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Abstract

A variant in a transcription factor gene, POU4F3, is responsible for autosomal dominant

nonsyndromic hereditary hearing loss, DFNA15. To date, 14 variants, including a whole

deletion of POU4F3, have been reported to cause HL in various ethnic groups. In the pres-

ent study, genetic screening for POU4F3 variants was carried out for a large series of Japa-

nese hearing loss (HL) patients to clarify the prevalence and clinical characteristics of

DFNA15 in the Japanese population. Massively parallel DNA sequencing of 68 target candi-

date genes was utilized in 2,549 unrelated Japanese HL patients (probands) to identify

genomic variations responsible for HL. The detailed clinical features in patients with

POU4F3 variants were collected from medical charts and analyzed. Novel 12 POU4F3 likely

pathogenic variants (six missense variants, three frameshift variants, and three nonsense

variants) were successfully identified in 15 probands (2.5%) among 602 families exhibiting

autosomal dominant HL, whereas no variants were detected in the other 1,947 probands

with autosomal recessive or inheritance pattern unknown HL. To obtain the audiovestibular

configuration of the patients harboring POU4F3 variants, we collected audiograms and
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vestibular symptoms of the probands and their affected family members. Audiovestibular

phenotypes in a total of 24 individuals from the 15 families possessing variants were charac-

terized by progressive HL, with a large variation in the onset age and severity with or without

vestibular symptoms observed. Pure-tone audiograms indicated the most prevalent configu-

ration as mid-frequency HL type followed by high-frequency HL type, with asymmetry

observed in approximately 20% of affected individuals. Analysis of the relationship between

age and pure-tone average suggested that individuals with truncating variants showed ear-

lier onset and slower progression of HL than did those with non-truncating variants. The

present study showed that variants in POU4F3 were a common cause of autosomal domi-

nant HL.

Introduction

Hearing loss (HL) is the most common sensory impairment, and is divided into prelingual

HL (HL starts before speech development) and postlingual HL (HL occurs after speech devel-

opment). It is estimated that at least two-thirds of prelingual HL patients exhibit hereditary

HL. The inheritance patterns of this form of HL include autosomal recessive, autosomal

dominant, X-linked, and mitochondrial. Autosomal dominant nonsyndromic hereditary HL

(ADNSHL) is typically postlingual, and accounts for approximately 20% of nonsyndromic

hereditary HL patients [1]. Thus far, 36 causative genes for ADNSHL have been identified

[2].

One form of ADNSHL, DFNA15 (MIM# 602459), is caused by variants in the POU4F3
gene, which was first identified in a large Israeli Jewish family [3]. POU4F3 is located on

chromosome 5q32, and encodes a POU family transcription factor: POU domain, class 4,

transcription factor 3 (POU4F3). POU4F3 consists of a 338 amino-acid polypeptide, and

contains two DNA-binding domains in the form of a POU-specific domain and a

Homeobox domain. In humans, POU4F3 is not expressed in the brain, heart, placenta, skel-

etal muscle, lung, kidney, pancreas, or lymphoblast tissues, but is expressed in the fetal

cochlea [3]. In mice, Pou4f3 is uniquely and strongly expressed in the cochlear and vestibu-

lar hair cells of the inner ear [4, 5]. Pou4f3 is reported to be essential for the final differentia-

tion and survival of hair cells [6, 7]. Targeted deletion of both alleles of Pou4f3 is responsible

for profound deafness and balance impairment in mice because of complete cochlear and

vestibular hair cell losses followed by a partial secondary loss of spiral and vestibular gan-

glion neurons [4, 5].

To date, 13 different variants in POU4F3 [3, 8–18] and a whole deletion of POU4F3 [19]

have been reported to cause HL in various ethnic groups, including the Dutch, Japanese,

Korean, Chinese, and Brazilian populations. Although previously reported papers have shown

the clinical characteristics of patients with POU4F3 variants, the detailed audiovestibular find-

ings remain unknown [8, 9, 12, 20]. In the present study, we used massively parallel DNA

sequencing (MPS) to detect pathogenic variants in POU4F3 among a large series of Japanese

HL patients. The aims of the study are to estimate the prevalence of POU4F3 variants in the

Japanese population with hereditary HL, and obtain a more precise description of the clinical

features.
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Materials and methods

Subjects

All procedures were approved by the Shinshu University Ethical Committee as well as the

respective Ethical Committees of the other participating institutions, and were carried out

after obtaining written informed consent from all subjects (or from their next of kin, caretaker,

or guardian in the case of minors/children).

