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Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in
detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about
quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent
studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may
underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate
qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition.
Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the
cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms
of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has
shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation
in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and
how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening
our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative
resistance.

INTRODUCTION

Plants must defend themselves from a variety of potential op-
portunistic microbial pathogens that employ a variety of virulence
strategies. For example, biotrophic pathogens feed off resources
derived from living host tissue, and successful biotrophs have
found methods to avoid or interfere with the host immune re-
sponse (Dangl and Jones, 2001; Jones andDangl, 2006; Bent and
Mackey, 2007). Biotrophic pathogens appear to derive evolu-
tionarily from commensal microbial species commonly found on
plants in microbiome studies (Lundberg et al., 2012; Ortega et al.,
2016). By contrast, necrotrophic pathogens actively attempt to
destroy living host tissue and use the dead tissue for nutrients
(Mengiste, 2012). Necrotrophic pathogens appear to be evolu-
tionarily derived from saprophytic microbes that feed off naturally
senesced plant tissue in the environment (Kohler et al., 2015). In
addition to feeding lifestyle (necrotroph versus biotroph), patho-
gens can be described according to their host range, either as
specialists or generalists, whereby specialist pathogens are

adapted to a very narrow host range and typically have robust
means of overcoming the defenses for that range of hosts (Fan
et al., 2011). By contrast, generalist pathogens are adapted to
a broad range of host plants, but the mechanism(s) enabling this
broadhost rangeareunknown.Tosurvive, aplantmust accurately
detect and appropriately respond to each of these differential
pathogenic strategies.
Qualitative plant resistance traits produce discrete classes of

resistant and susceptible individuals and segregate as simple
Mendelian loci; quantitative plant-pathogen interactions produce
a continuous distribution of phenotypes from susceptible to re-
sistant, so individuals do not group into discrete classes. A sig-
nificant body of current plant pathology research has focused on
examples of qualitative resistance, where the underlying genetic
architecture relies on a fewgenes of large effect that are amenable
to detailed molecular analysis (Figure 1). By contrast, the genetic
architecture underlying quantitative resistance is thought to in-
volvemanygeneswithsmall tomoderateeffects (Figure1) (Poland
et al., 2009; St Clair, 2010; Roux et al., 2014; Niks et al., 2015).
However, quantitative resistance governs the outcome of the vast
majority of host-pathogen interactions.Manyquantitativedisease
resistance loci have beenmapped over the past decades, but the
total number of genes controlling variation in quantitative re-
sistance remains unknown in any system.
The biological complexity of quantitative resistance and the

technical complexity of identifying the underlying genes have
hindered detailed molecular analysis of the causal genes. To
address this knowledge gap, systematic studies are investigating
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thegeneticunderpinningsofquantitative resistanceusingmodern
mapping populations with improved power and resolution, such
as in Southern maize leaf blight (Bipolaris maydis) and gray leaf
spot (Cercospora zeae-maydis) in maize (Zea mays) (Kump et al.,
2011; Benson et al., 2015), Sclerotina sclerotiorum in soybean
(Glycine max) (Kim and Diers, 2000), Alternaria solani in tomato
(Solanum lycopersicum) (Foolad et al., 2002; Zhang et al., 2003),
and Botrytis cinerea in Arabidopsis thaliana (Denby et al., 2004;
RoweandKliebenstein, 2008;Corwin et al., 2016b). These studies
are developing a better understanding of the genetic architecture
driving quantitative resistance and identifying the causal loci
controlling this variation.

Tests that directly assess if the genes driving quantitative re-
sistance include or resemble known components of the innate
immune system are illuminating key aspects of quantitative re-
sistance (Jones and Dangl, 2006; French et al., 2016). Typically,
these innate immunity genes consist of plasma membrane-
localized receptor-likekinases (RLKs)and/orcytoplasmicNod-like
receptors (NLRs) that detect thepresenceof apathogenicmicrobe
and initiate the appropriate immune response (Figure 2, I). Alter-
natively, quantitative resistance genes may have functions not
previously associated with disease resistance (Figure 2, II and III)
(Poland et al., 2009). Characterizing the interplay of innate im-
munity and quantitative resistance is critical to understand the
evolutionaryselectivepressures that shapequantitative resistance.
For example, this knowledgewould allow us to evaluate if variation
in quantitative resistance loci is primarily driven by endemic
pathogens constantly present within the host’s environment or if

