JOURNAL OF BACTERIOLOGY, Jan. 2005, p. 649-663
0021-9193/05/$08.00+0 doi:10.1128/JB.187.2.649-663.2005

Vol. 187, No. 2

Copyright © 2005, American Society for Microbiology. All Rights Reserved.

The hrpK Operon of Pseudomonas syringae pv. tomato DC3000

Encodes Two Proteins Secreted by the Type 111 (Hrp)
Protein Secretion System: HopB1 and HrpK,
a Putative Type III Translocator

Tanja Petnicki-Ocwieja,"*+ Karin van Dijk,'t and James R. Alfano'*

Plant Science Initiative and Department of Plant Pathology' and School of Biological Sciences,>
University of Nebraska, Lincoln, Nebraska

Received 29 July 2004/Accepted 4 October 2004

Pseudomonas syringae is a gram-negative bacterial plant pathogen that is dependent on a type III protein
secretion system (TTSS) and the effector proteins it translocates into plant cells for pathogenicity. The P.
syringae TTSS is encoded by hrp-hrc genes that reside in a central region of a pathogenicity island (Pai).
Flanking one side of this Pai is the exchangeable effector locus (EEL). We characterized the transcriptional
expression of the open reading frames (ORFs) within the EEL of P. syringae pv. tomato DC3000. One of these
ORFs, PSPTO1406 (hopB1) is expressed in the same transcriptional unit as ArpK. Both HopB1 and HrpK were
secreted in culture and translocated into plant cells via the TTSS. However, the translocation of HrpK required
its C-terminal half. HrpK shares low similarity with a putative translocator, HrpF, from Xanthomonas campes-
tris pv. vesicatoria. DC3000 mutants lacking HrpK were significantly reduced in disease symptoms and
multiplication in planta, whereas DC3000 hopBl mutants produced phenotypes similar to the wild type.
Additionally, ~irpK mutants were reduced in their ability to elicit the hypersensitive response (HR), a pro-
grammed cell death associated with plant defense. The reduced HR phenotype exhibited by hrpK mutants was
complemented by hrpK expressed in bacteria but not by HrpK transgenically expressed in tobacco, suggesting
that HrpK does not function inside plant cells. Further experiments identified a C-terminal transmembrane
domain within HrpK that is required for HrpK translocation. Taken together, HopBl1 is a type III effector and

HrpK plays an important role in the TTSS and is a putative type III translocator.

Pseudomonas syringae is a host-specific gram-negative bac-
terial pathogen that requires a type III protein secretion sys-
tem (TTSS) to be pathogenic (4, 29). Its TTSS secretes two
classes of proteins: helper or accessory proteins that assist in
the translocation or “injection” of the other class of proteins,
termed effectors. Collectively, both types are called Hop pro-
teins (for Hrp outer proteins) because they are secreted by the
P. syringae TTSS. The TTSS apparatus is encoded by hrp genes
(hypersensitive response [HR] and pathogenicity genes). Arp
genes were named as such because mutants identified in ge-
netic screens lost their pathogenic ability and failed to elicit the
HR, a programmed cell death associated with plant defense.
Recently, the P. syringae pv. tomato DC3000 genome sequence
was completed (9). Genomic approaches to identify additional
Hops in DC3000 have increased the total Hop inventory to
more than 30 (18). The role that most of these proteins play in
bacterial plant interactions is unknown. However, several ef-
fectors have recently been shown to be capable of suppressing
plant defense responses (1, 16, 22, 25, 37, 46, 72).

A subset of P. syringae effectors are named avirulence (Avr)
proteins because they were originally isolated due to their
ability to stop a virulent pathogen from being pathogenic on
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specific host plants that contained a corresponding resistance
(R) gene, a phenomenon referred to as gene-for-gene resis-
tance (50). The nature of the host specificity displayed by P.
syringae pathovars is not completely understood, but it is at
least partially due to the number of type III effectors that are
recognized as Avr proteins by the R protein surveillance sys-
tem of the host plant’s innate immune system.

To better understand host specificity and pathogenicity of P.
syringae pv. tomato DC3000, it is important to define the com-
plete effector inventory. One logical region of the genome to
search was within the pathogenicity island that encoded the
TTSS apparatus (3). The central region of this pathogenicity
island contains the Arp-hre genes that encode the TTSS appa-
ratus. Flanking this central region are the conserved effector
locus (CEL) and the exchangeable effector locus (EEL), which
appear rich in effector and helper genes (3). DC3000 CEL
mutants are reduced in their ability to grow in plants and cause
disease symptoms (3). Recently, this phenotype has been
shown to be due to the effectors AvrE and HopPtoM, which
are encoded by genes within the CEL (7, 22). In contrast,
DC3000 EEL mutants have a subtle reduction in the produc-
tion of disease symptoms and growth in planta (3). However,
the DC3000 EEL contains several candidate effector genes,
including two that possess active HrpL-dependent promoters
(27, 76). The EEL is variable even between closely related
strains of P. syringae, and analyzing EELs from different P.
syringae strains has been useful as a strategy to identify new
effector genes as well as to provide insights into differences,
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similarities, and evolutionary relatedness of P. syringae strains
(3, 13, 24).

The hrpK gene is located in the conserved hrp-hrc cluster at
the border of the EEL in P. syringae (3, 13, 24, 57). The role
HrpK plays in type III secretion is unknown. hrpK mutants
show variable HR phenotypes on plants (8, 57). P. syringae
hrpK mutants retain their ability to secrete the HrpZ harpin in
culture, suggesting that HrpK is not an essential component of
the P. syringae TTSS apparatus (17). Additionally, the pre-
dicted N-terminal end of HrpK shares the characteristics of P.
syringae type 111 secreted proteins, suggesting that HrpK is a
secreted protein (63).

Animal pathogen TTSSs utilize accessory proteins called
translocators to deliver or translocate effector proteins across
the plasma membrane into mammalian host cells. In the pro-
totypical Yersinia TTSS, YopB, YopD, and LerV act as trans-
locators (19). Yersinia mutants defective in these proteins se-
creted Yop effectors in culture at a level similar to that of the
wild type, but they failed to deliver effectors into host cells (35,
68, 71). Other data are consistent with these proteins acting as
a translocon complex. For example, they are all capable of
interacting with each other (61, 68), each can form pores in
liposomes (35, 39, 61), and they cause the release of small-
molecular-weight dyes (but not larger-molecular-weight dyes)
from mammalian cells (58). Other well-studied animal patho-
gen TTSSs also have translocators identified on the basis of
similar criteria (10, 28, 43, 45).

Less is known about type III translocators in plant patho-
gens. Translocating effectors into plant cells may be signifi-
cantly different than effector translocation into animal cells
because the plant cell wall may act as an additional barrier.
Harpin helper proteins secreted by a number of TTSS-contain-
ing plant pathogens may act as translocators, since the P. sy-
ringae HrpZ harpin forms pores in artificial lipid bilayers (5,
56). However, P. syringae hrpZ mutants are not significantly
altered in their ability to grow in planta or in effector (Avr)
protein translocation (2), which would be predicted if the bac-
terium lacked a major component required for translocation.
However, DC3000 is known to contain multiple harpins, which
may mask a translocator phenotype (9, 14).

A putative translocator, HrpF, has been identified in Xan-
thomonas campestris pv. vesicatoria. X. campestris pv. vesicato-
ria ArpF mutants secrete proteins via the TTSS in culture but
fail to translocate proteins into plant cells (66). Moreover,
HrpF can form pores in artificial lipid bilayers, consistent with
it acting as a translocator (11). HrpF has homology with NolX,
a type III secreted protein from Sinorhizobium fredii whose
function is unknown (42, 54).

Here, we report the identification of two additional proteins,
HrpK and HopBl, that are secreted via the DC3000 TTSS.
Both HrpK and HopBl1 are translocated into plant cells.
HopB1 contributes little to virulence, whereas HrpK contrib-
utes to symptom production and growth in planta. We present
evidence that indicates that HrpK is a type III translocator for
the P. syringae TTSS.

MATERIALS AND METHODS

Bacterial strains, plasmids, primers, and media. Bacterial strains and plas-
mids used in this work are listed in Table 1. All primers used for plasmid
constructions are listed in Table 2. Escherichia coli strains DH5a and DH5aF’
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lacI9 were grown in Luria-Bertani broth at 37°C. P. syringae pv. tomato DC3000
and Pseudomonas fluorescens 55 strains were grown in King’s B broth (KB) at
30°C or hrp-inducing fructose minimal medium at 22°C (44, 52). Antibiotics were
used at the following concentrations (micrograms per milliliter): ampicillin, 100;
chloramphenicol, 20; gentamicin, 10; kanamycin, 50; rifampin, 100; spectinomy-
cin, 50; and tetracycline, 20.

Plasmid construction. The Gateway cloning system (Invitrogen, Carlsbad,
Calif.) was used to generate many of the constructs used in the experiments
described, following the manufacturer’s instructions. Briefly, entry constructs
were made in pENTR with the pENTR/D-TOPO Gateway cloning kit. The
following entry constructs were generated: pLN293 (hrpK), pLN420 (hopBI),
pLNO916 (hrpK_3s,), pLN1157 (hrpK,_467), pLN1158 (hrpK_sg,), pLN1159
(hrpK_g08), PLN1160  (hrpKary), pLN1161  (rpKsgporn), and pLN1162
(hrpKgorm)- The primer sets used to amplify the inserts recombined into
pENTR for each of the constructs are as follows: P638-P639, pLN293; and
P1245-P1246, pLN420. For pLN916, the PCR product obtained with primers
P638 and P1073 was digested with EcoRV and the 1.1-kb fragment (correspond-
ing to amino acids 1 to 382 of HrpK) isolated was recombined into pENTR. The
remaining constructs were generated with the QuikChange Site-Directed mu-
tagenesis kit (Stratagene, La Jolla, Calif.) with pLN293 as template DNA with
the following primer sets: P1509-P1510, resulting in pLN1157; P1511-P1512,
resulting in pLN1158; P1513-P1514, resulting in pLN1159; P1281-P1282, result-
ing in pLN1160; P1373-P1374, resulting in pLN1161; and P1392-P1393, result-
ing in pLN1162.