A total of 2,549 probands (age range: 0–79 years, mean age: 22 years) from unrelated Japa-

nese HL families were enrolled from the 67 otolaryngology departments across Japan partici-

pating in the present study among May 2012 to September 2016. The probands’ ages ranged

from 0 to 79 years (mean ± SD: 22.1 ± 19.7). The hereditary patterns of the HL in the probands’

families were autosomal dominant in 602, autosomal recessive in 1,577, and unknown inheri-

tance mode in 370.

Variant analysis

Amplicon libraries were prepared using an Ion AmpliSeq™ Custom Panel (Applied Biosystems,

Life Technologies), in accordance with the manufacturer’s instructions, for 68 genes reported

to cause non-syndromic hereditary HL (S1 Table). The detailed protocol has been described

elsewhere [21]. After preparation, the amplicon libraries were diluted to 20pM and equal

amounts of 6 libraries for 6 patients were pooled for one sequence reaction.

Emulsion PCR and sequencing were performed according to the manufacturer’s instruc-

tions. The detailed protocol has been described elsewhere [21]. MPS was performed with an

Ion Torrent Personal Genome Machine (PGM) system using an Ion PGM™ 200 Sequencing

Kit and an Ion 318™ Chip (Life Technologies).

The sequence data were mapped against the human genome sequence (build GRCh37/

hg19) with a Torrent Mapping Alignment Program. After sequence mapping, the DNA variant

regions were piled up with Torrent Variant Caller plug-in software. After variant detection,

their effects were analyzed using ANNOVAR software [22, 23]. The missense, nonsense, inser-

tion/deletion and splicing variants were selected from among the identified variants. Variants

were further selected as less than 1% of 1) the 1,000 genome database [24], 2) the 6,500 exome

variants [25], 3) the Human Genetic Variation Database (dataset for 1,208 Japanese exome

variants) [26], and 4) the 333 in-house Japanese normal hearing controls. Direct sequencing

was utilized to confirm the selected variants.

The pathogenicity of a variant was evaluated by ACMG (American College of Medical

Genetics) standards and guidelines [27]. For missense variants in particular, functional predic-

tion software, including Sorting Intolerant from Tolerant (SIFT) [28], Polymorphism Pheno-

typing (PolyPhen2) [29], Likelihood Ratio Test (LRT) [30], Mutation Taster [31], Mutation

Assessor [32], Functional Analysis through Hidden Markov Models (FATHMM) [33], Radial

Support Vector Machine (RadialSVM), and Logistic Regression (LR) [34] were used on the

wANNOVAR website. Conservation of the variantsite was also evaluated in 13 species from

the Homologene website [35]. Segregation analysis was performed for each proband and their

family members.

Clinical evaluations

The onset age of HL, and the incidences of progressive HL and vertigo/dizziness were analyzed

based on the medical charts of the 15 probands and nine their family members with POU4F3
variants.

POU4F3 mutation screening in Japanese hearing loss patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0177636 May 17, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0177636


Pure-tone audiometry was performed to evaluate HL. Pure-tone average (PTA) was calcu-

lated from the audiometric thresholds at four frequencies (0.5, 1, 2, and 4 kHz). If an individual

did not respond to the maximum hearing level at a frequency, 5 dB was added to the maxi-

mum hearing level. The severity of HL was assigned into mild (PTA: 20–40 dB HL), moderate

(41–70 dB HL), severe (71–95 dB HL), and profound (>95 dB HL). Asymmetry in hearing

was defined as a difference in PTA of> 10 dB between the right and left ears. The audiometric

configurations were categorized to low-frequency, mid-frequency (U-shaped), high-frequency,

flat, and deaf.

The findings of vestibular examinations, including caloric testing and the measurement of

cervical vestibular evoked myogenic potentials (cVEMPs), were analyzed.

Intervention for HL, including the use of hearing aids or cochlear implants, was investi-

gated based on the medical charts.

Results

Detected variants and the pathogenicity

A total of 12 possibly disease-causing variants were detected in 15 (2.5%) of 602 probands with

autosomal dominant HL (Table 1), whereas no pathogenic variants were found in the other

1,947 probands with autosomal recessive or inheritance pattern unknown HL. No variants in

the other 67 deafness genes were identified in the 15 probands. All variants were novel, and

included six missense variants, three frameshift variants, and three nonsense variants. Among

the 12 variants, eight were located in the POU-specific domain (amino acids 179–256) or

Homeobox domain (amino acids 272–332). Of the other four variants, p.His25fs and p.Ile123fs

were predicted to show premature translation stops at codons 40 and 127, respectively. There-

fore, these two frameshift variants and a nonsense variant (p.Gln143Ter), presumably resulted

in the absence of the two domains.