these genes are predominantly responding to the transient pres-
ence of epidemic pathogens. Currently, evolutionary studies on
resistance genes focus on qualitative resistance genes linked to
epidemicpathogens that havepredictableboom-and-bust disease
cycles. Understanding the evolutionary pressures on quantitative
resistance loci is necessary for the development of crops with
durable resistance to some pathogens and to broaden our un-
derstanding of plant-microbe interactions. Here, we review studies
that are beginning to illuminate how the different levels of defense,
perception, signaling, and output contribute to quantitative re-
sistance (Figure 2). Additionally, wediscuss existing limitations and
potential solutions that may give finer precision andmore inclusive
answers to the issues described above.

POLYGENIC ARCHITECTURE OF QUANTITATIVE
RESISTANCE

Quantitative resistance is by definition polygenic since the con-
tinuous distribution of heritable phenotypes must result from
combinations of genetic loci. In this review, we use the purely
quantitative definition of quantitative resistance,where resistance
is a quantifiable trait that typically displays a continuous distri-
bution. This is in contrast to the alternative quantitative resistance
terminologies like partial resistance, where resistance is pheno-
typically incomplete allowing some pathogen growth, or durable,
where resistance is stable over longer evolutionary time frames
(Niks et al., 2015). The purely quantitative definition is inherently

Figure 1. Illustration Showing the Expected Difference in Phenotypes between Qualitative and Quantitative Resistance.

Qualitative resistance results inphenotypes thatfit intodistinct categoriesaccording toMendelian ratios.Geneticmappingofqualitative resistance results in
a single genetic locus that often maps to genes encoding RLK or NLR proteins. Alternatively, quantitative resistance cannot be easily categorized into
distinct groups where resistance adheres more to a continuous distribution of susceptible and resistant individuals. Genetic mapping of qualitative re-
sistancewill result ineithera largenumberofgenomic lociornogenomic loci associatedwith resistancedependingon thepowerandstringencyof statistical
testing within the experimental design.
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agnostic to the mechanisms underlying the trait or potential
outcomes. Additionally, the term partial resistance has an impli-
cation that total resistance is an achievable state, via bio-
technology or evolution, which may not be possible for some
pathogens. Illustrating the difficulty with the partial versus total
resistance terminology is a qualitative resistance to B. cinerea
within Solanum that is actually generated by a polygenic quan-
titative resistancearchitecture (Finkerset al., 2007a, 2007b,2008).

Part of this discrepancy in terminology arises from the fact that
developing a true picture of the depth and breadth of the genetic
architecture driving quantitative resistance has been largely lim-
ited by the mapping populations used to study the trait. These
mapping populations typically have been small, generally con-
sisting of <500 lines, and focused on discrete germplasm chosen
for studying specific resistance mechanisms, such as biparental
populations (St Clair, 2010). These small populations (<500 lines)
are greatly limited in their power to detect variable loci, especially
in cases where the underlying genetic architecture is highly
polygenic and likely contains epistatic loci (Falconer andMackay,
1996; Mackay, 2001, 2014; Manolio et al., 2009). This leads to an
underappreciated false-negative discovery rate that leads to an
underestimation of the true number of causal loci (Chan et al.,
2011; Joseph et al., 2014).

Higher power mapping populations are being developed to
alleviate this potential problem in two ways. The first is the use of

large multiparent populations, such as multiparent advanced
generation intercross (MAGIC) and nested association mapping
(NAM) populations, which address the power issue by greatly
increasing the number of lineswithin a population to 5000 ormore
(Stich et al., 2007; Buckler et al., 2009; McMullen et al., 2009). The
second is the use of genome-wide association (GWA) mapping
populations that use more lines and also utilize the increased
number of meiotic generations to provide increased recombi-
nation and potentially increased mapping resolution (Nordborg
et al., 2002, 2005; Nordborg and Weigel, 2008; Atwell et al.,
2010; Alonso-Blanco et al., 2016).
The 5000-line maize NAM population has been applied to the

study of quantitative resistance for a number of pathogens, in-
cluding southern leaf blight, and these studies are beginning to
illuminate a recurring pattern of resistance loci (Kump et al., 2011;
Belcher et al., 2012). This analysis identified a minimum of
32 quantitative trait loci (QTLs) using a single pathogen isolate.
Extending this study to investigate how the genetic map and the
quality of the phenotyping data influence the ability to detect loci
found that while the specific loci identified were sensitive to the
quality of the genetic map and the care taken in phenotyping, the
general pattern of total loci found and mechanisms affected was
unaltered. A similar number of loci were found to control northern
leaf blight in the same NAM population (Poland et al., 2011).
Analysis of these loci showed that they controlled the majority of

Figure 2. General Model for the Plant Innate Immune System.