For HR complementation studies, we constructed a broad-host-range Gate-
way destination vector by cloning the Gateway cassette from pLN461 with a
hemagglutinin (HA) epitope tag into pBBRIMCS-5 (53) as a Xhol-Sacl frag-
ment generating construct pLN677.

For complementation of the pHIR11 ArpK mutation, we first PCR amplified a
gentamicin resistance cassette from pBBRIMCS-5 (53) with primers P278 and
P279 and cloned it as a BamHI-EcoRI fragment into pRG930, resulting in
pLN1155 (73). Afterwards, ArpK with its native promoter was PCR cloned into
pLN1155 with primers P101 and P277 and BamHI, generating construct pLN174.

Generation of hopB1 and hrpK mutants. The DC3000 nonpolar ArpK mutant
(UNL111) and the DC3000 hopBI mutant (UNL130) were generated by similar
strategies. Fragments (each, 2 kb) were PCR amplified upstream and down-
stream of each gene. For hopB1, we used P35-P36 and P37-P38 primer sets for
the upstream and downstream fragments, respectively. For arpK, we used P209—
P210 and P355-P356 primer sets for the upstream and downstream fragments,
respectively. The adjacent fragments for each gene were separately cloned into
pCPP2988 (2) in the same orientations on either side of an nptII gene lacking
transcriptional terminators. The DNA fragments containing each mutation and
nptll were cut out with Xbal and Kpnl and cloned into the broad-host-range
vector pRK415 (51), resulting in constructs pLN825, which carries an hopBl
mutation, and pLN826, which carries an hrpK mutation. These constructs were
separately electroporated into DC3000 and homologous recombination was se-
lected for by selecting for retention of the antibiotic marker (Km) linked to the
mutation and loss of the plasmid marker (Tc). Each mutant was confirmed by
PCR and Southern analysis.

The hrpK polar mutation, UNL132, was generated in a way similar to the
above mutations, except that 2-kb fragments from hrpK were PCR cloned on
either side of a Sp’/Sm" omega fragment from pHP45 (26) with the primer sets
P139-P140 and P141-P142, generating construct pLN884. The fragment con-
taining this mutation was cut out of pLN884 as an Xbal-Kpnl fragment and
cloned into pRK415, resulting in pLN882, which was subsequently electropo-
rated into DC3000. The ArpK polar mutation was recombined into the chromo-
some as described above.

Constructing the hrpK mutation in cosmid pHIR11. A BamHI-Sacl fragment
from pLN877 that carried a part of the hrp-hrc cluster containing the P. syringae
pv. syringae 61 hrpK gene was digested with Sall. A 1.6-kb fragment starting from
within the coding region of irpK and extending downstream was cloned into
pCPP2988. A 2.2-kb EcoRI fragment, which represented a hrpK upstream frag-
ment, was cut out of pLN877 with Xbal and EcoRV and then cloned adjacent to
the Sall fragment, resulting in pLN827. This construct was electroporated into E.
coli C2110 (pHIR11). C2110 is a polA temperature-sensitive mutant. Thus,
incubation of C2110 (pHIR11) (pLN827) at 42°C forced pLN827 to recombine
into pHIR11 because ColE1 plasmids cannot replicate without pol4 (48). Low-
ering the temperature to 30°C allowed the ColE1 plasmid pLN827 to recombine
back out of pHIR11. A recombinant pHIR11 derivative containing an ArpK
deletion mutation was identified by PCR and named pLN468. This construct was
subsequently conjugated into P. fluorescens 55 for the experiments described.

RNA isolation and RT-PCR. DC3000 was grown in either Arp-inducing fruc-
tose minimal medium at 22°C or KB at 30°C overnight. RNA was isolated with
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TABLE 1. Strains and plasmids

Strain or plasmid Characteristics Reference or source
Strains
E. coli
C2110 PolA", Nal" 48
DB3.1 F~ gyrA462 endA1 A(srl-recA) mcrB mrr hsdS20(rg~ mg~ ) supE44 ara-14 galK2 lacY1 Invitrogen
proA2 rpsL20 (Sm") xyl-5N" leu mtl-1
DH5« supE44 AlacU169 ($80lacZAM15) hsdR17 recAl endAl gyrA96 thi-1 relA1 Nal 36; Life Technologies
DHSaF’ lacld F' proAB™ lacI® lacZAM15 zzf::Tn5 supE44 AlacU169 ($80lacZAM15) hsdR17 recAl Life Technologies

endAl gyrA96 thi-1 relA1 Nal"

P. fluorescens

55 Wild type, Nal 41
P. syringae pv. phaseolicola
NPS3121 Wild type, spontaneous Rif" 49
P. syringae pv. tomato
DC3000 Wild type, spontaneous Rif" 21
DC3000-ArcC hreC::TnphoA, type I1I-deficient mutant, Rif" Crn" 75
UNLI111 DC3000 nonpolar ArpK deletion, Rif" Km" This work
UNL130 DC3000 hopBI deletion, Rif" Km* This work
UNL132 DC3000 containing a polar omega fragment in ArpK, Rif" Sp*/Sm" This work
Plasmids
pAvrRpt2-600 pDSK600 derivative containing avrRpt2, Sp'/Sm” 64
pBBRIMCS-5 Broad-host-range cloning vector, Gm" 53
pBC SK(+) Cloning vector, Cm" Stratagene
pBluescript II KS(+) Cloning vector, Ap" Stratagene
pBluescript II SK(+) Cloning vector, Ap" Stratagene
pCPP2089 pHIR11 derivative containing TnphoA insert into ArcC, Tc" Km" 40
pCPP2318 pCPP30 derivative carrying blaM lacking signal peptide sequences, Tc" 15
pCPP2988 pBluescript I KS(—) vector carrying the nptlI cassette lacking a transcriptional 2
terminator, Ap" Km"
pCPP3234 Gateway destination pVLT35 derivative containing the adenylate cyclase (cya4) gene 69
for C-terminal fusions, Sp"/Sm" Cm"
pCPP3297 pLNI18 derivative containing unmarked /rcC mutation, Tc" Km" 69
pDSK600 Broad-host-range cloning vector, Sp'/Sm" 60
pENTR/D-TOPO Gateway system donor vector, Km"® Invitrogen
pFLAG-CTC FLAG expression vector, Ap" Sigma Chemical Co.
pHIR11 pLAFR3 containing a functional TTSS from P. s. syringae 61 40
pHP45Q Sp/Sm Vector containing an Sp'/Sm" omega fragment with transcriptional and translational 26
terminators, Ap" Sp"/Sm"
pML123 Broad-host-range cloning vector, Gm" Km" 55
pPZP212 Agrobacterium tumefaciens binary vector, Km" 35
pQE30 N-terminal His¢-tag expression vector, Ap" Qiagen
pRGY30 Broad-host-range cloning vector lacking a vector promoter, Sp"/Sm" 73
pRK415 Broad-host-range vector, unstable in absence of selection, Tc" 51
pUCIS8 Cloning vector, Ap" 74
pVLT35 Broad-host-range cloning vector containing lacl9, Sp"/Sm" 23
pLNI18 pHIR11 derivative with shcA and hopPsyA mutations, Tc" Km" 47
pLNS57 pQE30 derivative containing hopB1g9_456, Ap" This work
pLN60 pBBRIMCS-5 derivative carrying a hopBI-avrRpt2g,_,ss fusion, Gm" This work
pLN62 pBBRIMCS-5 derivative carrying avrRpt2g,_,ss with an RBS, Gm" This work
pLN63 Derivative of pML123 that contains hopB1, Gm" Km" This work
pLN64 Derivative of pML123 that contains a hrpK-FLAG gene fusion, Gm" Km" This work
pLN65 pBBRIMCS-5 derivative carrying a hrpK,_s99-avrRpt2g,_,ss fusion, Gm" This work
pLN174 pRGI30 derivative that contains ArpK with its native promoter and a Gm" cassette, This work
Sp"/Sm" Gm"
pLN265 pPZP212 derivative containing hrpK-ha, Km" This work
pLN293 pENTR/D-TOPO derivative carrying a hrpK PCR-amplified fragment, Km" This work
pLN377 pCPP3234 derivative obtained by recombination with pLN293 carrying ArpK, Sp'/Sm* This work
pLN420 pENTR/D-TOPO derivative carrying hopBI, Km" This work
pLN421 pCPP3234 derivative obtained by recombination with pLN420 carrying hopBI, Sp*/Sm"  This work
pLN468 pHIR11 derivative with a ArpK mutation, Tc" Km" This work
pLN677 Gateway destination pPBBR1IMCS-5 derivative containing a hemagglutinin (HA) tag This work
for C-terminal fusions, Gm" Cm"
pLN774 pLNG677 derivative obtained by recombination with pLN293 carrying /rpK, Gm" This work
pLNS825 pRK415 derivative containing a hopB1 mutation, Tc" Km® This work