With respect to two variants (p.Phe194Tyr, p.Arg326Ter), genetic analysis was available

only for the probands. However, these variants were detected in two unrelated probands

(Table 2). The remaining eight variants were confirmed to segregate with HL in the respective

families (Fig 1). All six missense variants were predicted to be pathogenic using the aforemen-

tioned software programs, and their corresponding amino acids were well conserved across

species (Table 1). Further, none of the 12 variants was found in 333 in-house controls (666

control alleles). Taken together, the 12 variants were likely pathogenic.

Clinical characteristics

Table 2 summarizes the clinical characteristics of 24 affected individuals from 15 families with

POU4F3 likely pathogenic variants. The onset age of HL varied markedly from 3 to 54 years.

No data on the progressive nature of the HL was available for one individual. The other 23

individuals had noticed a progression in HL. In addition, one individual (family 12: II-6) suf-

fered from a rapid deterioration in hearing at some time during the course of HL (no audio-

gram was available). She received steroid therapy, but her hearing showed no recovery. With

respect to vestibular symptoms, four individuals (16.7%) suffered from vertigo/dizziness.

Pure-tone audiograms were obtained in 23 individuals. All individuals exhibited bilateral

moderate to profound HL. Asymmetric hearing was observed in five individuals (20.8%) (fam-

ily 2: IV-1, 4: IV-1, 8: III-2, 9: II-2, and 12: III-4). Audiometric configuration included mid-fre-

quency HL type in 21 ears, high-frequency HL type in 17 ears, flat type in one ear, and deaf in

six ears. Audiometric configuration could not be classified in one ear.

Overlapping audiograms for each age period are shown in Fig 2. At age 20–39, all

ears showed mid-frequency HL and some ears had normal or mild threshold elevation at

POU4F3 mutation screening in Japanese hearing loss patients
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4 and 8 kHz. At age 40–59, all ears exhibited moderate to profound HL at the frequencies

of 4 and 8 kHz, and consequently some ears showed high-frequency HL. At 60 or older,

all ears showed profound HL, although some ears had residual hearing at the lower

frequencies.

Table 2. Clinical features of affected family members associated with POU4F3 variants found in this study.

HL Pure-tone audiometry

Family

No.

Patient

No.

Amino Acid

Change

Onset Progression Vertigo/

dizziness

Tested

age (y)

PTA (R/L) Severity

(R/L)

Audiometric

configuration (R/L)

Vestibular

function (R/L)