The model can be split into (I) perception, (II) signal transduction, and (III) defense response. (I) Plant perception of damage-associated molecular patterns
(DAMPs) andMAMPsor PAMPs are detected either apoplastically via RLKs or symplastically via cytoplasmicNBS-LRRs. (II) Signal transduction of DAMPs
andMAMPs is performed by theMAP kinase cascade and a series of transcription factors, includingmembers of theWRKY family (not depicted). (III) Signal
transduction drives the production of specific defense responses, including reactive oxygen species (ROS) production, callose deposition, and other
specialized metabolism (represented here as camalexin). Importantly, the type of defense response can be shaped by either salicylic acid (SA) to drive
responses to biotrophic pathogens or JA to drive responses to necrotrophic pathogens and herbivores. In addition, ROSmay play a role, both as a defense
response (III) and a signal for shaping defense responses (II). NEP, necrosis and ethylene-inducing proteins.
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variance in the trait, but a significant fraction of heritable variance
hadnodetectable loci. Thecombinationofunexplainedheritability
and locus sensitivity to the map suggests that the loci found in
these studies are a fraction of the total number of loci actually
controlling the resistance. It remains to be seen if the identified loci
represent the majority of causal loci.

Interestingly, Bian et al. (2014) found an association between
flowering time and southern leaf blight resistance among lines
within theNAMpopulation. Controlling for this association did not
dramatically affect the number or identity of loci found associated
with resistance, but it raises the question of pleiotropy and po-
tential phenotypic trade-offs among traits in the measurement of
quantitative disease resistance. For instance, age-related re-
sistance demonstrates a trade-off where a plant’s resistance to
specific pathogens changes with the age of the plant. In an ag-
ronomic settingwhere optimal flowering time is predetermined by
agronomic practices, ontogenic changes linked to disease re-
sistance are not an option for breeding and are typically removed
from the analysis. For example, the analysis of quantitative re-
sistance to scab in apples was complicated by age-related re-
sistance that hindered someof themapping (Calenge et al., 2004).
However, in wild plants, linking disease resistance to ontogeny
may be a key adaptation to pathogen attack in the wild, where the
frequency of specific pathogen species or possibly even specific
genotypes of given pathogens may fluctuate seasonally. For
example, in grapes (Vitis vinifera), the occurrence of specific
genotypes of the generalist necrotrophic fungal pathogen,
B. cinerea, changes across seasons with distinct populations
occurring in different seasons and tissues (Fournier and Giraud,
2008; Johnston et al., 2014). However, even with the pre-
dominance of studies on agricultural pathogens, little is known
about the potential role of ontogenic variation in quantitative re-
sistance in the wild and how this affects selection on the un-
derlying loci. However, this does suggest that the loci identified
when mapping at a single life stage and a single environment are
merely a subset of the total possible loci controlling a specific
quantitative resistance trait.

Similar to multiparent intercross populations, GWAmapping of
genes controlling variation in quantitative resistance of Arabi-
dopsis to B. cinerea showed that the genetic architecture of re-
sistance was highly polygenic (Corwin et al., 2016b). Previous
mapping of quantitative resistance loci in small biparental map-
ping populations using Arabidopsis andB. cinerea had generated
the standard image of a fewmoderate-effect loci that were highly
dependent upon the specific mapping population (Denby et al.,
2004; Rowe and Kliebenstein, 2008). Extending this with GWA
mapping, Corwin et al. (2016b) suggested that there were likely
thousands of causal genes underlying the variation in quantitative
resistance to B. cinerea within Arabidopsis (Corwin et al., 2016b).
Resistance to B. cinerea among the Arabidopsis accessions in-
volved predominantly small-effect loci with no evidence of major-
effect resistance loci. This is in contrast to GWAmapping studies
in other Arabidopsis pathosystems containing known large-effect
loci that participate in gene-for-gene interactions (Atwell et al.,
2010). In these qualitative resistance pathosystems, the same
large effect loci were identified using biparental and GWA pop-
ulations (Aranzana et al., 2005; Atwell et al., 2010). The population
for theArabidopsis/B.cinereaGWAstudywasmorepowerful than

existing biparental populations, but it is still largely underpowered
given the number of accessions and the effects of residual
population structure (Chan et al., 2010; Platt et al., 2010; Brachi
et al., 2015). Therefore, in combination with the NAM studies and
the presence of ontogenic and environmentally conditional loci,
we still do not have the ability to identify all of the genes shaping
quantitative disease resistance and that future studies with even
more powerful populations are required.