Continued on following page
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TABLE 1—Continued

J. BACTERIOL.

Strain or plasmid Characteristics Reference or source
pLN826 pRK415 derivative containing a hrpK nonpolar mutation, Tc" Km® This work
pLNS&27 pCPP2988 derivative containing a ArpK mutation, Ap" Km" This work
pLN8&77 pUC18 derivative containing a BamHI-Sacl fragment from the left side of pHIR11, This work

Ap"
pLN882 pRK415 derivative containing the ArpK polar mutation, Tc" Km" This work
pLNS883 pFLAG-CTC containing a PCR-amplified hrpK fragment, Ap" This work
pLN884 pBC SK(+) derivative containing the ArpK polar mutation, Cm" Sp*/Sm" This work
pLNO915 pBBRIMCS-5 derivative carrying a hrpK-avrRpt2g,_,ss fusion, Gm" This work
pLNO916 pENTR/D-TOPO derivative carrying hrpK,_35,, Km" This work
pLNO17 pCPP3234 derivative obtained by recombination with pLN916 carrying hrpK,_s5,, Sp'/ This work
Sm’
pLNO921 pBBRIMCS-5 derivative carrying avrRpt2g, 555, Gm" This work
pLN1157 pENTR/D-TOPO derivative carrying hrpK,_ 447, Km" This work
pLN1158 pENTR/D-TOPO derivative carrying hrpK,_sg,, Km" This work
pLN1159 pENTR/D-TOPO derivative carrying hrpK,_gg, Km* This work
pLN1160 pENTR/D-TOPO derivative carrying hrpKpy, Km® This work
pLN1161 pENTR/D-TOPO derivative carrying hrpKsg, 1, Km® This work
pLN1162 pENTR/D-TOPO derivative carrying hrpKg 1y, Km® This work
pLN1163 pLN677 derivative obtained by recombination with pLN917 carrying hrpK,_s5,, Gm" This work
pLN1164 pLN677 derivative obtained by recombination with pLN1157 carrying hrpK,_447,, Gm" This work
pLN1165 pLNG677 derivative obtained by recombination with pLN1158 carrying ArpK,_sg,, Gm" This work
pLN1166 pLN677 derivative obtained by recombination with pLN1159 carrying hrpK,_s0s, Gm" This work
pLN1167 pLN677 derivative obtained by recombination with pLN1160 carrying hrpKry, Gm* This work
pLN1168 pLN677 derivative obtained by recombination with pLN1161 carrying hrpKsg, s This work
Gm"
pLN1169 pLN677 derivative obtained by recombination with pLN1162 carrying hrpKgoy, Gm” This work
pLN1170 pCPP3234 derivative obtained by recombination with pLN1157 carrying hrpK,_4¢7, This work
Sp"/Sm*
pLN1171 pCPP3234 derivative obtained by recombination with pLN1158 carrying hrpK,_sg, This work
Sp"/Sm*
pLN1172 pCPP3234 derivative obtained by recombination with pLN1159 carrying hrpK,_gs, This work
Sp"/Sm*
pLN1173 pCPP3234 derivative obtained by recombination with pLN1160 carrying hrpK,ry, Sp'/  This work
Sm"
pLN1174 pCPP3234 derivative obtained by recombination with pLN1161 carrying ArpKsg, s This work
Sp"/Sm*
pLN1175 pCPP3234 derivative obtained by recombination with pLN1162 carrying hrpKg) 1, This work

Sp"/Sm*

guanidinium thiocyanate-saturated hot phenol (pH 6.6) (Ambion, Austin, Tex.)
(67) at 60°C and extracted twice with phenol:chloroform:isoamyl alcohol and
twice with chloroform:isoamyl alcohol. RNA was precipitated with ammonium
acetate and ethanol and resuspended in water. Samples were treated with DNase
I (Ambion) according to the manufacturer’s instructions. DNA was made from
the isolated RNA with the Pro-Star HF Single Tube reverse transcriptase PCR
(RT-PCR) kit (Stratagene). DNA fragments were amplified with PCR under the
following conditions: 25 cycles of 95°C for 30 s, 52°C for 2 min, and 68°C for 4
min. After amplification, PCRs were run on a DNA agarose gel to determine the
genes that were transcribed. The primer sets used for RT-PCR and the expected
product size were as follows: arpL-hrpJ junction (780 bp), P350-P340; hpK (2.3
kb), P128-P129; hrpK-hopBI junction (430 bp), P141-P327; hopBI (1.4 kb),
P338-P339; tnpA’ (840 bp), P333-P334; PSPTO1409 (846 bp), P325-P326;
PSPTO1410 (411 bp), P331-P332; and PSPTO1411 (405 bp), P323-P324. South-
ern analysis was separately performed on RT-PCR products to confirm that each
PCR product corresponded to the genes from the DC3000 EEL.

Generation of anti-HopB1 antibodies. To purify HopB1 for antibody produc-
tion, we PCR cloned a fragment corresponding to amino acids 189 to 456 of
HopB1 with primers P132 and P133 and cloned it into pQE30 (QIAGEN,
Valencia, Calif.) using BamHI and Sall restriction enzymes generating construct
pLNS57. This construct produces a product containing an N-terminal six-histidine
residue (Hisg) fused to HopB1,g9_4s6-

E. coli DH5aF’ lacI9 carrying pLN57 was grown to an optical density at 600 nm
(ODggy) of 0.6 and induced with 1 mM isopropyl-B-D-thiogalactopyranoside
(IPTG) (Sigma-Aldrich, St. Louis, Mo.) for 3 h. His,—HopB1 4945, Was purified
under denaturing conditions in 8 M urea with the Ni-nitrilotriacetic acid metal
chelate resin as described in the His-tag expression and purification manual
(QIAGEN). Purified HopBl1 g9.45 Was sent to the University of Illinois at Ur-

bana-Champaign Immunological Research Center, where the samples were in-
jected into a rabbit to generate anti-HopB1,g9.45¢ polyclonal antibodies. The
crude antiserum we received was preabsorbed against extracts of E. coli DH5a
and DC3000, which was grown under conditions that do not express type III-
related products.

Type III secretion experiments. To detect type III secreted proteins in the
supernatants of DC3000 cultures, we cloned hrpK and hopBI into broad-host-
range vectors. hopB1 was PCR cloned into pML123 (55) with primers P17 and
P18 as a BamHI-HindIII fragment, generating construct pLN63. The hrpK-
containing construct was made by PCR amplification with primers P224 and P226
and was cloned into pFLAG-CTC (Sigma-Aldrich) as an XhoI-Kpnl fragment,
generating construct pLN883, which produces HrpK fused to a C-terminal
FLAG peptide. The hrpK-flag gene fusion was amplified from pLLN883 with
primers P224 and P225 and cloned into pML123 as an XhoI-BamHI fragment,
creating construct pLN64.

To perform type IIT secretion assays, pLN63 and pLN64 were mobilized into
DC3000, the DC3000 ArcC mutant pLN63 was mobilized into UNL130, and
pLN64 was mobilized into the irpK mutant UNL132. Pseudomonas strains were
grown overnight on KB plates containing appropriate antibiotics. DC3000 and
DC3000 carrying either pLN63 or pLN64 were inoculated at an ODgq of 0.3 in
hrp-inducing minimal medium at 22°C and grown for 6 h. All cultures also
contained plasmid pCPP2318 (14), which encodes the mature B-lactamase lack-
ing its signal peptide and thus remains in the cytoplasm. Cell and supernatant
fractions were separated, and the protein was precipitated as previously de-
scribed (63). Proteins were separated on sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) 10% gels and transferred to membranes for
immunoblotting with each of the following primary antibodies: anti-FLAG (Sig-
ma-Aldrich), anti-B-lactamase (Chemicon International, Temecula, Calif.), or
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TABLE 2. Primer information

Primer no. Primer nucleotide sequences® Enzyme sites
P17 5'-AGTAAAGCTTATGATGCTGTTTCCAGTA-3’ HindIIT
P18 5'-AGTAGGATCCTGAAATGTAGGGGCCCGG-3’ BamHI
P35 5'-AGTACTCGAGGAATCCAGACGTGAGGCT-3’ Xhol
P36 5'-AGTAGGTACCTCGTCGGACCTGATTGTG-3’ Kpnl
P37 5'-AGTATCTAGAATCGCCCGATTGCAGCGG-3’ Xbal
P38 5'-AGTAGGATCCTCCTGCAGCTTGCGCAGT-3’ BamHI
P46 5'-ATGCGGATCCATGCGCCTTCGCAATCCC-3’ BamHI
P101 5'-ATGCGGATCCTCAATGCGCCCTGTCAAT-3’ BamHI
P128 5'-ATCGAAGCTTGGCAACTCACCATGCGTA-3’ HindIIT
P129 5'-AGTCGAATTCATGCGCCTTCGCAATCCC-3’ EcoRI
P132 5'-AGTAGTCGACTCACGAGACAACAACGTC-3’ Sall
P133 5'-AGTAGGATCCTCGGAAGGTCGGGACCAC-3’ BamHI
P139 5'-ATGCTCTAGAGTGTGGCATCGCGCTGAA-3’ Xbal
P140 5'-ATGTGGATCCGGTACTTTGGAATCGGGG-3’ BamHI
P141 5'-ACGCGAATTCTGAGGGCGGACCGTCCAT-3’ EcoRI
P142 5'-ATTCGGTACCACCTCAGTAGCGAGGCCG-3’ Kpnl
P209 5'-TGCGTCTAGAGAGCTGCTTTTGTTCCTG-3’ Xbal
P210 5'-ATGTGGATCCAGGAGTGGGTTGGTTCAC-3’ BamHI
P219 5'-AGCGAAGCTTGCTGTAAGACTTCGGTTT-3’ HindIIT
P224 5'-GCACCTCGAGTGGAACCAACTTGCACCT-3’ Xhol
P225 5'-ATGTGGATCCTCACTTGTCATCGTCGTC-3’ BamHI
P226 5'-ATGTGGTACCATGCGCCTTCGCAATCCC-3’ Kpnl
P277 5'-ATGCGGATCCTGCCTGAGTGGTTATCTG-3’ BamHI
P278 5'-ATGCGGATCCCTGTTTCCTGTGTGAAAT-3’ BamHI
P279 5'-ATGCGAATTCCACATTTCCCCGAAAAGT -3’ EcoRI
P313 5'-AGTAAAGCTTTGAAAATGTCGGGGCCCGG-3' HindIIT
P316 5'-AGTAGGATCCGACCTTATAGGAAAGCCT -3’ BamHI
P318 5'-AGTAGGATCCCACGAGACGGGCGGTTCA-3’ BamHI
P319 5'-AGTAAAGCTTCACGAGACGGGCGGTTCA-3’ HindIIT
P320 5'-AGTATCTAGACTTAGCGGTAGAGCATTG-3’ Xbal
P323 5'-AACAAGATCGTCTACGTA-3’

