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Abstract

Purpose

To develop an image analysis technique that distinguishes pseudoprogression from true

progression by analyzing tumour heterogeneity in T2-weighted images using topological

descriptors of image heterogeneity called Minkowski functionals (MFs).

Methods

Using a retrospective patient cohort (n = 50), and blinded to treatment response outcome,

unsupervised feature estimation was performed to investigate MFs for the presence of outli-

ers, potential confounders, and sensitivity to treatment response. The progression and

pseudoprogression groups were then unblinded and supervised feature selection was per-

formed using MFs, size and signal intensity features. A support vector machine model was

obtained and evaluated using a prospective test cohort.

Results

The model gave a classification accuracy, using a combination of MFs and size features, of

more than 85% in both retrospective and prospective datasets. A different feature selection

method (Random Forest) and classifier (Lasso) gave the same results. Although not appar-

ent to the reporting radiologist, the T2-weighted hyperintensity phenotype of those patients

with progression was heterogeneous, large and frond-like when compared to those with

pseudoprogression.

Conclusion

Analysis of heterogeneity, in T2-weighted MR images, which are acquired routinely in

the clinic, has the potential to detect an earlier treatment response allowing an early
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change in treatment strategy. Prospective validation of this technique in larger datasets is

required.

Introduction

The commonest primary malignant brain tumour, glioblastoma, is a devastating disease with a

progression free-survival of 15% at 1 year.[1] Maximal debulking surgery and radiotherapy,

with concomitant and adjuvant temozolomide, is the standard of care[2] but is associated with

pseudoprogression. This describes false-positive progressive disease within 6 months of che-

moradiotherapy, typically determined by changes in contrast enhancement on T1-weighted

MR images, representing non-specific blood-brain barrier disruption.[3] Pseudoprogression

confounds response assessment and may affect clinical management. An imaging technique

that reliably differentiates responders from non-responders would allow an early change in

treatment strategy with prompt termination of ineffective treatment and the option of imple-

menting novel therapies.[4] To achieve this, we describe a method that is simple to implement,

requires little computational effort, is intuitive to interpret[5] and only requires T2-weighted

images that are acquired routinely during patient follow-up and which more accurately detect

glioblastoma infiltration than contrast-enhanced T1-weighted images.[6;7] This is because

glioblastoma cell infiltration, which can cause hyperintensity in T2-weighted images, does

not necessarily result in the blood-brain barrier disruption required for detection in contrast-

enhanced T1-weighted images. Analysis of T2-weighted images to determine treatment

response is therefore now routine in the clinic, although the detail of how to determine

response from these images is a topic of ongoing research.[2;8–11] Our approach exploits the

fact that tissue morphology can be a sensitive marker of underlying tissue biology[12] and that

morphological information can be extracted from an MR image[13] using image descriptors

called Minkowski functionals (MFs). MFs can be used to parameterize the heterogeneous

distribution of hyper- and hypointense foci in T2-weighted tumour images and have been

shown recently to be capable of detecting treatment response through changes in the size

and distribution of these foci in pre-clinical MR images, including T2-weighted images.[13;14]

Previously applied to describe the complex morphology of galaxies,[15] MFs can capture

underlying tumour heterogeneity not apparent to the reporting radiologist. The purpose of

this study was to extend the use of MFs to clinical MRI data and develop an imaging technique

that can distinguish pseudoprogression from true progression by analysing heterogeneity in

T2-weighted MR images.

Methods

Participants

The UK National Research Ethics Service approved the retrospective and prospective arms of

the study (written or verbal informed consent to participate in this study, which used de-iden-

tified data, was not a requirement by the UK National Research Ethics Service). Eligible

patients (S1 Table) were those with recently diagnosed glioblastoma who underwent chemora-

diotherapy according to the Stupp regimen on an intention-to-treat basis.[2] All patients com-

pleted a 6 week radiotherapy course of 60 Gy in 30 fractions, following institutional protocol,

[16] except for one patient who received 60 Gy to the planning target volume and 80 Gy to the

gross tumour volume. Patients entered into drug trials were excluded and bevacuzimab was

not prescribed in keeping with European recommendations.[17] T2-weighted images were
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obtained at baseline (post-surgical in the week preceding chemoradiotherapy) as well as at 4

weeks, 4 months and 7 months following completion of chemoradiotherapy.

