105. Thus, it is plausible that the 

conservation of this AGO activity in vertebrates is unrelated to target regulation. These are 
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strong indications that target cleavage is far from being a major mechanism of action of 

bilaterian miRNAs. Recently, Nematostella miRNAs were reported to induce target cleavage 

by nearly perfect complementarity, more resembling siRNAs and plant miRNAs than 

bilaterian miRNAs 45. Unlike in Bilateria, the target cleavage mechanism seems to be 

common in Cnidaria as it is also present in Hydra, a cnidarian that diverged from 

Nematostella at least 550 MYA 45. The fact that both Cnidaria and plants use target cleavage 

mechanism combined with the existence of siRNAs in fungi, plants and animals suggest that 

cleavage was the ancestral form of small RNA action. The presence of a cleavage 

mechanism in sponges, the only other non-bilaterian lineage with miRNAs, would strongly 

support this view. While experimental evidence is still missing, at least several of the eight 

miRNAs identified in Amphimedon queenslandica show high complementarity to putative 

target mRNAs. Additionally, the origin of the miRNA systems in the siRNA mechanism, 

which is based on slicing, by itself suggests that high complementarity is the ancestral state 

of the miRNA mode of action. This is also supported by the fact that seed matching does not 

promote target inhibition in plants 83,84. Those mechanistic differences indicate that AGO 

holds the guide strand very differently in plants and bilaterian animals leading to different 

binding characteristics 106. It seems that seed matching is a derived state that appeared in the 

last common ancestor of all bilaterians. It is likely that this mode of action allowed animals 

to expand their regulatory networks as one miRNA can potentially inhibit hundreds of 

targets (Fig. 4) 4,32. Those complex networks involving miRNAs might be a reason for the 

lower turnover rates of miRNAs in bilaterians since the loss of a single miRNA might affect 

the expression level of numerous targets.

miRNAs and the evolution of complex organisms

In both animals and plants gene regulation by miRNAs allowed organisms to develop more 

complex gene regulatory networks 4,107. Further, miRNAs were theorized by various authors 

to drive evolution to a multicellular state, making it possible for complex organisms to 

evolve 3,12–15. To assess this theory, one needs to look into the evolution of multicellularity 

and the correlation between the miRNA repertoire and the complexity of an organism. 

Multicellular life forms had evolved from a unicellular ancestor independently in multiple 

lineages leading to fungi, animals, plants and various algae 108,109. In all cases, it was 

speculated that this transition required the evolution of cell adhesion molecules, cell 

communication, co-operation between cells and cellular differentiation (division of 

labour) 108,110,111. miRNAs in both plants and animals are known to be involved in 

pathways related to multicellularity such as development timing 112–114, 

differentiation 36,115–118 and morphogenesis 10. Additionally, in multicellular organisms 

"fine tuning" of gene expression by miRNAs can lower phenotypic variation (“canalization”) 

among individuals in a population and even among cells, thus reducing conflicts between 

cells of different genetic background 12,110,119,120. Nevertheless, their connection to the 

evolution of multicellularity is at best a mere correlation. Indeed, many multicellular 

organisms including plants and animals possess miRNA regulatory mechanisms. However, 

miRNAs were found in unicellular organisms such as the green alga Chlamydomonas 
reinhardtii 22,29 and the reef-building coral dinoflagellate endosymbionts Symbiodinium 
microadriaticum 121 and Symbiodinium kawagutii 48. This proves that the presence of 
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miRNAs does not necessarily predict multicellularity. It can be hypothesized that miRNAs 

may be part of the genetic toolkit allowing the transition to multicellularity under the right 

environmental conditions. For example, it was demonstrated that under strong artificial 

settlement selection Chlamydomonas can develop a multicellular life stage 122, suggesting 

that ecological conditions are as important as genetic potential on the way to multicellularity.

miRNAs are not mandatory for multicellularity as there are multicellular organisms that do 

not possess miRNAs such as fungi 123,placozoans 13 and ctenophores 18. In the case of 

ctenophores, it is possible that their extraordinary large collection of RNA-binding proteins 

substitutes the functions that miRNAs cover in other animals, allowing this phylum to 

produce complex cell types such as muscles and neurons 20. Is the loss of complex, allegedly 

integral features feasible? For example, it was suggested that sponges and Placozoa might 

have lost their nervous system for an adaptive advantage 72. A similar logic can explain the 

possible loss of miRNAs in organisms such as fungi, Placozoa or choanoflagellates, An 

example for advantageous loss of the RNAi components in fungi can be found in a study on 

the yeast Saccharomyces cerevisiae. The study demonstrated that several strains that had lost 

RNAi became more susceptible to killer virus infection when RNAi components were 

restored 73. If losing the entire RNAi machinery is possible, we propose that losing only 

miRNAs must be a possibility as well. Despite of all this, the alternative scenario arguing 

that miRNAs evolved independently in plants, animals and other clades cannot be ruled out.

It has been suggested that the relative number of miRNAs is in correlation with the relative 

level of organism morphological complexity. While it is generally difficult to define 

complexity, miRNA complements might have contributed to the complexity of gene 

regulation 13–15,124–126. For example, sea anemones and humans possess ~80 and 

~500-1000 miRNAs, respectively (but see also a recent higher count for humans 

in 127) 13,24,45. The abundance of miRNAs in human in relation to the sea anemone may help 

explain how despite high similarity in their genome and protein-coding genes humans have 

evolved a much more complex body form and cell type diversity than the relatively simple 

sea anemone 13,128. However, on closer inspection it seems that no strong correlation 

actually exists between the number of miRNAs and organismal complexity. For example, 

sea anemones, annelids and fruit flies have a similar number of miRNA families (~80, ~105 

and ~110, respectively) despite differences in morphological complexity 14,45,126,129. 