P324 5'-GCTTGCAGACGACTGAAA-3’

P325 5'-TCTCGAAGGAATGGAGCA-3’

P326 5'-CGTGAAGATGCATTTCGC-3’

P327 5'-TCACGAGACAACAACGTC-3’

P331 5'-CGCGCGTATAAAAACCTG-3’

P332 5'-CTTTTTAGCGGCAGACGG-3’

P333 5'-ATGGGATTTTTACGTCCG-3’

P334 5'-TTACAGGCGCACCTCTCC-3’

P338 5'-ATGATGCTGTTTCCAGTA-3’

P339 5'-CGCGGAGATTCAATCATG-3’

P340 5'-AACTTGTGCTCGTTACGC-3’

P350 5'-CCAGAACCTGTTTCAGAT-3’

P355 5'-GCATGGTACCCATCAGGATCGCCAGATG-3’ Kpnl
P356 5'-GCATCTCGAGCATAACGTTGATCCGGTG-3’ Xhol
P366 5'-ATGAAAGCTTGGAGGCCTAATCATGCACGAGACGGGCGGTTCA-3' HindIIT
P391 5'-AGCTGGATCCTTAGCGGTAGAGCATTGC-3’ BamHI
P562 5'-AGTCGAATTCAACAATGCGTATATCCAGTTCTC-3' EcoRI
P638 5'-CACCACTCTCGGAAGGCAACTAACAATGCGT-3’

P639 5'-ATGCGCCTTCGCAATCCCGAA-3'

P754 AGTCGGATCCTCATGCATAATCAGGTACATCATAAGGATAATGCGCCTTCGCAATCCC BamHI
P1073 5'-ATGAGGATCCACCGCTGTAAGACTTGGG-3’ BamHI
P1245 5'-CACCCGTACGCGGAGATTCAACAATGAGACC-3’

P1246 5'-GACCTTATAGGAAAGCCTCACGTCTGG-3'

P1281 5'-GGGCGTCTGGGCGGACAGATGGATGCTGTGAAAAAGCATAAGGC -3’

P1282 5'-GCCTTATGCTTTTTCACAGCATCCATCTGTCCGCCCAGACGCCC-3'

P1373 5'-GCGGTGGCCGGGATTGATATCGGGC-3'

P1374 5'-CATCTGTCCGCCCAGACGCCCGATAT-3'

P1392 5'-GGCGGGGCAGCTGCCAATGGGCGTCTGGGCGGACAGATG-3'

P1393 5'-CATCTGTCCGCCCAGACGCCCATTGGCAGCTGCCCCGCC-3

P1509 5'-GGTCCGCAGTGATGCCGGTGGGCGCGCCGACC-3

P1510 5'-GGTCGGCGCGCCCACCGGCATCACTGCGGACC-3

P1511 5'-GCCGATAACCAGAAAGGGTGGGCGCGCCGACC-3'

P1512 5'-GGTCGGCGCGCCCACCCTTTCTGGTTATCGGC-3"

P1513 5'-GCGAAGCCTCAGCCGGGGTGGGCGCGCCGACC-3

P1514 5'-GGTCGGCGCGECCCACCCCGGCTGAGGCTTCGC-3

¢ Restriction enzyme sites are in boldface type.
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anti-HopBl1. Primary antibodies were recognized by goat anti-mouse or anti-
rabbit immunoglobulin G-alkaline phosphatase conjugate secondary antibodies
(Sigma-Aldrich) and visualized on autoradiographs with the Western-Light
chemiluminescence system (Tropix, Bedford, Mass.).

AvrRpt2 translocation assays. To perform AvrRpt2 translocation assays, we
made a plasmid construct to facilitate making effector fusions to AvrRpt2, which
lacks its own secretion signals. A fragment corresponding to amino acids 81 to
255 of AvrRpt2 (AvrRpt2g,.,s5) was PCR amplified from pAvrRpt2-600 (64)
with primers P318 and P320 and cloned into pBBRIMCS-5 (53) with BamHI-
Xbal, generating construct pLN921. Constructs containing hopBI-aviRpt2g, 555
and hrpK-avrRpt2g, 55 gene fusions were generated in a similar manner. hopBI
was PCR amplified from DC3000 with primers P313 and P316 and cloned as a
HindIII-BamHI fragment into pLN921, generating construct pLN60. ArpK was
PCR amplified from DC3000 with primers P224 and P102 and cloned into
pLN921 as an Xhol-BamHI fragment, generating construct pLN915. To make a
construct that encoded a fusion of the first 399 amino acids of HrpK with
AvrRpt2g; 555, we PCR cloned hrpK 399 from DC3000 with primer set P224-
P219 into pBluescript II SK(+) with Xhol and HindIII. We next PCR cloned
avrRpt2g, 555 from pAvrRpt2-600 template DNA into the pBluescript II SK(+)
derivative containing 4rpK;_s¢o such that they were in frame with each other by
using the primer set P319-P391 and HindIIl and BamHI restriction enyzmes.
The hrpK, _399-avrRpt2g, 555 fusion was cut out of pBluescript II SK(+) as an
XhoI-BamHI fragment and cloned into pBBRIMCS-5, generating construct
pLN65. We made an AvrRpt2g, 55 construct that included an functional ribo-
somal binding site upstream of the avrRpt2-truncated gene for a negative control
in translocation assays. This construct was generated by PCR amplification of
avrRpt2g, 555 from pAvrRpt2-600 with primers P366 and P320. The fragment was
ligated into pBBRIMCS-5 as HindIII-Xbal, generating construct pLN62.

Constructs that encoded different AvrRpt2 fusions were electroporated into P.
syringae pv. phaseolicola NPS3121. P. syringae pv. phaseolicola strains were
resuspended in 5 mM MES (morpholineethanesulfonic acid), pH 5.6, at an
ODgq of 0.1 and infiltrated into Arabidopsis thaliana Col-0 with a needleless
syringe. Plants were observed for the elicitation of the HR within 24 h.

Pathogenicity and HR assays. pENTR constructs pLN293 (hrpK), pLN916
(hrpKy 3s5), PLN1157 (hrpK, 467), PLN1158 (hrpK sg;), PLN1159 (hipK| eos),
pLN1160 (hrpKaram), pPLN1161 (hrpKsgy rv), and pLN1162 (hrpKgg.ry) were
used for LR recombination reactions with the Gateway LR reaction cloning kit
(Invitrogen) with pLN677, a Gateway destination vector that produces products
fused to a C-terminal HA tag generating pLN774, pLN1163, pLN1164, pLN1165,
pLN1166, pLN1167, pLN1168, pLN1169, respectively. These constructs were
used for complementation experiments with the DC3000 ArpK mutant UNL111.

To perform pathogenicity assays and in planta bacterial growth assays, tomato
(Lycopersicon esculentum cv. Moneymaker) and A. thaliana Col-0 were dip-
inoculated into bacterial suspensions at an ODg, of 0.2 in 10 mM MgCl, with
0.02% silwet L-77 (Lehle Seeds, Round Rock, Tex.) and sampled as previously
described (25). Symptoms were recorded 4 days after infection. To perform HR
assays, DC3000 strains were infiltrated into Nicotiana tabacum cv. Xanthi at an
ODyg of 0.2 (2 X 10® cells/ml) in 5 mM MES (pH 5.6) along with 10-fold serially
diluted samples with a needleless syringe and observed for the elicitation of an
HR at 24 h. P. fluorescens 55 (pHIR11) strains were infiltrated into N. tabacum
cv. Xanthi plants with a needleless syringe at an ODy, of 0.4 and observed for
the elicitation of an HR at 18 h.

Adenylate cyclase (CyaA) translocation assay. All constructs used in CyaA
assays were generated with the Gateway cloning system (Invitrogen). The
PENTR constructs pLN293 (hrpK), pLN916 (hrpK, _3g,), pLN1157 (hipK|_467),
PLN1158 (hrpK,_sg5), pLN1159 (hpK,_go5), pLN1160 (hrpKaty), pLN1161
(hrpKg5.1), and pLN1162 (hrpKg.1y) Were used for LR recombination reac-
tions with pCPP3234 (69) with the Gateway LR reaction cloning kit (Invitrogen),
resulting in constructs pLN377, pLN917, pLN1170, pLN1171, pLN1172,
pLN1173, pLN1174, and pLN1175, respectively. These constructs made HrpK or
HrpK truncations fused to CyaA fusions at their C termini and were used in Cya
translocation experiments.