GENOME-WIDE EXPRESSION QTL AND META-QTL
MAPPING EXPAND VIEWS OF QUANTITATIVE
RESISTANCE CAUSALITY

The extensive polygenic nature of quantitative resistance com-
plicates cloning and validation of the associated genes to fully
describe the functional mechanisms driving quantitative re-
sistance. To accomplish this with standard map-based cloning
approaches requiresmovingasmall-effect locus intoanotherwise
homogeneousbackground forfinemappingof the individual locus
(Zhang et al., 2006). In systems with dozens to thousands of
underlying causal loci, this locus-by-locus approach is a major
impedimentandmaynotmakefinancial sense for anybut themost
economically relevant crops. One approach to identify the po-
tential causal genes and/or mechanisms underlying quantitative
disease resistance is to combine genetic mapping with systems
biology approaches that attempt to identify multiple causal genes
and/or mechanisms in parallel (Chen et al., 2010). One example of
this systems approach to understand quantitative disease re-
sistance is the comparison of phenotypic resistance QTLs to gray
leaf spot to expression QTLs (eQTLs) mapped simultaneously
using a whole-transcriptome analysis of the maize recombinant
inbred line population (Christie et al., 2017). eQTLs are QTLs that
control the accumulation of specific transcripts within the map-
ping population and can be used to link cause and effect within
QTL mapping populations for a variety of traits (Hansen et al.,
2008; Keurentjes et al., 2008; Kliebenstein, 2009a). eQTL analysis
in themaize/gray leaf spotpathosystem identifiedeQTLhot spots,
regions with an overabundance of QTLs controlling the accu-
mulation of diverse transcripts, that overlapped with the disease
resistance QTLs. Analysis of the transcripts affected by these hot
spots showed that they were predominantly transcripts for po-
tential downstream defense mechanisms like metabolism and
defense proteins. One of the eQTL hot spot networks had amajor
hub gene encoding a maize ortholog of Arabidopsis CORONA-
TINE INSENSITIVE1 (COI1), suggesting that this network affects
the regulation of the jasmonic acid (JA) defense signaling pathway
(Benedetti et al., 1995; Xie et al., 1998). The COI1 transcript was
affected by this QTL in trans, meaning that theCOI1 genewas not
locatedwithin thephysicalboundariesof theQTL.Therefore,COI1
is not the causal gene for this locus and an unknown mechanism
alters the function of the JA signaling pathway. Thus, this ap-
proach allowed the identification of a mechanism associated with
aquantitative resistance locusbut identificationof thecausal gene
will require further effort.
Amechanistic comparisonbetweenqualitative andquantitative

resistance was generated using a comparative transcriptomic
study of how barley (Hordeum vulgare) resists stem rust (Druka
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et al., 2008;Moscou et al., 2011). The authors designed this study
to include qualitative and quantitative resistance loci, enabling an
explicit comparison of themechanisms underlying resistance loci
with different effect magnitudes. A quarter of the transcriptome
significantly responded to pathogen attack, and these responses
were dependent upon the underlying disease resistance loci.
Interestingly, the vastmajority of these transcriptswere controlled
by genetic variation at the quantitative resistance loci rather than
the qualitative resistance locus. The authors proposed a model
whereby the quantitative resistance loci primarily modulate the
transcriptome to shape the response in a way that optimized the
function of the qualitative resistance locus. This model is sup-
portedbystudies thatmapped large-effect disease resistance loci
and frequently found associated small-effect quantitative re-
sistance loci that epistatically affected the major-effect locus
(Debener et al., 1991; Martin et al., 1993).