MR acquisition and image processing

Axial T2-weighted images were acquired on General Electric scanners (two 1.5 T and a 3 T

Signa EXCITE; a 1.5 T and a 3 T HDx). On the 1.5 T scanners spin echo pulse sequence

parameters were: repetition time (TR) 5.000–6.260 s, echo time (TE) 0.096–0.108 s, with a sin-

gle excitation and echo train length of 24. Spin echo parallel imaging (ASSET) was performed

on the 3 T scanners with TR 4.000–6.080 s, TE 0.099–0.101 s, using a single excitation with an

echo train length of 32. The centre of k-space was acquired in the middle of the echo train

length. The receiver bandwidth was 81–89 kHz and 122 kHz for the 1.5 T and 3 T scanners

respectively. The field of view was either 220 x 220 mm or 240 x 240 mm and the slice thickness

was 6 mm, interspaced with a 1 mm gap. On the 1.5 T scanners the matrix was 320 x 256 or

384 x 384 or 384 x 256 and zero-filled to 512 x 512. On the 3 T scanner the matrix size was 512

x 384 and was zero-filled to 1024 x 1024. In the prospective cohort some scans were also per-

formed on a 1.5 T General Electric Discovery MR450 and in a single case a TR of 3.563 s was

used.

Pathological T2-weighted hyperintense regions of interest from each slice containing

tumour were segmented manually by a neuroradiologist (T.C.B.) and normalized for signal

intensity using in-house MATLAB (Mathworks, Natick, US) code (available below).[14] Cyst-

like structures larger than 1 cm in diameter were excluded to prevent analysis of surgical resec-

tion cavities or large necrotic cavities rather than tissue. Tumour images were converted into

binary datasets by thresholding, where ten threshold steps were chosen to sample the grey

scale, giving 11 thresholded images per slice (pre-clinical studies [13;14] have shown that there

is no benefit in using more than 11 thresholds). Pixels were assigned as either black (below

threshold) or white (above threshold) (Fig 1). The faces, edges and vertices of the designated

(white) pixels were used to calculate the three 2D MFs (area, perimeter and genus),[5] which

were normalized to the total number of pixels in the segmented image.[14] The summed pixel

faces give the area, the summed pixel edges at the boundary between black and white pixels

give the perimeter, and the number of regions of connected white pixels minus the number of

completely enclosed regions of black pixels gives the genus. Size features (total area and perim-

eter) and signal intensity features (mean, minimum, maximum and standard deviation; all

normalized to contralateral white matter) were also obtained since these are associated with

treatment response in glioblastoma,[18;19] and were acquired with minimal additional

computational effort. Thirty-two MF, two size and four signal intensity features were obtained

for each multi-slice image (detailed in Table 1).

Fig 1. Grey-scale thresholding of a region of interest. A segmented region of interest (ROI) displayed as a

binary combination of black and white pixels at 11 different grey-scale thresholds. Each of these black and

white images can be characterized by the three 2D MFs; area, perimeter and genus.

https://doi.org/10.1371/journal.pone.0176528.g001
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Feature estimation

This involves exploration of image analysis features to determine whether they are suitable bio-

markers to test a clinical hypothesis.[20] Blinded to patient outcome and treatment response

status, MFs from the retrospective cohort were investigated for the presence of outliers and

potential confounders by principal component analysis using SIMCA-P+ v12 (Umetrics, Kine-

lon, US). Hotelling T2 (a multivariate generalisation of Student’s t-test) was set at the 0.05 sig-

nificance threshold. A linear mixed model in R (version 2.11.1, http://www.r-project.org)

was used to examine whether MFs detected an early increase in heterogeneity after chemora-

diotherapy, regardless of treatment response status. Here, the MF values describing the

heterogeneous distribution of hyper- and hypointense foci in T2-weighted images before che-

moradiotherapy were compared to the MF values derived from T2-weighted images after che-

moradiotherapy (4 weeks, 4 months and 7 months later; all time points were used for the

analysis). The nlme package was used, which allows for nested random effects.[21] A hierar-

chical model of time, nested within threshold, nested within patient, was used to model the

covariance structure of the data. Time and threshold were treated as categorical factors and

fixed effects. An interaction term between time and threshold was also considered as a fixed

Table 1. Definitions of features.

Variable Definition Mathematical Formulaea

Minkowski

functionals

Area Summed designated (white) pixels. Ai = pi

Perimeter Summed pixel edges at the boundary between black and white pixels. Ui = -4pi + 2ei

Perimeter 1b Perimeter at grey-scale threshold 1 (i.e. all pixels are white).

The edge length (or contour) of the segmented region of interest.

U0 = -4p0 + 2e0

Genus Number of regions of connectedc white pixels minus the number of completely enclosed regions of

black pixels.

χi = pi − ei + vi

Size

Total Area Summed area at grey-scale threshold 1 (i.e. all pixels are white) for all slices of the tumour.
TAk ¼

XJ

j¼1

ðA0Þj

Total Perimeter Summed perimeter at grey-scale threshold 1 for all slices of the tumour.