The procedure for CyaA translocation assays was described in Schechter et al.
(69). Briefly, DC3000 and the ArcC type I1I-deficient mutant carrying the appro-
priate constructs were infiltrated into N. benthamiana plants at an ODg, of 0.6
in 5 mM MES (pH 5.6) containing 100 pM IPTG. Plants were sampled at 7 h
with a 0.8-cm cork borer. Leaf disks were ground in liquid nitrogen and resus-
pended in 300 pl of 0.1 M HCI. Protein concentrations were measured by the
Bio-Rad (Hercules, Calif.) protein assay. Cyclic AMP (cAMP) was quantified
using the Correlate-EIA Direct cAMP Enzyme Immunoassay kit (Assay Designs,
Ann Arbor, Mich.) according to the manufacturer’s instructions.

Generation of HrpK transgenic plants. To make transgenic tobacco plants
that constitutively express HrpK, the 35S promoter and the 35S terminator were
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cut out of pRTL2 with EcoRI-HindIII and HindIII-BamHI, respectively. hrpK
fused at its 3’ end with a nucleotide sequence corresponding to an HA tag was
PCR amplified with primers P754 and P562. hrpK-ha was cloned downstream of
the 35S promoter in the binary vector pPZP212 (34), resulting in construct
PLN265. Agrobacterium tumefaciens C58C1 carrying pLN265 was used to trans-
form N. tabacum cv. Xanthi via the leaf disk method. Transformants were
selected on plates containing 150 mg of kanamycin/liter. T1 generation plants
used in our experiments were assayed for production of HrpK-HA by grinding
1-cm-diameter leaf disks in liquid nitrogen and resuspending the plant tissue in
200 wl of 1X SDS tracking buffer. Samples were run on SDS-PAGE, and an
immunoblot analysis was performed with high-affinity anti-HA antibodies
(Roche, Indianapolis, Ind.) as described above.

RESULTS

RT-PCR analysis of the DC3000 exchangeable effector locus.
Sequence analysis of the EEL in DC3000 found several open
reading frames (ORFs) that could be type III related (Fig. 1A)
(3). Two OREFs in this region, PSPTO1408 and hrpK, were
preceded by Hrp box-containing promoters, suggesting that
they might be HrpL regulated (3). Downstream of ArpK in the
DC3000 EEL is PSPTO1406. Based on its proximity to hrpK,
we suspected that hirpK and PSPTO1406 were part of the same
transcriptional unit. To test this and to determine which ORFs
within the EEL were transcribed, we used RT-PCR. RNA was
isolated from DC3000 grown in KB, a rich medium, which is
known to suppress hrp gene expression and in Arp-inducing
conditions (Fig. 1B). In rich medium, primer sets for each
OREF produced RT-dependent PCR products corresponding to
every ORF, with the exception of PSPTO1408, PSPTO1409,
hipK, and PSPTO1406 (Fig. 1B). All of these ORFs are down-
stream of potential Hrp boxes, which may be repressed in rich
conditions. When RNA was isolated from DC3000 grown in
hrp-inducing conditions, RT-dependent PCR products were
obtained for all ORFs including PSPTO1408, PSPTO1409,
hrpK, and PSPTO1406, indicating that the Hrp promoters up-
stream of ArpK and PSPTO1408 were active (Fig. 1C). Addi-
tionally, based on RT-dependent amplification of DNA span-
ning the ArpK and PSPTO1406 junction, these two genes are
cistronic (Fig. 1C). We confirmed that all RT-PCR products
corresponded to the EEL by noting by Southern analysis that
they hybridized to an EEL probe (Fig. 1D). Taken together,
our results indicate that all of the ORFs are transcribed. How-
ever, only the ORFs downstream of Hrp boxes were dependent
on hrp-inducing conditions for their expression, and hrpK and
PSPTO1406 are together in an operon.

HrpK and PSPTO1406 (HopB1) are secreted via the TTSS.
To establish whether ArpK and PSPTO1406 encoded proteins
secreted by the TTSS, we performed culture secretion assays.
Antibodies were raised against the product of PSPTO1406,
and these were used to determine whether natively expressed
PSPTO1406 was secreted. However, the product of
PSPTO1406, while expressed in hrp-inducing conditions, was
detected only in small amounts, which precluded us from de-
termining whether the native product was type III secreted
(Fig. 2A). The PSPTO1406 product was not detected in ex-
tracts made from DC3000 grown in KB, a rich medium (data
not shown). These experiments provided further evidence that
hrpK and PSPTO1406 were in an operon, since we were not
able to detect PSPTO1406 protein in extracts from the ArpK
polar mutant UNL132 (Fig. 2A).

To test whether PSPTO1406 and HrpK were secreted via the



VoL. 187, 2005 HopB1 AND HrpK FROM PSEUDOMONAS SYRINGAE 655

A

I Exchangeable Effector Locus hrp/hre Cluster Conserved Effector Locus I

PSPTO:1411 1410 1409 1408 tnpA’ 1406-hopB1  hrpK " hrplL hrpJ
— 4+— ¢—— 11— < Bt —>

T H H _HH_H __H HOHTF
8
3 2

f::: - .-'. -‘
TS L A AL | B9

FIG. 1. RT-PCR analysis of the P. syringae pv. tomato DC3000 EEL confirms that ArpK and PSPTO1406 are polycistronic and that both
predicted Arp promoters in the EEL region are active. (A) Organization of the EEL in DC3000. White boxes depict the ORFs of the EEL along
with ArpK, which is part of the hrp-hrc cluster. Other hrp-hre cluster genes, hrpL and hrpJ, which are not dealt with here are depicted as grey boxes.
Arrows above ORFs indicate the predicted direction of transcription, and the black boxes indicate putative srp promoters. The numbered lines
beneath the ORFs represent PCR products produced by specific primer sets used below. (B to D) The numbers above each figure correspond to
the PCR primer sets shown in panel A. +, experimental PCRs containing RT; —, control PCRs lacking RT; g, control PCRs without RT and
DC3000 total DNA. Primer set 8 was used as a negative control because its PCR product spans two genes transcribed in opposite orientations,
which would not produce RNA. (B) RT-PCR analysis of RNA isolated from DC3000 grown in KB, a rich medium. Primer sets 1, 2, and 4 produced
an RT-dependent PCR product, indicating that the ORFs spanning these regions are transcribed. Notably, primer sets 3 and 5 to 7, corresponding
to PSPTO1408, PSPTO1409, PSPTO1406, and hrpK, did not produce an RT-dependent PCR product. (C) RT-PCR analysis of RNA isolated from
DC3000 grown under Arp-inducing conditions. Under these conditions, all primer sets produced an RT-dependent PCR product, indicating that
the ORFs corresponding to primer sets 3 and 5 to 7 were only transcribed under Arp-inducing conditions. Primer set 6 produced an RT-dependent
PCR product, which confirmed that ~rpK and PSPTO1406 were in an operon. (D) High-stringency Southern blot analysis showed that the EEL
region hybridized to all of the PCR products, confirming that the PCR products corresponded to the EEL.

TTSS, their corresponding genes were cloned into broad-host- to in other publications as EEL ORF1 (3) or HopPtoB1 (27) in
range plasmids. Since we do not have antibodies raised to data not shown. The nomenclature for P. syringae Hops has
HrpK, the hrpK construct produced HrpK fused to a C-termi- recently been revised, and we will follow this new naming
nal FLAG epitope, which can be recognized by commercially system. Thus, the protein product of PSPTO1406 will be re-
available antibodies. These constructs were electroporated ferred to hereafter as HopB1.

into DC3000 and grown in hrp-inducing medium. The cultures HopB1 and HrpK are translocated into the plant cell. To
were separated into cell and supernatant fractions by centrif- test whether HopB1 and HrpK were translocated into plant
ugation, and the samples were analyzed by SDS-PAGE and cells, we used two reporter systems. In one, the gene of interest
immunoblotting. As seen in Fig. 2, both HrpK and PSPTO1406 is fused to an avrRpt2 derivative lacking its amino-terminal
were secreted from DC3000 in a manner dependent on the secretion signal and therefore is not secreted and translocated
TTSS. Therefore, both HrpK and PSPTO1406 are Hrp outer unless the candidate gene encodes sufficient type III secretion
proteins (Hops). Because ArpK was classically defined as an hrp signals (32). If the AvrRpt2 fusion is translocated into plant
gene, its hrp prefix was retained. PSPTO1406 has been referred cells, it elicits an HR on Arabidopsis Col-0, which contains the
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FIG. 2. HrpK and HopB1 (PSPTO1406) are secreted via the
DC3000 TTSS. (A) Immunoblot analysis using anti-HopB1 antibodies
showed that HopB1 is made in small amounts in cell (C) extracts of
DC3000 grown under Arp-inducing conditions. HopB1 was not made in
the DC3000 hopBI mutant, UNL130, or the ArpK polar mutant,
UNL132, suggesting that the protein band observed was due to the
hopBI gene and that hopB1 is in the same transcriptional unit as hrpK.
(B) P. syringae pv. tomato DC3000 strains carrying the hopB1-contain-
ing plasmid pLN63 (phopBI) were grown under Arp-inducing condi-
tions and separated into cell (C) and supernatant (S) fractions, con-
centrated 13.3 and 133 fold, respectively, and analyzed by SDS-PAGE
and immunoblots with anti-HopB1 antibodies. The results clearly
showed that HopBl1 is secreted via the TTSS. (C) P. syringae pv. tomato
DC3000 strains carrying a construct, pLN64 (phrpK-F), that made
HrpK C-terminally fused to the FLAG epitope tag were grown under
hrp-inducing conditions, and secretion experiments were performed as
above. Anti-FLAG antibodies were used as the primary antibody in the
immunoblot to detect HrpK-FLAG. HrpK-FLAG is abundantly found
in the supernatant fractions of DC3000 and the 4rpK mutant. (B and
C) A DC3000 hreC mutant (hrcC), which is defective in the TTSS, was
used as a negative control. All strains also carried pCPP2318, which
encodes mature B-lactamase that remains in the cytoplasm and acts as
a lysis control.