The above systems approaches yielded mechanistic insight
into the quantitative resistance loci, but they had a difficult time
finding the causal genes because of a lack of recombination for
fine-mapping. One approach to fix this difficulty is to increase the
population size by developing new populations or adding to
existing populations. This solution requires that the new individ-
uals added to a population are independent from the existing
individuals; forGWAstudies, thismaynot feasible if there is strong
population structure or selection. An alternative approach is
to conduct a meta-analysis of existing data. The agricul-
tural importance of several pathosystems has motivated the
development of independent mapping populations to map
resistance to a specific pathogen. These populations are in-
dependent samples of genetic variation within the species that
can be combined to boost the available recombination and thus
boost mapping resolution, similar to the NAM concept (McMullen
et al., 2009). In wheat (Triticum aestivum), many studies have
mapped QTL for resistance to powdery mildew (Blumeria gra-
minis; Alam et al., 2011). Marone et al. (2013) conducted a meta-
analysis that combined these studies into a single QTL mapping
study. In this analysis, the authors used a variety of approaches to
identify genetic markers allowing them to combine the maps and
thus compare the underlying loci within the populations. This
greatly increased the genetic mapping resolution for the un-
derlying loci and allowed 24 QTLs to be positioned within smaller
mapping windows than was available in any individual mapping
study. This approach of reusing existing data to increase the
available recombination allows researchers to generate QTL lists
that are reproducible andmapped to finer scale resolution. These
QTLs will aid targeted breeding efforts and studies of the mo-
lecular mechanisms of disease resistance.

RELATIONSHIP OF ALLELIC EFFECT SIZE AND
MOLECULAR FUNCTION IN THE PATHOGEN RESPONSE
OF PLANTS

One key question is which mechanisms play a role in quantitative
resistance. This question arises because most loci controlling
plant/pathogen interactions are quantitative, but few have been
cloned, in contrast to the numerous large-effect loci that have
been cloned using QTL approaches. These large-effect loci often

havesufficiently largeeffects that theygray theboundarybetween
qualitative and quantitative resistance and they typically encode
upstream signaling components in the plant pathogen response
(Figure 2, I). For example, a major-effect locus controlling Arabi-
dopsis resistance to Xanthomonas campestris, RKS1, was found
to encode a kinase that appears to function in the signaling
pathway linking pathogen perception to defense response
(Huard-Chauveau et al., 2013). Cloning of two large-effect loci
controlling resistance to Fusarium oxysporum in Arabidopsis
identified one as a kinase and the other as a signaling peptide
(Diener and Ausubel, 2005; Shen and Diener, 2013). Similarly,
mapping of large-effect loci in wheat identified a novel kinase (Fu
et al., 2009). Supporting these observations thatmedium-to-large
effect loci appear to function inperception and/or signaling are the
largenumber of studies that investigated thequantitative genetics
of rice resistance to rice blast (Magnaporthe oryzae; Ballini et al.,
2008;Miah et al., 2013; Kang et al., 2016; Raboin et al., 2016). The
vastmajority of cloned loci encodeRLKsorNLRs, suggesting that
themajority of causal loci are in genes controlling the detection of
the pathogen. However, it is important to note that these large-
effect RLKs and NLRs drive the immune response through
a network of downstream genes, many of which likely contain
polymorphisms with some impact on their function.
NAMandGWAmapping approaches are providingmethods for

identifying small-to-moderate effect loci and yielding more detail
about the underlying mechanisms. In contrast to the largely up-
stream mechanisms (i.e., perception and signaling) described
above for moderate-to-large effect loci, studies on quantitative
resistance of predominantly small-effect loci in maize suggested
that the majority of potential causal genes affected downstream
resistance mechanisms (Kump et al., 2011; Belcher et al., 2012)
(Figure 2). The predominant class of genes linked to these loci as
potential causal genes were those involved in downstream de-
fense mechanisms including defensins, pathogenesis-related
proteins, and secondary metabolite enzymes. The next largest
group of causal loci encoded potential transcription factors that
can influence the response to defense hormones like salicylic acid
andethylene. Interestingly, the smallest classof identified lociwas
in potential microbe- or pathogen-associated molecular pattern
(MAMP/PAMP) signaling components, implying that quantitative
disease resistance in maize is a function of a variety of cellular
processes and not simply pathogen detection. Similarly,
a quantitative disease resistance locus in maize against gray leaf
spot was linked to a flavin mono-oxygenase (FMO) that was
hypothesized to be a potential detoxification enzyme to alleviate
the virulence effects of cercosporin, a toxin produced by the
pathogen (Benson et al., 2015). However, FMOs typically add an
oxygen to a nitrogen or sulfur and there is no obvious molecular
reaction for theFMOwithcercosporin, suggesting that itmayhave
a role in the plant defense response like FMO1 in Arabidopsis
(Bartschet al., 2006;MishinaandZeier, 2006;Hansenet al., 2007).
While this together suggests that there is a divergence in the
mechanisms altered by large-effect and small-effect quantitative
resistance loci in maize, there is currently no extensive molecular
validation on these results.
Similar observations about small-to-moderate effect loci were