The summed edge length (or contour) of the segmented regions of interest from all slices of the tumour. TPk ¼
XJ

j¼1

ðU0Þj

Signal intensity

Mean The mean raw signal intensity of all pixels from the segmented regions of interest from all slices of the

tumour. mk ¼
1

TAk

XTAk

p¼1

SIP

Standard

Deviation

The standard deviation of the raw signal intensity of all pixels from the segmented regions of interest

from all slices of the tumour. sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

TAk

XTAk

p¼1

ðSIP � mkÞ

v
u
u
t

Maximum The maximum raw signal intensity of all pixels from the segmented regions of interest from all slices of

the tumour.

^k ¼ SIðTAk Þ

Minimum The minimum raw signal intensity of all pixels from the segmented regions of interest from all slices of

the tumour.

_k ¼ SIð1Þ

a Where pi, ei, and vi are the numbers of pixels, edges, and vertices at grey-scale threshold i, respectively; j is the number of image slices through the

tumour; k is the individual tumour; SIp is the raw signal intensity for pixel p.
b A segmented region of interest was displayed as a binary combination of black and white pixels at 11 different grey-scale thresholds (Fig 1). Perimeter 1 in

Table 1 is the perimeter at grey-scale threshold 1, from a total of 11. Eleven different grey-scale thresholds were also used for genus. Ten different grey-

scale thresholds were used for area because the 1st value� 1 when normalized and so was excluded.
c Two pixels are connected if they are nearest neighbors or next-nearest neighbors to each other.

https://doi.org/10.1371/journal.pone.0176528.t001
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effect to investigate if the effect of time was different at each threshold, as this possibility was

suggested by plots of the data (Fig 2a–2c). Random effects were also considered for time and

threshold. Patient effects were designated as random effects, as the effects of individual patients

were not of interest (the patients were considered as a random sample of the overall population

of patients), along with threshold nested within patient. Modeling incorporated potential

confounders as covariates, which included age, surgical status (resection (i.e. debulking) or

biopsy), Karnofsky performance status, location, treatment compliance and pre-operative

tumour size. These parameters are known to be the most significant survival predictors.[1;22–

24] A neuro-oncologist (S.J.) assigned all clinical categories and assessed steroid use and a

neuroradiologist (D.S.) calculated the pre-operative tumour size as the product of the two larg-

est orthogonal dimensions on T1-weighted post-contrast images. If all 4 time-points were not

available, the available time points were used rather than exclude the patient. Goodness-of-fit

was assessed using a Q-Q plot and a histogram of the residuals and by using a scatterplot of the

residuals plotted against the fitted values.

Response outcome designation

After unblinding, patients were designated response outcomes (S1a Fig) using the Response

Assessment in Neuro-Oncology (RANO) criteria (including steroid use criteria)[8] as the basis

for the reference standard. However, incorporating more recent evidence, we also included in

the pseudoprogression group patients who had an increasing enhancing lesion at 4 weeks fol-

lowing chemoradiotherapy, which continued to increase at 4 months but improved or stabi-

lized at 7 months,[25] and patients who had an increasing enhancing lesion at 4 months

following chemoradiotherapy, which stabilized or improved at 7 months.[26] This modified

approach incorporates pseudoprogression that occurs or extends beyond 3 months,[27–30]

when a change of treatment is often considered.[31] In light of the importance of clinical fea-

tures in the MacDonald[3] and RANO criteria, patients with stable imaging but worsening

neurological features that improved subsequently without an increase in steroid use were also

assigned as pseudoprogressors. The final outcome assessments were validated using a univari-

ate log-rank test (Mantel-Cox) and plotted using the Kaplan-Meier method (S1c Fig).

Feature selection, classification and evaluation

The aim of this study was to differentiate progression and pseudoprogression as early as possi-

ble i.e. at the earliest time point when an enlarging MRI-enhancing lesion was seen, which was

either at 4 weeks in some cases or at 4 months in others. This is the critical period when a clini-

cian must decide whether to continue with the current patient management plan or to change

it. The features derived from T2-weighted images from these two earliest time points alone

were used in susbsequent analyses.