Intervention

1 III-2 p.His25fs 20 y Yes No 49 112.5/110 profound/

profound

HF/HF CI

II-3 20’s Yes No 67 105/106.3 profound/

profound

DE/DE HA

2 IV-1 p.Asp64Val 30’s Yes No 53 91.3/61.3 severe/

moderate

MF/NC abnormal/

normal

HA

III-1 10’s Yes No 77 115.0/115.0 profound/

profound

DE/DE HA

3 III-1 p.Ile123fs 40 y Yes No 51 62.5/58.8 moderate/

moderate

MF/MF normal/normal HA

II-1 40’s Yes N/A N/A N/A N/A N/A HA

4 IV-1 p.Gln143Ter 3y N/A N/A 8 47.5/58.8 moderate/

moderate

MF/MF HA

5 III-3 p.Glu192Ter 30’s Yes No 54 63.8/58.8 moderate/

moderate

MF/MF N/A

IV-1 17 y Yes No 21 45.0/41.3 moderate/

moderate

MF/MF N/A

6 III-4 p.Phe194Tyr 20 y Yes No 43 60.0/65.0 moderate/

moderate

MF/MF N/A

7 II-2 p.Phe194Tyr 10’s Yes No 53 67.5/67.5 moderate/

moderate

HF/HF HA

8 III-1 p.Ser222Leu 6 y Yes Yes 46 56.3/53.8 moderate/

moderate

HF/HF N/A

III-2 6 y Yes No 45 43.8/23.8 moderate/

mild

HF/HF N/A

9 II-2 p.Thr227fs N/A Yes No 59 80.0/65.0 severe/

moderate

HF/MF N/A

III-2 infant Yes No 34 88.8/90.0 severe/

severe

MF/MF N/A

III-3 infant Yes No 33 61.3/66.3 moderate/

moderate

MF/MF N/A

10 III-2 p.Asn240Tyr 6 y Yes Yes 20 66.3/68.8 moderate/

moderate

MF/MF HA

11 III-1 p.Ile281Val 54 y Yes No 59 67.5/70.0 moderate/

moderate

HF/HF HA

III-2 50 y Yes No 75 115.0/115.0 profound/

profound

DE/DE CI*

12 II-6 p.Pro299Leu 27 y Yes Yes 59 106.3/110.0 profound/

profound

HF/HF normal/normal CI

III-4 26 y Yes Yes 35 50.0/85.0 moderate/

severe

MF/flat N/A

13 III-2 p.Pro299Leu 41 y Yes No 47 75.0/75.0 severe/

severe

MF/MF N/A

14 III-3 p.Arg326Ter childhood Yes No 54 48.8/52.5 moderate/

moderate

HF/HF None

15 II-1 p.Arg326Ter childhood Yes No 41 47.5/47.5 moderate/

moderate

HF/HF N/A

Abbreviations: y, year(s) old; R, right ear; L left ear; HL, hearing loss; DE, deaf; HF, high-frequency hearing loss; MF, mid-frequency hearing loss; NC: not

classified; CI, cochlear implant; HA, hearing aid; N/A, not available

*preparing for CI surgery

https://doi.org/10.1371/journal.pone.0177636.t002
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Serial pure-tone audiograms could be obtained for two unrelated individuals. The average

progression rates in PTA (dB/year) in the right and left ears were 0.5 and 0.9, respectively, in

one individual with a frameshift variant (family 3: III-1), and were 1.1 and 1.5, respectively, in

the other individual with a nonsense variant (family 5: IV-1). However, the audiograms for the

Fig 1. Pedigree and audiograms for each family with POU4F3 variants. Arrow shows the probands in each family (family numbers #1-

#15). Genetic findings for each individual tested are noted in the pedigree.

https://doi.org/10.1371/journal.pone.0177636.g001
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two individuals showed a more marked progression in hearing thresholds at the lower and

higher frequencies than at the middle frequencies, which were used for the calculation of PTA

(Fig 2).

Caloric testing and cVEMP data could be obtained for three unrelated individuals. One of

the three individuals with vertigo/dizziness showed normal bilateral vestibular findings. How-

ever, the right ear of another individual without vertigo/dizziness (family 2: IV-1) showed

decreased caloric response and no cVEMP response, which suggested a dysfunctional lateral

semicircular canal and saccule.

Intervention for HL

Information on the intervention for HL was obtained for 13 individuals (Table 2). Two indi-

viduals with bilateral profound HL underwent cochlear implantation, and one individual was

scheduled for surgery. Information on postoperative audiometric examinations, including

sound field audiometry using calibrated warble tones, and speech audiometry using the

Fig 2. Overlapping audiograms in each age period. Pure-tone audiograms of both ears are shown by age

period. (A) At age 20–39, all individuals have mid-frequency hearing loss. At age 40–49 (B) and age 50–59

(C), all ears have moderate to profound hearing loss at the frequencies of 4 and 8 kHz, and consequently

some ears show high-frequency hearing loss. (D) At age 60 or older, all ears show profound HL with or without

residual hearing at the lower frequencies.

https://doi.org/10.1371/journal.pone.0177636.g002
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Japanese monosyllabic word list (67-S), was available for one individual (family 12: II-6). The

average hearing threshold (0.5, 1, 2, and 4 kHz) was 45 dB when wearing the cochlear implant.

The maximum speech discrimination score improved from 0% at 100 dB sound pressure level

(SPL) prior to implantation to 70% at 70dB SPL with the implant.

Discussion

MPS has facilitated the detection of causative variants for HL even in small families. Fourteen

variants in POU4F3 have been reported previously (Table 3). Among the 14 variants, seven

were detected by targeted MPS technology [10–14, 17, 18]. In the present study, we imple-

mented targeted MPS for a large series of HL patients, and found an additional 12 novel

POU4F3 likely pathogenic variants from 15 unrelated families. The incidence of POU4F3 vari-

ants was 0.6% (15/2,549) among the families with hereditary HL, and 2.5% (15/602) among

the families with autosomal dominant HL in the Japanese population. This finding shows that

POU4F3 variants represent the third largest cause of autosomal dominant HL in Japan, follow-

ing KCNQ4 variants (6.6%) [36] and TECTA variants (2.9%) [37]. Therefore, POU4F3 is an

important deafness gene in autosomal dominant HL patients, particularly in patients with

mid- or high-frequency HL.