found using GWA mapping in the Arabidopsis/B. cinerea pa-
thosystem (Corwin et al., 2016b). This analysis showed that there
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was a slight but significant enrichment in likely quantitative re-
sistance causal genes being in MAMP/PAMP signaling mecha-
nisms. However, this accounted for only a tiny fraction of the
associated causal genes. Instead, the vast majority of causal
genes encoded proteins involved in intermediate signal trans-
duction and downstream defense response mechanisms. In-
terestingly, the majority of these genes had not been previously
linked to B. cinerea resistance using traditional biparental pop-
ulations or Mendelian mutation genetics and represent potential
new defense mechanisms. This included vesicle-associated
genes required tomovedefensecompounds, primarymetabolism
genes likely involved in reprogramming plant metabolism, genes
in cell wall synthesis and function, and sugar metabolism. Im-
portantly, the study was able to show that these causal gene
predictions validate with a nearly 60% frequency using insertional
mutants. The candidate genes chosen for validation were
randomly selected, suggesting that there should be a similar
rate of validation for the full candidate gene list. This same
approach for calling candidate genes was previously shown to
have a greater than 60% success rate, while a corresponding
analysis of genes with no GWA evidence showed almost no
effect on the traits analyzed (Chan et al., 2011; Francisco et al.,
2016). Thus, while the full gene list is not yet validated, the
experimental evidence supports the general observations from
this list. Together with the maize NAM results, this indicates
that quantitative resistance genes are predominantly altering
specific defense mechanisms like defense metabolite or cell
wall synthesis with less of a role for variation in the detection of
specific pathogens and corresponding signaling mechanisms
to coordinate the response.

QUANTITATIVE BASIS OF PATHOGEN PERCEPTION

Even with the above NAM and GWA studies, there is still a sig-
nificant power issue hindering the identification all of the causal
genes underlying quantitative disease resistance variation. This is
illustrated by comparisons of power analysis within the 5000 line
NAM population to the actual results for flowering time mapping
whereby the statistical power analysis shows that there is likely
a significant false negative error rate leading to missed loci within
this population (Buckler et al., 2009; McMullen et al., 2009).
Similarly, a meta-analysis showed that it is not possible to esti-
mate the number of causal loci that vary between any two ac-
cessionsevenwhenusingArabidopsispopulationsup to500 lines
(Joseph et al., 2014). A further complication arises from the ob-
servation that when crossing two individuals there is often sig-
nificant transgressive segregation for quantitative resistance.
Thus,evena resistantgenotypedoesnotsolelycontainalleles that
positively contribute to resistance. Instead, an individual genome
contains a blend of genes with some genes containing the sen-
sitive allele while other genes contain a resistance allele. Thus, the
phenotype is the sum of the positive and negative alleles across
myriad genes andmechanisms. One avenue to simplify the study
of quantitative resistance is to focus on one specific mechanism
that contributes to the phenotype and to analyze variation in that
mechanism. For example, general studies of genetic diversity
have suggested that while there is significant genetic variation in

resistance genes in planta, the associated signaling genes are
potentially under purifying selection and not playing a role in
quantitative resistance (Bakker et al., 2006, 2008).However, this is
based solely on sequence variation in the absence of empirical
testing within one or more defined pathosystems.
A recent study directly tested if quantitative disease resistance

maybecausedbygenetic variation incomponentsdownstreamof
MAMP/PAMP perception by applying MAMPs to a plant and
measuring the quantitative response to these MAMPs (Vetter
et al., 2016). The authors applied the well-studied MAMPs, EF-Tu
and flagellin, to Arabidopsis accessions and mapped the down-
stream response (Boller and Felix, 2009; Zipfel, 2014; Vetter et al.,
2016). In addition to mapping natural variation, this allowed the
authors to test if the downstream signaling pathways are identical
between the twoMAMPs as is the general assumption. Therewas
extensive natural variation in the response to both MAMPs sug-
gesting that signaling components linking growth to the response
to pathogen signals may partly control quantitative disease re-
sistance.Furthermore, thequantitativegrowth response tobothof
these MAMPs was highly polygenic in the accession and the loci
underlying this differential responsewere largely unique to theone
or the other MAMP, suggesting that the MAMPs target different
pathways to alter growth in Arabidopsis (Vetter et al., 2016).
Validation of a subset of these loci confirmed the independence of
the signaling pathways controlling the response to these different
MAMPs.This is incontrast to thecommonassumption thatMAMP
signaling pathways should be canalized to create a common
response to diverse input stimuli.
Most studies on the detection of pathogens have focused on