Feature selection selects the most discriminant features and reduces the number of variables

to optimise classification. The MF, size and signal intensity features selected by t-tests under-

went support vector machine (SVM) supervised analysis using MATLAB software with

LIBSVM code.[32] Parameters were optimized using leave-one-out cross-validation. The SVM

model was then built using these optimized parameters and the training set tested using leave-

one-out cross-validation. The accuracy, sensitivity and specificity of the model were calculated

using the Wilson score method.[33] Classification performance was evaluated further by a

receiver operator characteristic analysis.[34] SVM decision values were tested as predictors of

survival using a multivariate Cox-proportional hazards regression model using XLSTAT 2012

(Addinsoft SARL, Paris, France). A prospective dataset (S1b Fig) was then evaluated using the

classifer constructed from the training dataset. To further validate that there might be an
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underlying T2-weighted hyperintensity phenotype that can distinguish progression and pseu-

doprogression, all the original variables from the training and test datasets were analysed using

a different mathematical strategy. The training dataset underwent feature selection using Ran-

dom Forest[35] and machine learning classification using Lasso (gradient ascent optimization

and the Newton-Raphson algorithm[36]) and subsequently the classifier was applied to the

test dataset (all analyses were performed in R).

Comparison with vasogenic oedema and radiation necrosis

To understand better what processes the selected features were reporting in those patients

with progression or pseudoprogression, comparison was made with T2-weighted images of

Fig 2. MFs of the retrospective patient cohort. Spectral representations of MFs (mean ± standard error)

plotted as a function of grey-scale threshold using blinded (a-c) and unblinded (d-f) data from the retrospective

patient cohort. The more heterogeneous the regions of interest, the higher the normalized perimeter value;

and the further the genus value is from unity.

https://doi.org/10.1371/journal.pone.0176528.g002
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vasogenic oedema and biopsy-proven radiation necrosis. The T2-weighted images were seg-

mented, MFs calculated and analysed using principal component analysis and then classified

using the classifier constructed from the training dataset.

Statistical overview

Unless stated otherwise, statistics were performed using Graphpad Prism 6 (La Jolla, US).

Patient characteristics were compared using unpaired 2-tailed Student’s t-tests, 1-way

ANOVA (Šı́dák’s multiple comparisons and Brown-Forsythe standard deviation tests),

2-tailed Fisher-Freeman-Halton (contingency tables larger than 2 x 2, and small expected fre-

quencies within cells; Stata 11, College Station, US) or Fisher’s exact tests. Significance was set

at P< 0.05. For parametric methods, normality was assessed using the D’Agostino-Pearson

omnibus test.

Freeware

MATLAB code to generate the features is freely available at http://mathworks.com/

matlabcentral/fileexchange/62674-mrmf. R or MATLAB code to generate an SVM classifier is

already freely available[32].

Results

Feature estimation

Fifty eligible patients were used for a retrospective training cohort (S1 Table). Tumour images

were converted into binary datasets by thresholding (Fig 1) and the MF parameters were calcu-

lated as described previously[13] and in the methods section. The population of MFs acquired

at 3 T differed to those obtained at 1.5 T, and contained outliers with high MF values (S2 Fig).

Downsampling the larger data matrix obtained at 3T to the size of the 1.5T data matrix did not

resolve the difference in MF parameters. Therefore, 3T data were excluded from all subsequent

analyses (from 179 scans, 38 were excluded in the linear mixed model). The MF parameters

from the blinded data showed that there was an increase in tumour heterogeneity in the T2-

weighted images following chemoradiotherapy, as evidenced by an increase in the genus and

perimeter values at some thresholds (Fig 2a–2c). This was confirmed using a linear mixed

model, which provided a robust means to incorporate the intrinsic relatedness of each patient’s

entire dataset and to allow for missing data (S2 Table). We also examined potential confound-

ers which showed that few other covariates contributed to the final models and these were

much less statistically significant than MFs (S2 Table). An increase in heterogeneity was antici-

pated since in irradiated tissue there is MRI-detectable microscopic tissue damage,[37] peritu-

moural tissues show increased diffusivity in MR images as early as three weeks from treatment

initiation,[38] and there is increased vascular heterogeneity (measured as changes in vessel

permeability) within two months of treatment completion.[39] Also studies in a rodent

tumour model showed an increase in heterogeneity, assessed using MFs, in T2-weighted

images following treatment.[14] Neuroradiology review found that there was no apparent

increase in heterogeneity that was visible by eye, consistent with the limited human apprecia-

tion of complexity in an image.[40]

The retrospective training dataset was unblinded, treatment response assigned (24% pseu-

doprogression, 32% progression), and the earliest time point when an enlarging MRI-enhanc-

ing lesion occurred was recorded (S3 Table). To demonstrate that the modified RANO[8]

criteria used here gave appropriate categorization of progression or pseudoprogression, a
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survival analysis was performed (S1c Fig), which supported the assigned treatment response

status (P = 0.0006, χ2 = 12, 1 df; univariate log-rank test).

MFs derived from progressors diverged from pseudoprogressors consistent with an

increase in image heterogeneity during progression (all 4 time points shown in Fig 2d–2f).