RPS2 R protein. Constructs containing either the full-length
hopBl, full-length hrpK, or a 3’ truncated version of ArpK
(corresponding to the first 399 amino acids of HrpK) fused to
avrRpt2 lacking its type III secretion signals were electropo-
rated into P. syringae pv. phaseolicola. Strains carrying these
fusions produced stable fusion proteins based on immunoblot-
ting (data not shown). These strains were infiltrated into Ara-
bidopsis Col-0. As seen in Fig. 3A, strains containing the
HopB1-AAvrRpt2 fusion produced an HR, as did the full-
length HrpK-AAvrRpt2 fusion. However, the HrpK-AAvrRpt2
fusion produced an HR that was reduced and delayed by about
7 h, suggesting that HrpK did not deliver AvrRpt2 as well
as HopBl. Interestingly, strains expressing the HrpK, ;90-
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FIG. 3. HopBl and HrpK are translocated into plant cells based on
reporter assays; however, HrpK requires its C-terminal half to trans-
locate. (A) AvrRpt2 translocation assays with HopB1 and HrpK
AvrRpt2 fusions. P. syringae pv. phaseolicola NPS3121 carrying con-
structs that encoded either full-length AvrRpt2, an 80-amino-acid N-
terminal deletion of AvrRpt2 (AAvrRpt2), full-length HopB1 fused to
AAvrRpt2 (HopB1-AAvrRpt2), full-length HrpK fused to AAvrRpt2
(HrpK-AAvrRpt2), and the first 399 amino acids of HrpK fused to
AAvIRpt2 (HrpK,_s90-AAvrRpt2) were infiltrated into A. thaliana
Col-0 at an ODyy, of 0.5 and scored after 12 to 19 h for elicitation of
the HR. N, no visible HR. (B) CyaA translocation assays with HopB1
and HrpK CyaA fusions. DC3000 and a DC3000 /rcC mutant defective
in TTSS carrying constructs that encoded either full-length HopB1
(HopB1-CyaA), HrpK (HrpK-CyaA), or the first 382 amino acids of
HrpK (HrpK,_sg,-CyaA) fused to CyaA were infiltrated into N.
benthamiana and assayed for cAMP production 7 h after infiltration as
described in Materials and Methods. cAMP levels are reported in
picomoles of cAMP per micrograms of protein with standard errors.
The levels of cAMP indicated that the full-length HopB1-CyaA fusion
and the full-length HrpK-CyaA fusion were translocated. However,
the N-terminal HrpK-CyaA fusion had background levels of cAMP,
indicating that it was not translocated.

AAvrRpt2 fusion that contained the first 399 amino acids of
HrpK did not elicit an HR. Typically, type III secretion signals
are contained within the first 100 amino acids of a TTSS sub-
strate, but the results with the HrpK, ;0o-AAvrRpt2 fusion
suggested that the C terminus of HrpK provided secretion
and/or translocation information.

To further test HopB1 and HrpK translocation, we used a
different translocation reporter system, which utilizes CyaA
fusions (69, 70). In this assay, a candidate type III secreted
protein is fused to CyaA. If the CyaA fusion is translocated
into eukaryotic cells, it indicates that the test effector provided
type III secretion signals to CyaA. Translocation of CyaA can
be detected because it produces cAMP. Since CyaA is depen-
dent on calmodulin, cAMP is produced only in eukaryotic cells.
We made constructs that fused full-length HopB1 and HrpK to
CyaA, as well as a construct that produced the first 382 amino
acids of HrpK fused to CyaA (HrpK, ;5,-CyaA). These con-
structs were electroporated into DC3000 and confirmed to
make stable CyaA fusions by performing immunoblotting with
anti-CyaA antibodies (data not shown). Each strain was infil-



VoL. 187, 2005

trated into N. benthamiana leaves. After 7 h, plant extracts
were made from infiltrated leaves and assayed for cAMP. Sim-
ilar to the AvrRpt2 translocation results, both HopB1-CyaA
and HrpK-CyaA full-length fusions resulted in significantly
higher cAMP levels than control levels, indicating that they
were translocated into plant cells (Fig. 3B). The cAMP levels
produced from plant extracts that were infiltrated with DC3000
producing HopB1-CyaA were much lower than that produced
by DC3000 making HrpK-CyaA. However, different effector-
CyaA fusions can result in a wide range of cAMP levels by this
assay (609). Therefore, the low level of cAMP produced by
HopB1-CyaA plant extracts likely indicates translocation of
this protein fusion. Interestingly, the HrpK, ;4,-CyaA fusion
did not produce levels of cCAMP significantly different from
those of negative control samples. Thus, this fusion does not
appear to be translocated, which is consistent with the results
observed with a similar HrpK-AvrRpt2 fusion. Taken together,
we conclude that both HopB1 and HrpK are translocated and
that the translocation of HrpK did not occur with HrpK fusions
that lacked the C terminus of HrpK.

HopBl is present in other P. syringae strains and is similar
to another ORF within DC3000. BlastP searches with HopB1
identified several ORFs with similarity to HopB1 throughout
the entire HopB1 protein in P. syringae pv. persicae 5846 (ac-
cession no. AAN85146, E value le — 146), and P. syringae
DHO15 (accession no. AAN85183, E value 1e — 108) (13). We
also found that a region of HopB1 from amino acids 222 to 438
was similar to two regions within both P. syringae pv. syringae
B728a HolPtoACy, (E value 1le — 20) (9, 30) and an OREF,
PSPTO4996, elsewhere in the DC3000 genome (Fig. 4A). The
similarity of PSPTO4996 to hopB1 was noted in Fouts et al.
(27), where PSPTO4996 was designated hopPtoB2. While the
similarity of HopB1 to PSPTO4996 and HolPtoACy,, is lim-
ited to a discreet region of HopB1, PSPTO4996 is similar to
HolPtoACp,, throughout. Interestingly, h0lPtoACp,, is much
larger than PSPTO4996 (Fig. 4A); PSPTO4993, an ORF
upstream of PSPTO4996 in DC3000, is also homologous
to holPtoACp,, Thus, it appears that PSPTO4996 and
PSPTO4993 represent parts of the same gene, which is appar-
ently interrupted by an insertion sequence. This suggests that
the DC3000 hopPtoB2 (PSPTO4996) gene is probably not
functional (Fig. 4A). We tested whether hopPtoB2 was tran-
scribed by RT-PCR analysis. No RT-dependent PCR products
were produced for either PSPTO4993 or PSPT0O4996, suggest-
ing that these ORFs are not transcribed (data not shown).
These data are consistent with data presented in Fouts et al.
(27), which showed that hopPtoB2 was not transcribed, based
on Northern analysis.

BlastP searches also revealed that the region of HopBl
noted above (amino acids 222 to 438) is also similar to a region
in each of the following proteins: a hypothetical protein in P.
fluorescens PfO-1 (accession no. ZP_00263996; E value, 3e —
16), hypothetical protein in Photorhabdus luminescens subsp.
laumondii TTO1 (accession no. NP_929645; E value, 3e — 16),
a Vibrio vulnificus CMCP6 autotransporter adhesin (accession
no. NP_762440; E value, 9¢ — 8), and a V. vulnificus YJ016
RTX toxin (accession no. NP_937086; E value, 9¢ — 8). An
alignment of the similar regions in each protein is shown in Fig.
4B. The relevance of this similarity is currently unknown. In-
terestingly, each of these proteins (except for HopB1) shares a
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FIG. 4. Bioinformatics anlaysis of HopB1. (A) Schematic represen-
tation of P. syringae ORFs with similarity to a region within HopB1.
Regions from P. syringae pv. tomato DC3000 PSPTO4996 and P. sy-
ringae pv. syringae B728a HolPtoACy,, that share similarity to HopB1
are depicted with striped boxes. Homologous regions between HolP-
t0ACyp,, and PSPTO4993 and 4996 are depicted with dark grey boxes.
An insertion sequence (ISPsy5) interrupting PSPTO4993 and 4996 is
depicted as a black box. Numbers above boxes indicate amino acid
positions. (B) Protein alignment of the region within HopB1 that is
similar to other proteins in the databases. Additional proteins that are
not shown in panel A are shown in the alignment adjacent to their
accession numbers. Their genus and species names, ORF designations,
and database accession numbers are as follows: P. fluorescens PfO-1,
ORF Pflu 0200366, ZP_00263996; P. luminescens supsp. laumondii
TTO1, ORF Plu2400, NP_929645; and V. vulnificus YJ016, ORF
VVA1030, NP_937086. The MegAlign program from DNAStar (Mad-
ison, Wis.) was used for protein alignment.