Table 3. Summary of clinical features associated with POU4F3 variants from previous studies.

HL Pure-Tone Audiometry

Nucleotide

Change

Exon Amino Acid

Change

Domain Onset Progression Severity of HL Audiometric

Configuration

Family

Origin

Reference

whole deletion of POU4F3 11–13 y Yes moderate to

profound

MF, HF Brazil Freitas,

2014

c.120+1G>C 1 0–40 y Yes moderate to

profound

flat China He, 2016

c.337C>T 2 p.Gln113Ter 14–40 y Yes moderate to

severe

flat, HF China Zhang,

2016

c.491C>G 2 p.Pro164Arg N/A N/A mild to

profound

flat, HF China Wei, 2014

c.602delT 2 p.Leu201fs POU-

specific

16–30 y Yes mild to

profound

HF China Cai, 2016

c.603_604delGG 2 p.Val203fs POU-

specific

N/A N/A N/A N/A China Yang, 2013

c.662_675del14 2 p.Gly221fs POU-

specific

20 y N/A severe HF Korea Lee, 2010

c.668T>C 2 p.Leu223Pro POU-

specific

4–44 y Yes mild to severe flat, MF, HF Netherland Collin, 2008

c.694G>A 2 p.Glu232Lys POU-

specific

20’s N/A moderate to

severe

HF Korea Beak, 2012

c.865C>T 2 p.Leu289Phe Homeobox 13–20 y Yes mild to

profound

flat, MF, HF Netherland Collin, 2008

c.884_891del8 2 p.Ile295fs Homeobox 18–30 y Yes moderate to

severe

HF Israel Vahava,

1998

c.932T>C 2 p.Leu311Pro Homeobox 10–20 y Yes moderate to

profound

HF China He, 2016

c.977G>A 2 p.Arg326Lys Homeobox 10–50’s N/A mild to

moderate

flat, HF Korea Kim, 2013

c.1007delC 2 p.Ala336fs 0 y Yes moderate to

severe

N/A Japan Mutai, 2013

Abbreviations: y, year(s) old; HL, hearing loss; HF, high-frequency hearing loss; MF, mid-frequency hearing loss; NC: not classified; N/A, not available

https://doi.org/10.1371/journal.pone.0177636.t003
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Nine of the previously reported 14 POU4F3 variants exist within the two DNA-binding

domains, the POU-specific and Homeobox domains (Table 3). In the present study, five vari-

ants were located in the POU-specific domain, and three variants were located in the

Homeobox domain. The other two frameshift variants and a nonsense variant were predicted

to result in the absence of the two DNA-binding domains. The two DNA-binding domains

play a crucial role in the high-affinity binding DNA of the POU transcription factor. The

mechanism by which POU4F3 variants lead to HL remains unknown. However, functional

studies have suggested that POU4F3 variants within the POU-specific domain (p.Leu223Pro)

or Homeobox domain (p.Leu289Phe, and p.Ile295fs) decrease the binding ability to target

DNA, reduce activation of reporter gene expression, and /or are partially mislocalized in the

cytoplasm [8, 38]. In addition, although heterozygous Pou4f3 +/- mice had normal hearing [4],

the whole deletion of POU4F3 has been reported to be responsible for HL in a DFNA15 family

[19]. Based on these findings, haploinsufficiency rather than a dominant-negative effect is

thought to be the most likely mechanism underlying the HL.

The onset age and degree of HL in DFNA15 patients have been reported to vary markedly

even within the same family [39]. Similarly, the onset and severity of HL in the affected indi-

viduals in our study exhibited wide variations. Kim et al. [12] reported that a missense variant

in POU4F3 caused late-onset HL. In order to clarify whether variant type affected the onset of

HL, we investigated the relationships between age and PTA according to variant type. The

association between age and PTA in the bilateral ears of the 15 probands in our series and of

eight probands in previously reported DFNA15 families [3, 8–10, 12, 17, 19] is plotted in Fig 3.

When serial audiograms could be obtained for an individual, we used the PTA from the first

audiogram and the age at testing. The results suggested that probands with missense variants

show later onset and faster progression of HL compared to those with nonsense, frameshift

variants, or a whole deletion. Alternatively, a truncating variant may cause earlier onset and

slower progression of HL compared to a non-truncating variant.