This divergence was continuous with maximum divergence at 7 months. An increase in image

heterogeneity is expected in glioblastomas undergoing progression following chemoradiother-

apy because the tissue contains pseudopallisading necrosis and regions of microvascular prolif-

eration with associated intratumoural microhaemorrhage, which are detectable by MRI.

[20;41] In summary, feature estimation showed that MFs are suitable biomarkers to be used to

test the hypothesis that progression and pseudoprogression can be detected at the earliest time

point when an enlarging MRI-enhancing lesion was seen.

Feature selection

To optimize classification, the number of features (MFs, size and descriptive statistics for signal

intensity) were reduced by selecting, using unpaired t-tests, those individual features where

there was a significant difference between progressors and pseudoprogressors at the earliest

time point when an enlarging MRI-enhancing lesion was seen (Fig 3a). Tumours showing

progression were larger than those showing pseudoprogression; the mean values of total area

and perimeter were greater in progressors than pseudoprogressors (P = 0.03, t = 2.3, 15 df;

P = 0.02, t = 2.6, 15 df respectively) (Fig 4a and 4b). The first threshold value of the normalized

MF perimeter value is a measure of edge length, with progressors having a longer contour

length-per-unit-area than pseudoprogressors. The relationship between total lesion area and

perimeter is shown in (Fig 4d), where data points above the curve represent tumours with

more surface area than would be expected for a sphere. Tumours showing progression were

generally above or on the curve, consistent with a longer contour length-per-unit-area of T2-

hyperintensity compared to areas of pseudoprogression (second-order polynomial curves for

progression and pseudoprogression both gave R2 > 0.9; these two curves and the curve of a

sphere were different from one another: P = 0.03, F = 3.1, 6 dfn, 21 dfd; extra sum-of-squares F

test), and is compatible with progressors having a more irregular or frond-like shape than a

spherical shape,[42–44] although this difference was rarely visible in the image (Fig 5a and 5b).

The only signal intensity metric that differed between progressors and pseudoprogressors

was minimum signal intensity, which was higher in pseudoprogressors (P = 0.006, t = 3.2, 15

df) (Fig 4c).

Classification

For the training dataset, heterogeneity (MF) alone (as well as heterogeneity and size features

combined) allowed progressors and pseudoprogressors to be SVM-classified with slightly

more accuracy than size alone [88% vs. 82%; accuracy is defined as (true positive + true nega-

tive)/(true positive + false positive +true negative + false negative); S4 Table], but the combina-

tion of heterogeneity and size also produced a slightly more clinically meaningful model than

heterogeneity alone (S5 Table). The combined MF and size SVM model was therefore chosen

for subsequent analysis (accuracy of 88%; receiver operator characteristic area under the curve

of 0.9 after leave-one-out cross-validation (LOOCV); S4 Table). The raw values of the selected

features used in this final SVM model are shown in Fig 3b.

Reliability assessment

We examined the reliability of our processing pipeline. Manual segmentation was not a source

of inter-user variability. The MF dataset produced with our feature extraction freeware after
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Fig 3. Training dataset feature selection. (a) Graph of -log10P values for all features derived by comparing progression and

pseudoprogression datasets (2-tailed unpaired t-test). The significance threshold was set arbitrarily at P < 0.05 (horizontal line) and

the selected features are shown as solid black bars. (Abbreviations: nArea, normalized area; nPeri, normalized perimeter; nSI,

normalized signal intensity). (b) Heat map showing the selected features from the univariate scaled values of the MFs and size

metrics used in the optimal SVM model for the training dataset. Dark blue represents the lowest values and yellow the highest
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neuroradiologist segmentation was compared to a dataset produced after novice segmentation

(T.J.L.; 30 minutes of training) and demonstrated 100% (12/12) classification concordance

when tested using the original trained SVM model. There was also good interobserver agree-

ment, demonstrated using the Bland-Altman limits of agreement method (Fig 3c).

values. Note that patient 20 was the only case of pseudoprogression assigned on clinical grounds in the study and was a false

positive. (Abbreviations: PsP, pseudoprogression; P, progression). (c) Bland-Altman plot comparing the difference between two

observer measurements, and the mean of the measurements. The bias was 0.4±1.6. The mean bias and the 95% limits of

agreement of the interobserver difference are shown as dotted lines.

https://doi.org/10.1371/journal.pone.0176528.g003

Fig 4. Training dataset size and signal intensity selected features. Plot of (a) total perimeter (P = 0.03,

t = 2.3, 15 df) and (b) total area (P = 0.02, t = 2.6, 15 df) for patients with progression and pseudoprogression

in the training data set. (c) Plot of the normalized minimum signal intensity (P = 0.006, t = 3.2, 15 df) for

patients with progression and pseudoprogression in the training data set. (d) Relationship between total area

and total perimeter for patients with progression (squares) and pseudoprogression (crosses) in the training

data set. Total area is a surrogate metric of volume (a stack of slices summed together) and total perimeter is

a surrogate metric of surface area (a stack of slice perimeters summed together). The solid line gives the

relationship between volume and surface area for a sphere.