MAMP/PAMP signals found as a part of a large effect gene-for-
gene resistance pathosystem. Extending these studies to other
detection events has been facilitated by the advent of modern
genomics approaches where genomics surveys have identified
suites of bacterial virulence effectors independent of a specific
virulence function (Lee et al., 2012). These effector surveys have
shown that pathogens send a large suite of signals into the plant
that if eachwas sensed and responded toby an independent suite
of polymorphic genes could lead to a highly polygenic response
system. Thus, it is possible to find neweffectors and directly test if
there is quantitative variation in the response to these pathogen
signals that could control quantitative disease resistance by al-
tering how the plant perceives the pathogen. Using a delivery
disarmed Pseudomonas syringae, a study was conducted
whereby a single effector, HopAM1, was delivered to Arabidopsis
and used to identify quantitative natural variation in the response
to this effector (Iakovidis et al., 2016). This showed that the plant’s
response to this quantitative effector was controlled by a large
number of variable loci. This was equally true when testing GWA
mapping populations aswell aswhen conductingQTLmapping in
several recombinant inbred line populations. Interestingly, work in
maize is identifying some of the genes underlying this polygenic
response by finding that some downstream components of the
effector detection are enzymes in defense metabolite pathways
(Wang et al., 2015;Wang andBalint-Kurti, 2016). Thus, dissecting
the quantitative basis of individual downstream mechanisms can
aid in identifying the causal genes underlying this response, but
even the response to single smaller effect pathogen signals is
quantitative and polygenic in nature.
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PATHOGEN GENETICS AND ITS IMPACT ON BROAD-
SPECTRUM RESISTANCE

A common assumption and justification for studying quantitative
resistance loci is that it may be a source of resistance that is more
stable than the large-effect loci, i.e., durable resistance (Poland
et al., 2009; StClair, 2010; Roux et al., 2014;Niks et al., 2015). This
assumption is associated with a common inference that the
smaller to moderate effect loci found in quantitative resistance
confer broad-spectrum resistance either to multiple genotypes of
thesamepathogenor tomultiple pathogens. For example, studies
of Arabidopsis quantitative resistance to F. oxysporum showed
that the variable loci controlled resistance toan arrayof races from
this pathogen (Diener andAusubel, 2005; Shen andDiener, 2013).
Similarly, Arabidopsis quantitative resistance loci against
X. campestris were also effective against diverse pathogen iso-
lates (Debieu et al., 2016). However, these studies illustrate
a conundrum in the literature about the term “broad spectrum.”
Most quantitative resistance studieswith natural variation limit the
term to a broad spectrum of isolates of a single pathogen and not
necessarily to multiple pathogens (Hutin et al., 2015; Zhang et al.,
2015a).

However, acontrasting image isobtainedwhenusinggeneralist
pathogens such as B. cinerea that show elevated genetic and
phenotypic diversity in an array of virulence-associated pheno-
types (Rowe and Kliebenstein, 2007; Staats et al., 2007;
Williamson et al., 2007; Amselem et al., 2011; Atwell et al., 2015;
Corwin et al., 2016a). Mapping of B. cinerea quantitative re-
sistance lociwithinmultiple plant species shows that the identified
loci are highly dependent upon the specific pathogen genotype
utilizedand typically notbroadspectrum (Denbyetal., 2004;Rowe
and Kliebenstein, 2008; Rowe et al., 2010; Corwin et al., 2016a;
Finkers et al., 2007b, 2008; Zhang et al., 2016). An isolate de-
pendency on the identification of quantitative disease resistance
has also been found for the generalist S. sclerotiorum when
studying sunflower (Helianthus annuus; Davar et al., 2011). This
dependency on pathogen genotype is not limited to generalist
necrotrophs as it has also been found in specialist biotrophs. For
example, Arabidopsis and tomato quantitative resistance to di-
verse P. syringae lines was largely dependent on the pathogen
genotype (Thapa et al., 2015; Kover and Schaal, 2002; Kover and
Cheverud, 2007). Thus, quantitative or partial resistance is not
inherently broad spectrum and durable, and it remains to be
determinedhowgenesunderlyingquantitative resistance relate to
broad-spectrum resistance.