Moreover, the thalliform multicellular brown alga Ectocarpus possesses over 60 miRNA 

families despite its low complexity 14. Yet, instead of the number of miRNAs, one should 

consider the number of targets per miRNA. We hypothesize that the "seed" target 

recognition approach in bilaterian animals, where each miRNA recognizes and regulates 

many targets, allowed the evolution of highly complex and interwoven regulatory networks 

(Fig. 4), which may have contributed to cell type diversification during evolution.

Conclusion and future prospects

The rapidly expanding field of non-coding RNA research allows us to constantly re-evaluate 

the evolutionary origin of miRNAs. This review presents claims for and against a common 

origin of miRNA in plants and animals. Given the fast turnover in miRNA sequences and 

significant loss of miRNAs in both plants and animals 33,34,38, we consider the lack of 
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miRNA sequence homology known today as not sufficient to conclude on convergent 

evolution. Instead, the available information provides support for the possibility that the last 

common ancestor of plants and animals did possess a miRNA system (Fig. 5).

Of course, we cannot rule out convergent evolution. If indeed miRNAs have evolved 

independently at least 9 times among eukaryotes (Fig. 2), it is intriguing to consider what is 

so unique about them that will support the evolutionary pressures required to allow 

convergence of such a magnitude. Ctenophores certainly demonstrate that an animal with a 

wide variety of cell types, including neurons and muscles can exist in the absence of this 

class of small RNAs 18 and single-celled green algae demonstrate that miRNAs are not 

exclusive for “complex” multicellular organisms 29. Further, the lack of classic RNAi 

components in some fungi and the loss of DGCR8/Pasha in Placozoa 13,105 suggests that 

losing the protein machinery of the miRNA system is possible (Fig. 5) 13.

Taken together, we can suggest two alternative hypotheses regarding the evolution of 

miRNAs: 1) The miRNA pathways and their mode of action via slicing originated 

convergently from siRNA mechanisms in the plant and several animal lineages and a system 

based on seed-matching of miRNA to its targets evolved later, after bilaterians diverged from 

the rest of animals. 2) The common ancestor of plants and animals already had a miRNA 

system acting via slicing that was recruited from the siRNA system. Still, also in this 

scenario bilaterian animals have evolved a derived system based on seed-matching. In both 

scenarios the siRNA system evolved to protect cells from viruses and transposons and was 

adapted to post-transcriptional regulation of gene expression by targeting mRNAs.

Given the recent new findings, we favor the hypothesis of a common origin of miRNAs in 

plants and animals (Fig. 5). To further test this idea, biochemical and genetic methods are 

required to map the mode of action and the biogenesis pathway of miRNAs in groups 

beyond bilaterian animals and higher plants. We believe that some of the key points to study 

in the near future should be:

• Test whether miRNAs in basally-branching lineages such as sponges or algae 

cleave their targets.

• Test whether the cnidarian HYL1 proteins, known to be involved in miRNA 

biogenesis in plants, are also involved in biogenesis of miRNAs in Cnidaria.

• Assess the impact of the slicing versus the seed-matching mechanism on the 

gene regulatory networks in animals and plants.

• Test whether homologous miRNA-related proteins in algae are indeed functional 

in the miRNA pathway.

• Sequence small RNAs at an adequate depth from more eukaryotic lineages and 

annotate them as miRNAs according to widely accepted guidelines to reveal 

pattern of evolutionary turnover.

When those five points are met, we might get a better understanding of the evolution of the 

miRNA pathway in eukaryotes and answer the question of how ancient is this system.
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Figure 1. 
Differences between miRNAs and siRNAs. a, A scheme of miRNA and siRNA precursors 

and duplexes. While miRNAs are usually produced from short hairpins carrying mismatches 

in their stem region, siRNAs are produced from long hairpins with stems of perfect 

complementarity. miRNA precursors usually give rise to a single duplex whereas siRNA 

precursors are a source for multiple duplexes. b, Small RNA profiles along a pre-miRNA 

sequence, here exemplified by miR-2024a of Nematostella vectensis. Note the homogenous 

product with the dominant guide strand (mature miRNA) and the neglectable passenger 
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strand (miRNA*). c, Small RNA profiles along an siRNA precursor sequence, here 

exemplified by miR-2024c of N. vectensis. This siRNA locus was originally annotated as 

miRNA, but later determined to be an siRNA due to the fact it gives rise to multiple small 

RNAs 45. The x-axis in b) and c) indicates the position along the hairpin sequence with 

paired (brackets) and unpaired nucleotides (dots). ppm = parts per million. (b and c) 

modified from 45, with permission.
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Figure 2. 
Phylogenetic tree of the major eukaryotic groups showing presence of miRNA systems. 

Groups known to possess miRNAs are depicted in bold. Numbers in red count from top to 

bottom the maximum number of times miRNA systems evolved convergently. The 

phylogeny is based on 85.
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Figure 3. 
A scheme describing the plant and animal canonical miRNA biogenesis pathways. 

Homologs carrying similar functions such as Ars2 of animals and Serrate of plants are 

represented in the same color. This figure is modified after 54 with permission.
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Figure 4. 
Schematic comparison of miRNA network topology in land plants and bilaterian animals. 

Solid lines represent inhibition of targets by miRNA either by seed match (bilaterian 

animals) or by nearly-full complementarity (land plants). Dotted lines represent reciprocal 

effect of targets on miRNAs.
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Figure 5. 
A possible scenario of miRNA evolution in plants and animals where their last common 

ancestor possessed a miRNA system. Appearances and losses of proteins and traits are 

depicted on the relevant branches.
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