https://doi.org/10.1371/journal.pone.0176528.g004
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Fig 5. Model comparison with radiation necrosis and vasogenic oedema. T2–weighted axial images showing a patient

with (a) progression, (b) pseudoprogression, (c) radiation necrosis, and (d) vasogenic oedema. Principal component score

plot (e) for those patients with progression (filled black squares) and pseudoprogression (empty squares) from the training

dataset, using the features selected for the original SVM model. Vasogenic oedema (triangle) and radiation necrosis (empty

circle) were also plotted using the same set of selected features. All features were univariate-scaled. The displayed T2
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There was no computational variability in selection and classification. Using the entire

training and test MF datasets, the t-test selection and SVM (again using a radial basis function)

classifier operation was independently repeated by a second operator (Y.Y.) using different

freeware (R) and identical results were obtained as expected.

Comparison with vasogenic oedema and radiation necrosis

The selected features that discriminated progression and pseudoprogression were extracted

from the T2-weighted hyperintensity of 5 cases of biopsy-proven radiation necrosis (Fig 5c)

obtained more than 1 year after radiotherapy, and surrounding 5 pre-treated brain abscesses

(florid vasogenic oedema) (Fig 5d). Classification using the original trained SVM models

labeled all cases as progressors (100%, 10/10). Principal component analysis showed that the

hyperintensities in T2-weighted images of patients with radiation necrosis and progression

were similar (Fig 5e), sharing a heterogeneous, large, and long contour length-per-unit-area

phenotype (Fig 5f), whereas pseudoprogression had a distinct phenotype. The hyperintensity

in T2-weighted images of patients with vasogenic oedema had a phenotype that was distinct

from that seen in both progression and pseudoprogression. Therefore, the imaging phenotype

of pseudoprogression was similar to neither vasogenic oedema nor radiation necrosis.

Evaluation with a prospective dataset

Fifty-seven eligible patients were identified for the prospective cohort (data acquired between

2009 and 2012). After introduction of the 2010 RANO guidelines[8] many patients no longer

underwent a 4-week post chemoradiotherapy MRI at our institution. Consequently, many

patients were excluded when the information required for this study, including pseudopro-

gression status, could not be determined. During this period some patients were enrolled in a

trial where carmustine wafers were introduced into the resection cavity during surgery. Since

these wafers change perilesional signal intensity,[45] these patients were also excluded. Seven

patients were analyzed subsequently in the test dataset (S1b Fig), which was classified (using

the classifier constructed from the training dataset) with an accuracy of 86% (accuracy is

defined as (true positive + true negative)/(true positive + false positive +true negative + false

negative; S6 Table). The retrospective and prospective datasets were re-analyzed using a differ-

ent mathematical strategy of Random Forest for feature selection followed by Lasso classifica-

tion. The features selected from the training dataset were again a combination of MF and size

features (normalized perimeter thresholds 1–3, 7 and 8 as well as total perimeter) and the same

results were obtained (86% test dataset classification accuracy; accuracy is defined as (true pos-

itive + true negative)/(true positive + false positive +true negative + false negative; S7 Table),

demonstrating that accuracy was not dependent on the selection and classification methods

used.

Discussion

MFs have been shown here to be sensitive feature descriptors that can be used to detect an

early increase in heterogeneity in T2-weighted images of glioblastomas after chemoradiother-

apy, regardless of treatment response status. When a retrospective training dataset was

unblinded to treatment response, MFs from progressors showed that the images became

Hotelling’s tolerance ellipse is set at the 0.05 significance level. The loading plot (f) corresponding to the principal component

score plot, showed that the normalized perimeter and size features were positively correlated and separated

pseudoprogression from progression and radiation necrosis.

https://doi.org/10.1371/journal.pone.0176528.g005
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increasingly heterogeneous over time when compared to pseudoprogressors. A clinically

meaningful training dataset was developed using modified RANO criteria and supported by a

survival analysis (S1c Fig).

Differences in MFs were demonstrated between progressors and pseudoprogressors at

the earliest time point when an enlarging MRI-enhancing lesion is seen. Using t-test feature

selection the most discriminant of these MFs were chosen for classification. Size and signal

intensity descriptors were obtained from the T2-weighted images with minimal additional

computational effort and also underwent t-test feature selection. Total area and total perimeter

were selected features as tumours with larger hyperintense lesions in T2-weighted images were

more likely to progress. Of the signal intensity descriptors, minimum signal intensity was

selected as it was higher in pseudoprogressors than progressors. This may have been due to

hemosiderin present in intratumoural microhaemorrhage associated with microvascular pro-

liferation[20] or to increased cellularity in patients with progression.