LPALK

different region of homology with cytotoxic necrotizing factor,
a group of dermonecrotic toxins prevalent in E. coli and other
pathogens.

HrpK has characteristics of type III translocators. BlastP
searches with HrpK did not identify any protein with a signif-
icant E value other than other HrpK homologs in P. syringae
strains. However, a PSI-BLAST iteration 2 search queried with
HrpK indicated that HrpK was similar to the X. campestris pv.
vesicatoria HrpF putative translocator (E value, 6e—14) (11),
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FIG. 5. PSI-BLAST searches show that HrpK is similar to HrpF,
NolX, and PopF1. (A) Regions that were identified in PSI-BLAST
searches were aligned with DNAStar MegAlign. Shown are S. fredii
NolX, accession no. AAB17674; X. campestris pv. vesicatoria HrpF,
accession no. AAB86527; R. solanacearum PopF1, accession no.
NP_523114; and DC3000 HrpK, accession no. AE016860. (B) TM
regions in HrpK and other putative type III translocators from plant-
associated bacteria. TM regions were predicted with the TMpred pro-
gram (http:/www.ch.embnet.org/software/TMPRED _form.html). Only
scores of > 1,000 are shown. See the text for additional details.

the type III secreted PopF1 (E value, 7e— 7) and PopF2 (E
value, 0.27) from Ralstonia solanacearum, and NolX (E value,
2e—17), a type III secreted protein from S. fredii (54). Huguet
and colleagues (42) identified two regions in HrpF with simi-
larity to a single region in NolX. HrpK, PopF1, and PopF2
each have regions that share similarity with this same region in
NolX (Fig. 5A).

Because there is evidence that HrpF is a translocator and it
has been noted to share similar structural characteristics with
the Yersinia YopB translocator and other translocators from
animal pathogens (10), we compared HrpK with HrpF, YopB,
and other translocators for transmembrane (TM) domains, a
structural feature that has been associated with type III trans-
locators. We used a TM prediction program TMpred (http:
/fwww.ch.embnet.org/software/TMPRED_form.html) to iden-
tify TM domains within type III translocators and candidate
translocators such as HrpK. We found the previously identified
TM domains in IpaB (score, 1923 and 2461), PopB (score,
1910 and 2362), YopB (score, 1356 and 2516), and HrpF
(score, 1150) (Fig. 5B) (11). We also found a TM domain at
the C terminus of HrpK (score, 1980) (Fig. 5B). Taken to-
gether, HrpK shares similarities with HrpF, a putative type 111
translocator, and possesses predicted TM domains, a structural
feature consistent with it acting as a type III translocator.
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DC3000 ArpK mutants are reduced in their ability to grow in
planta and to cause disease symptoms, while hopBI mutants
lack any apparent virulence phenotype. Since both HrpK and
HopBl1 were type III secreted and translocated proteins (Fig. 2
and 3), we determined their effect on virulence. We con-
structed a DC3000 nonpolar ArpK mutant, UNL111, and a
DC3000 hopBI mutant, UNL130, as described in Materials
and Methods. These mutant strains were dip inoculated into
tomato (L. esculentum cv. Moneymaker) and A. thaliana Col-0
plants and observed for symptoms and bacterial growth for a
period of 4 days. The DC3000 /rpK nonpolar mutant UNL111
was reduced in disease symptom development and bacterial
multiplication in planta (Fig. 6). In contrast, the DC3000
hopB1 mutant had little or no effect on disease symptom pro-
duction and was only slightly reduced in its ability to grow in
planta (Fig. 6). The weak growth phenotype observed for
hopB1 mutants is consistent with growth phenotypes of other
P. syringae effector mutants and suggests that many P. syringae
effectors are functionally redundant.

A DC3000 hrpK mutant and P. fluorescens carrying a
pHIR11 derivative with a hrpK mutation are reduced in their
ability to translocate Avr proteins. The pathogenicity assays
and in planta bacterial multiplication assays indicated that
HrpK performed an important role in type III-related plant
interactions. HrpK is not a required component of the type III
secretion apparatus (Fig. 2B and C) (17) and in silico data
suggested that HrpK may be a type III translocator. To test
whether the DC3000 ArpK mutant UNL111 was defective in its
ability to deliver Avr proteins, we performed HR assays by
infiltrating different dilutions of the wild type and UNL111 into
tobacco (N. tabacum cv. Xanthi) (Fig. 7A). These experiments
showed that the wild-type strain elicited an HR at 2 X 107
cells/ml, whereas UNL111 required 2 X 10® cells/ml. This phe-
notype was complemented when ArpK was provided in trans
(Fig. 7A). Because this HR is due to the translocation of type
III effectors, it suggests that HrpK either functions as a trans-
locator for the DC3000 TTSS or that HrpK is a type III effector
that acts as an Avr protein.

We tested whether HrpK was an Avr protein by transiently
delivering hrpK using A. tumefaciens. When hrpK was delivered
transiently into tobacco, it failed to elicit an HR, indicating
that HrpK was not an Avr protein in tobacco (data not shown).
We also tested whether the X. campestris pv. vesicatoria hrpF
gene that encodes a putative TTSS translocator could comple-
ment the reduced HR phenotype produced by UNLI111.
pDhrpF, which carries hrpF, was electroporated into UNL111;
it failed to complement the reduced HR UNLI111 exhibited in
tobacco (data not shown). These data suggested that the hrpK
mutant was reduced in its ability to translocate Avr proteins
into plant cells and that HrpK might have a role in transloca-
tion.

To further test whether HrpK was a type III translocator, we
used cosmid pHIR11, which encodes a functional P. syringae
pv. syringae 61 TTSS (40). When pHIRI11 is expressed by
nonpathogens such as P. fluorescens it confers the ability to
elicit an HR on tobacco and other plants because it translo-
cates one Avr protein, HopPsyA, into plant cells (6). We made
a pHIR11 derivative, pLN468, that was defective in ArpK.
When P. fluorescens (pLN468) was infiltrated into tobacco
plants, it showed a greatly diminished ability to elicit an HR
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FIG. 6. Pathogenicity assays and bacterial multiplication in planta
indicate that a DC3000 ArpK mutant but not a DC3000 hopBI mutant
is significantly reduced in virulence on tomato and Arabidopsis. The
following strains were used in pathogenicity and bacterial growth as-
says: wild-type DC3000; the hopBI1 mutant, UNL130 (AhopBI); the
DC3000 nonpolar ArpK mutant, UNL111 (AhrpK); UNL111 carrying
pLN64 encoding HrpK-FLAG [AhrpK(phrpK)]; and a DC3000 hrcC
mutant. Three- to 4-week-old L. esculentum cv. Moneymaker plants
and A. thaliana Col-0 were dip inoculated into different bacterial
suspensions at an ODy, of 0.2 with 0.02% Silwet L-77. Disks measur-
ing 0.64 cm? for tomato plants and 0.4 cm? for Arabidopsis were
excised, ground in water, serially diluted, and plated on KB plates con-
taining appropriate antibiotic markers. (A) Disease symptoms produced
on tomato on day 4. Bacterial growth was tracked for a period of 4 days
in tomato (B) and Arabidopsis (C). The results show that the ArpK
mutant was reduced in symptom production and bacterial growth in
planta, whereas the hopBI mutant was similar to the wild type. The hrpK
mutant phenotype was complemented by pLN64 carrying hrpK-flag.
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FIG. 7. hrpK mutants are reduced in their ability to translocate Avr
proteins. (A) N. tabacum cv. Xanthi was infiltrated at an ODy, of 0.2
(2 X 108 cells/ml) and 10-fold serial dilutions of DC3000, the DC3000
hrpK mutant UNL111 (AArpK), and UNL111 (pLN64), which carried
hrpK in trans [AhrpK(phrpK)]. The hrpK mutant showed a visible re-
peatable reduction in its ability to elicit the HR when compared to the
wild type. (B) N. tabacum cv. Xanthi or transgenic N. tabacum cv.
Xanthi lines expressing HrpK-HA were infiltrated with P. fluorescens
55 (Pfl) carrying cosmid pHIR11, a pHIR11 derivative (pLN468) lack-
ing hrpK (AhrpK), or Pfl (pLN468) with pLN174, which carried hrpK
(phrpK), each at an ODyy, of 0.4 (4 X 10° cells/ml). Production of the
HR was documented at 18 h postinfiltration.

relative to P. fluorescens (pHIR11) (Fig. 7B), consistent with
HrpK acting as a type III translocator. In complementation
experiments, we found that P. fluorescens (pLN468) was com-
plemented when ArpK was provided in frans, but it was not
complemented if HrpK was provided inside plant cells when
these experiments were carried out on transgenic tobacco ex-
pressing HrpK (Fig. 7B). The requirement for HrpK to be
outside of the plant cell for complementation is consistent with
HrpK acting as a type III translocator.

The C terminus of HrpK is required for translocation of the
CyaA reporter. The HrpK translocation experiments indicated
that HrpK was translocated into plant cells (Fig. 3), which
could suggest that HrpK was an effector or that it acted inside
plant cells. However, both translocation assays required full-
length HrpK for translocation of the reporters (Fig. 3). Trans-
location of an effector-reporter fusion generally only requires
the N-terminal half of the effector for efficient translocation.
We were interested in whether the C-terminal portion of HrpK
possessed a region that would be required for reporter trans-
location.