Considering thedifferent axesof diversity in thehost, pathogen,
and microbial community, we may have to reconsider how we
definebroad-spectrum resistance. Theobservation that genes for
specific resistance mechanisms like secondary metabolism may
predominantly control quantitative disease resistance loci raises
the possibility that quantitative resistance and quantitative viru-
lence are linked. Anexample of this ariseswithinP. syringaewhere
Brassica-specialized isolates contain specific genes, SURVIVAL
IN ARABIDOPSIS EXTRACTS (SAX), that allow them to detoxify
Brassica-specific defense compounds called glucosinolates
(Sønderby et al., 2010; Fan et al., 2011). These defense com-
pounds are highly polymorphic in both structure and content
within the Brassica including Arabidopsis (Wentzell et al., 2007;

Kliebenstein, 2009b). This generates the possibility that variation
in the P. syringae SAX loci can interact with the plants genetic
variation in the associated defense compound to generate
quantitative resistancewithin the interaction. Thesesamedefense
compounds provide resistance to a number of other pathogens
including nonhost microbes that each may also vary in their
sensitivity to thecompounds (Mithenetal., 1986,1987;Stotzetal.,
2011; Zhang et al., 2015b; Bednarek and Osbourn, 2009;
Bednarek et al., 2009; Clay et al., 2009). This generates a potential
systemwherebyaplant has variation indefensecompoundswhile
a multitude of pathogens also have genetic variation in the ability
to detoxify specific plant defense metabolites when investigated
(Pedras and Khan, 1997; Pedras and Ahiahonu, 2002, 2005;
Pedras et al., 2011). This suggests that we need a new thesis that
moves beyond the categorical classification of plant/pathogen
interactions such that nonhost, host, and broad-spectrum re-
sistance are intricately linked and simply revolve around the ability
of a host to create a defense and a pathogen to counter that
defense. Within this model, because there is genetic variation in
the defense and the counter-defense, broad spectrum quanti-
tative resistance becomes the ability to resist specific isolates
from a broad array of pathogens but not the ability to resist all
genotypes of a set of pathogen species. It will be interesting to
develop a system that can directly test the role of host and
pathogen variation in shifting quantitative resistance across
pathogen species.

CONCLUSIONS AND PERSPECTIVES

The above studies are rapidly illuminating the genetic basis of
quantitative resistanceandhow thegenetic variation isdistributed
across the entirety of the plant’s disease response from detection
of the pathogen to signaling to specific output resistance
mechanisms. Together with analysis of the pathogen, this is
developing a more integrated understanding of what is and is not
possible in generating disease resistance against one or more
pathogens in a single plant genotype. For example, the manip-
ulation of a specific defensemetabolitemay provide resistance to
specific genotypes of a diverse array of host and nonhost
pathogens, but given the presence of diverse detoxification
mechanisms across all possible pathogens, it will not provide the
long sought broad-spectrum, stable resistance. In a natural set-
ting, this suggests that quantitative resistance genes are re-
sponding to the blend of pathogens in a specific environment
rather than a single predominant pathogen and that it may be
better to consider the evolution and variation at these loci in that
light.
While the mechanisms for quantitative resistance are gradually

coming into focus, the true scale of howmanygenesmay causally
influence the trait is still out of focus. This is especially true when
one considers the polygenic nature of variation in specificdefense
mechanisms that combine to create the final resistanceoutput. To
address this question, the community needs to develop tools and
concepts that can fully encapsulate the possibility that quanti-
tative resistance to a specific pathogenmay involve 10%or more
of the genes in a given organism. While this may not be imme-
diately necessary or useful in the applied context of the agronomic
fieldandcrop improvement, this is likelyhowselectionhasshaped
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quantitative resistance in wild plants including crop progenitors.
Thus, it is essential to develop a complete understanding of the
full polygenic nature of quantitative resistance both using
models with tens to thousands of genes and with new mapping
populations that have the possibility to test what is the finite limit
to the number of causal genes within a species for resistance to
a pathogen.
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