A combination of heterogeneity (MFs) and size features produced the optimal SVM model,

which classified progressors and pseudoprogressors with an accuracy of 88%, with a receiver

operator characteristic area under the curve of 0.9 after leave-one-out cross-validation. The

segmentation method was reliable as demonstrated by 100% interobserver classification con-

cordance and it took a novice less than 15 minutes to segment any tumour.

A prospective test dataset was classified with an accuracy of 86%. A different strategy using

Random Forest feature selection and Lasso classification gave the same result. The T2-weighted

hyperintensity phenotype of progression remained, which was heterogeneous, large, with a

long contour length-per-unit-area (compatible with being more frond-like) when compared

to pseudoprogression.

Although this study used images obtained at 1.5 T, the commonest clinical magnetic field

strength, imaging at 3 T is becoming increasingly common. The increase in R2
� (effective

transverse relaxation rate) at 3 T leads to a greater range of tissue relaxation times[46] and may

have led to an increase in signal heterogeneity and the observed increase in MF values. An

implication is that, as with other quantitative imaging techniques such as those applied to

dynamic susceptibility contrast-enhanced (DSC) or arterial spin labelling perfusion imaging,

volumetric imaging and 1H-magnetic resonance spectroscopy,[47–54] longitudinal follow-up

should be performed at the same field strength. Another implication is that because MF values

were higher at 3 T it is possible that heterogeneity feature descriptors would be more discrimi-

nant than at 1.5 T, however there was insufficient data to examine this hypothesis.

The pathology of pseudoprogression is poorly understood although it is thought to involve

changes to the vascular endothelium and the blood-brain barrier that are associated with vaso-

genic oedema.[26,55] Pseudoprogression and radiation necrosis have also been postulated to

represent a continuum of post treatment changes.[55] We have shown that the imaging phe-

notype, and therefore the underlying tissue biology[3,4] of pseudoprogression was similar to

neither vasogenic oedema nor radiation necrosis although this needs to be interpreted with

caution as the number of samples was small.

Comparison to other studies

Other imaging approaches for distinguishing progression from pseudoprogression are being

investigated. DSC perfusion imaging has shown considerable promise (ROC AUC 0.9, sensi-

tivity 77–100%, specificity 75–86%; training datasets alone used) although the studies were

also relatively small (14–25 patients for the training datasets).[25;27;31;56;57] Relative cerebral

blood volume (rCBV) summary statistics have produced discrepant results,[25;27;57;58]

which has motivated interval regional relative cerebral blood volume analyses.[27;56] Dynamic
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contrast-enhanced imaging has also been used (sensitivity 90%, specificity 83%; for the train-

ing dataset), however model-free parameters such as the initial area under the curve are semi-

quantitative and time-consuming to determine and there are segmentation and co-registration

limitations.[59] Diffusion imaging has also shown promise in distinguishing progression from

pseudoprogression (ROC AUC 0.7–1.0, sensitivity 69–93%, specificity 69–100%, for the train-

ing datasets; sensitivity 75%, specificity 100% in a test dataset of 9 patients).[60–63] However,

as with dynamic susceptibility contrast-enhanced imaging,[4;27;58] acquisition and post-pro-

cessing methods vary widely, and as yet there is no standardized protocol. Additionally, gradi-

ent-echo-planar imaging sequences suffer from susceptibility artifacts that exclude many

patients from analysis.[57;61;64] Positron emission tomography with O-(2-[18F]Fluoroethyl)-

l-tyrosine (FET) seems promising,[65] probably by reporting increased expression of amino

acid transporters in glioma cells, but prospective evidence that treatment-related effects and

recurrent glioblastoma can be distinguished is limited.[66] Furthermore, were O-(2-[18F]

Fluoroethyl)-l-tyrosine positron emission tomography to be used routinely, a separate radio-

nuclide investigation in addition to MRI would be required. The advantage of the approach

described here is that it relies only on T2-weighted MR images, which are acquired routinely

worldwide, are high resolution and which require no specialized pre-processing prior to image

analysis (which potentially could be automated).