Previous studies reported that DFNA15 results in progressive HL. Pauw et al. [39] per-

formed a linear regression analysis of cross-sectional audiometric data in a large Dutch family

with a p.Leu289Phe variant. The average threshold progression rate (dB/year) was 1.0 at 4 kHz

and 1.4 at 8 kHz, which were slightly higher than the approximate rate of 0.8 observed across

the frequencies from 0.25 to 2 kHz. In our study, all individuals for whom information could

be obtained, complained of progressive HL. Serial audiograms available for two unrelated indi-

viduals showed hearing deterioration, especially at the lower and higher frequencies. Overlap-

ping audiograms for each age period showed that hearing at 4 and 8 kHz was predominantly

affected with age. Taken together, the progression of HL appears to be relatively slow at the

middle frequencies.

In the present study, mid- and high-frequency HL type audiometric configurations were

most commonly observed in patients with POU4F3 variants. This finding is consistent with

those in previous studies, as shown in Table 3. However, all affected ears showed mid-fre-

quency HL during the period from 20–39 years of age, whereas some affected ears had high-

frequency HL from 40–59 years. Therefore, the audiometric configuration may depend on the

age at testing in some ears.

Laterality in HL has not been mentioned in previous studies. However, we found a differ-

ence of>10 dB in PTA between the right and left ears in approximately 20% of affected indi-

viduals. Asymmetric hearing can be recognized in patients with other types of nonsyndromic

hereditary HL, including DFNB4 caused by variants in SLC26A4 [40], and DFNA9 caused by

COCH variants [41]. A patient with SLC26A4 or COCH variants can show transient or perma-

nent asymmetric HL because of fluctuating and/or acute deterioration in HL. In the present

study, one individual suffered from acute deterioration in hearing during the course of HL.
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Therefore, acute deterioration of hearing may be one of the causes for asymmetric hearing in

DFNA15 patients.

Among a number of nonsyndromic deafness genes, variants in SLC26A4, COCH, MYO7A,

GRHL2, and CLIC5 as well as POU4F3 are known to cause vestibular symptoms and/or dys-

function [42]. In 19 patients with p.Leu289Phe variants in a large Dutch DFNA15 family, eight

patients had moderate to severe vestibular symptoms, and 15 patients showed abnormal find-

ings on vestibular-ocular examination and/or caloric testing [43]. In this study, three individu-

als underwent caloric testing and cVEMP. As a result, one individual exhibited unilateral

abnormal findings on both vestibular examinations on the more severe HL side. By contrast,

four (17%) out of 23 affected individuals suffered incidences of vertigo/dizziness; however,

most individuals did not undergo vestibular examination. We should, therefore, pay more

attention to vestibular function in patients with POU4F3 variants.

We previously reported that genetic screening using MPS is important in patients who are

scheduled for cochlear implants or electric acoustic stimulation [44]. In this study, patients

who had variants in nonsyndromic deafness genes known to be localized and function in the

inner ear showed satisfactory auditory performance, suggesting that the identification of the

Fig 3. Association between pure-tone average (PTA) and age. The association between age and PTA in

the bilateral ears of 15 probands (black circles) in our study and eight probands (white squares) in previously

reported DFNA15 families are plotted according to variant type; truncating (nonsense, frameshift variants, or a

whole deletion) variants (A) and non-truncation (missense) variants (B).

https://doi.org/10.1371/journal.pone.0177636.g003
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genetic background was useful in predicting postoperative performance. There have been no

previous reports describing cochlear implantation for patients with POU4F3 variants. In our

series, two individuals with bilateral profound HL underwent cochlear implantation. We were

able to evaluate postoperative status in one of the two individuals, with the results showing

good auditory performance after cochlear implantation. However, more detailed postoperative

auditory tests in a larger number of DFNA15 patients are needed to clarify the performance of

cochlear implants.

In conclusion, this study using MPS successfully identified 12 novel and likely pathogenic

variants, and estimated the incidence of POU4F3 variants to be 2.5% in Japanese families with

autosomal dominant HL. Pure-tone audiograms for our affected individuals showed that the

most prevalent configuration was mid-frequency HL type followed by high-frequency HL

type, and approximately 20% of the affected individuals showed asymmetry in hearing. Indi-

viduals with truncating variants tended to show earlier onset and slower progression of HL

compared to those with non-truncating variants, suggesting a possible genotype-phenotype

correlation in DFNA15 patients.
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