This study addresses several recent recommendations on imaging glioblastoma treatment

response. These include that images should detect changes in tissue heterogeneity[4] and that

they should cover the entire volume of pathological tissue with an acceptable slice thickness

and spatial resolution[67]. Although perfusion and radionuclide imaging techniques appear

promising in being able to distinguish progression from pseudoprogression, none are widely

available to allow implementation in daily practice or in clinical trials. Therefore it is recom-

mended that surrogate MRI techniques need to be developed that have the potential to be used

in common clinical practice, which could make these time consuming and expensive imaging

techniques obsolete.[4] It is also noteworthy that for the first time T2-weighted images have

been included in the new RANO criteria, although there is as yet no detail as to how these

images should be assessed.[9] If further validated prospectively in larger datasets, analysis of

heterogeneity in T2-weighted images could potentially be included in future criteria for assess-

ing treatment response.

Strengths and limitations

A strength of this study was that the treatment given to the retrospective training cohort was

uniform and reflects routine management in the UK (and many other countries). This was

important for allocation of treatment response status[31] as well as survival analyses.[68] In

contrast, a limitation was the small size of the prospective test cohort because of patient exclu-

sions through insufficient imaging examinations or exposure to trial drug treatments. Small

sample size of uniformly managed glioblastoma is a limitation common to much glioblastoma

imaging research.[4] For example, potential external test datasets were subject to similar limi-

tations as well as multi-centre variations in many parameters [The Cancer Genome Atlas-Glio-

blastoma Multiforme (TCGA-GBM) (https://wiki.cancerimaging.archive.net/display/Public/

Collections); American College of Radiology (ACRIN) (http://www.acrin.org/HOME.aspx)].

Sample sizes from these alternative test datasets were similarly small because many patients

did not have a complete longitudinal dataset of T1-weighted post contrast imaging, which is

required for determining the treatment response based on RANO criteria, and many had been

entered into drug trials or had been treated with bevacuzimab. To demonstrate that discrimi-

nation of progressors from pseudoprogressors using the SVM classifier was meaningful we
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performed leave-one-out cross validation on the training dataset and then tested the classifier

on a separate test set, which is a robust way of preventing overfitting using machine learning

methods.[69] Such an approach has been used previously to demonstrate that SVM can accu-

rately classify clinical samples, even when used with small numbers of samples, for example

n = 7 to 17 [70–75]. Moreover, we repeated the process with Random Forest feature selection

and Lasso classification and produced the same results. There was also indirect evidence that

we were not overfitting the data as the progression phenotype was concordant with the litera-

ture,[18;41;44;76–78] which was selected repeatedly by the SVM and Lasso models. Further-

more, whilst undergoing feature estimation, a difference in heterogeneity between progressors

and pseudoprogressors was demonstrated unequivocally by the large divergence of progressor

MFs from pseudoprogressor MFs by 7 months (Fig 2d–2f). Nonetheless, this technique might

best be considered as a proof-of-concept study requiring prospective validation in a larger test

dataset. Although the most significant published survival predictors[1;22–24] were incorpo-

rated as covariates during feature estimation, a larger test dataset would allow more extensive

multivariate analysis.

Conclusion

In summary, several imaging techniques appear promising in being able to distinguish pro-

gression from pseudoprogression, however, none have been validated in multicentre prospec-

tive trials or are widely available to allow implementation in daily practice or in clinical trials,

[4] nor are they included in RANO recommendations.[8] We have shown here, using T2-

weighted MR images alone, which are acquired routinely in the clinic, that Minkowski func-

tionals can differentiate pseudoprogression from progression. This was achieved by capturing

image information on underlying tumour heterogeneity that is only rarely visually apparent to

the reporting radiologist. The key conclusion is that if this technique is further validated pro-

spectively in larger datasets, which will probably require multi-centre studies given the relative

rarity of glioblastoma, then it may be used to detect treatment response at an earlier stage,

allowing an early change in treatment strategy.
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S1 Fig. Retrospective training dataset. Modified CONSORT flow diagrams of patient inclu-

sion and exclusion criteria for the retrospective training data set (a) and prospective test data

set (b). Note that no change of therapy was apparent in all included patients. (c) Kaplan-Meier

survival curve for patients with progression (n = 11) and pseudoprogression (n = 6). The

median survival was 234 days (range 39–370) for those with progression and 585 (329–1533)

for those with pseudoprogression (with one censored patient surviving).
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S2 Fig. Principal component analysis of image heterogeneity. Principal component score

plot of normalized perimeter MFs from all four time points showing scans performed at 3 T

(filled squares) and 1.5 T (empty squares). The modeled data were not scaled or centred. The

displayed T2 Hotelling’s tolerance ellipse was set at the 0.05 significance level.
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S1 Table. Retrospective patient cohort characteristics (2005–2009). Treatment response sta-

tus was significantly associated with location of the tumour and completion of adjuvant che-

motherapy. As expected, the lack of completion of adjuvant chemotherapy occurred in both
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