To explore the requirement of the C-terminal half of HrpK
and the TM domain for Cya translocation, we fused hrpK
deletions to cyad (Fig. 8A). As noted above, a C-terminal
HrpK deletion that corresponded to the first 382 amino acids
of HrpK fused to CyaA (HrpK, ;¢,-CyaA) was not translo-
cated (Fig. 3 and 8A). Indeed, three other HrpK C-terminal
deletions, HrpK,_4.,-CyaA, HrpK, s¢,-CyaA, and HrpK, _gog-
CyaA, were not translocated based on low levels of cAMP
production (Fig. 8A). Interestingly, when we generated a con-



660 PETNICKI-OCWIEJA ET AL.

A
1 s 382 780
eleessee—————
HrpK ™
CyaA Protein
(pmol/sg)  Stability
8182141 +
382 0041001 +
7
267 0091001 +
582 +
82 0.14 £ 0.07
538 017003 +
698 750
—olm 0.0210.01 +
382
382 3298£2.10 +
% 88 0012000 +
B

AhrpK AhrpK
K)(phrpKATM)

FIG. 8. HrpK requires a TM domain for proper function. (A) Sche-
matic representation of HrpK truncations and deletions. Numbers
indicate amino acid positions in HrpK. The CyaA column indicates
detection of cAMP production in the CyaA translocation assay. All
constructs were checked for protein stability by SDS-PAGE and im-
munoblotting with anti-CyaA antibodies. The constructs and their cor-
responding products are listed as follows: pLN377, full-length HrpK-
CyaA; pLN917, HrpK,_;4,-CyaA; pLN1170, HrpK,_,,,-CyaA; pLN1171,
HrpK,_s4,-CyaA; pLN1172, HrpK,_s5-CyaA; pLN1173, HrpK, 405 750.
780-CyaA; pLN1174, HrpK, 35, 750.780-CyaA; and pLN1175, HrpK, g,
750-780-CyaA. (B) HrpK,_gog/750.780 failed to complement the reduced
HR produced by the DC3000 ArpK mutant UNL111. N. tabacum cv.
Xanthi was infiltrated at an ODjq 0f 0.2 (1 X 108 cells/ml), and 10-fold
serial dilutions were performed. The pictures show leaves that were
infiltrated with bacteria at a cell density of 1 X 107 cells/ml. The
following strains were infiltrated: wild-type DC3000; the DC3000 ArpK
mutant UNL111 (AhArpK); UNL111 carrying pLN774 expressing full-
length HrpK-HA (phrpK); and UNL111 carrying pLN1167 expressing
the TM domain deletion (phrpKATM). The construct pLN1167 carry-
ing the TM domain deletion was unable to complement the reduced
HR phenotype exhibited by UNL111.

struct that produced an HrpK-CyaA fusion that corresponded
to the first 382 amino acids fused to amino acids 698 to 780 of
HrpK, which included the predicted TM domain of HrpK, we
found that this fusion protein was translocated, based on sig-
nificant cCAMP production (Fig. 8A). A smaller N-terminal
portion of HrpK fused to HrpK g9 750-CyaA was not translo-
cated (Fig. 8A). Taken together, the first 382 amino acids of
HrpK fused to its last 82 amino acids is sufficient to translocate
the C-terminal CyaA moiety into the plant cytoplasm. These
results are consistent with HrpK acting as a type III translo-
cator and the TM domain is required for HrpK translocation.

To test the importance of the TM domain for the function of
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HrpK, we made construct pLN1167, which encodes a HrpK
variant (fused to the HA epitope) that lacked amino acids 698
to 750, which corresponded to the predicted TM domain. This
construct was electroporated into DC3000 and the DC3000
hrpK mutant UNL111. We tested whether this HrpK variant
would complement the reduced HR phenotype that is associ-
ated with UNL111 (Fig. 7A). Both strains were confirmed to
make the HrpK variant by immunoblotting with anti-HA an-
tibodies. The reduced HR phenotype exhibited by UNL111
was not complemented by pLN1167 when these strains were
infiltrated into tobacco (Fig. 8B). Testing this construct for
complementation was useful because it is the smallest deletion
that removes the TM domain. Since this HrpK variant was
unable to complement the ArpK mutant, it suggests that the
TM domain is necessary for HrpK function.

DISCUSSION

Here we present transcriptional expression data for the
DC3000 EEL. Two Hrp promoters, one upstream of the hrpK
gene and the other upstream of PSPTO1408, were active in
conditions that transcribe the DC3000 TTSS (Fig. 1). We were
unable to show that PSPTO1408 or PSPTO1409 encoded pro-
teins secreted by the TTSS of DC3000 (data not shown).
PSPTO1409 is carried in the EEL region of P. syringae pv.
delphinii PDDCC529 (24), which suggests that it may encode
a TTSS protein. However, the predicted N terminus of the
products of both PSPTO1408 and PSPTO1409 does not re-
semble other P. syringae Hops (33, 63). Additional secretion
and translocation assays are in progress to determine whether
either of these ORFs encode TTSS substrates.

We showed that two genes downstream of the other Hrp
promoter in the DC3000 EEL, ArpK and hopBl1, were tran-
scribed as an operon (Fig. 1). It is important to emphasize that
hrpK is not part of the EEL, but instead it is a conserved
hrp-hre gene flanking the EEL. Indeed, ArpK resides in this
EEL-flanking location in all P. syringae strains tested (3, 13, 24,
57). HopB1 and HrpK were secreted in culture and translo-
cated into plant cells by the DC3000 TTSS (Fig. 2 and 3).

We know little about the role HopB1 plays in bacterium-
plant interactions. Based on the fact that the hopBI mutant’s
growth phenotype resembles wild-type DC3000 (Fig. 6),
HopBl1 does not appear to contribute significantly to virulence.
This is consistent with HopB1 belonging to the effector class
because most P. syringae effectors contribute subtly to patho-
genesis, but collectively they are required (5). The weak indi-
vidual contribution to virulence displayed by most effectors is
likely due to their functionally redundant activities inside plant
cells. hopB1 is present in multiple P. syringae EELs (13, 24),
which suggests that it does play an important role. If it did not,
it would probably be lost due to the apparent instability of the
EEL.

A hint to HopB1’s function may be provided by the similar-
ity HopB1 shares with other ORFs in P. syringae and ORFs in
other bacterial species (Fig. 4). The region within HopB1 that
shows similarity is similar to two repeated regions in these
other proteins (Fig. 4A). At first glance, the P. syringae ORFs
that share similarity to HopB1 suggests that these OREFs,
holPtoACp,, and PSPTO4996 (hopPtoB2), may encode addi-
tional type III effectors. However, there are several facts that



VoL. 187, 2005

argue against this. First, their predicted N-termini do not re-
semble P. syringae Hops; second, they do not have identifiable
TTSS-related Hrp promoters; and third, they share similarity
to ORFs contained in bacteria not known to possess TTSSs.
Thus, the identification of the shared region in other ORFs
may not identify additional type III secreted proteins as orig-
inally thought (9, 27, 30), but instead it may reveal clues to the
biochemical activity of HopB1 and the role it plays in the P.
syringae TTSS.

There is now substantial evidence, much of it reported here,
that HrpK acts as a translocator for the P. syringae TTSS.
DC3000 ArpK mutants were significantly reduced in virulence
(Fig. 6); HrpK defective strains were less efficient at effector
translocation than wild-type strains, based on their reduced
HR phenotypes (Fig. 7); PSI-BLAST searches revealed that
HrpK shared weak similarity with HrpF, a putative type III
translocator from X. campestris pv. vesicatoria (Fig. 5); P. sy-
ringae pv. syringae B728a hrpK mutants retained the ability to
secrete proteins in culture via the TTSS (17); and the conser-
vation of hrpK in P. syringae strains argues for an accessory role
in the TTSS. Taken together, these data strongly support that
HrpK is a type III translocator. We are currently testing
whether HrpK can form pores in membranes and allow for the
release of low-molecular-weight dyes from eukaryotic cells,
two criteria that are shared by several animal pathogen type I1I
translocators (10).

The P. syringae HrpZ harpin is capable of forming pores in
lipid bilayers, which suggest that it may be a type III translo-
cator (56). One distinction that can be made between HrpK
and HrpZ is that HrpK contributes to virulence more signifi-
cantly than HrpZ, based on pathogenicity assays with P. syrin-
gae mutants (Fig. 6) (2). However, this may reflect that HrpZ’s
activity is redundant in P. syringae. Indeed, the N-terminal half
of HrpW from P. syringae shares characteristics with HrpZ, and
both proteins have the ability to induce the HR when purified
and infiltrated into leaf tissue (14, 38). The elicitation of the
HR by HrpZ and HrpW is different from the HR elicited by
Avr proteins because it appears to be independent of R pro-
teins and host specificity (65). In fact, the HrpZ- and HrpW-
elicited HR may be analogous to the ability of animal pathogen
type III translocators to lyse erythrocytes, both of which may
be due to pore formation in the eukaryotic plasma membrane.
One prediction that will be tested is whether HrpZ and HrpW
interact with HrpK, which (if they are all translocators) might
occur because animal pathogen translocators often interact
with each other to form a translocon complex (10, 20).

An interesting observation made here was the requirement
of the C-terminal half of HrpK for translocation of the HrpK
reporter fusions into plant cells (Fig. 3). Translocation of bac-
terial plant pathogen effectors is thought to require the N-
terminal half of the effector, by both the AvrRpt2 and the Cya
translocation assays (12, 32, 59). Therefore, HrpK exhibited an
unusual translocation requirement. To further investigate this
phenomenon, we made HrpK-CyaA fusions that had C-termi-
nal truncations, which identified the requirement of a pre-
dicted TM domain (Fig. 8). Our present hypothesis is that
HrpK is not completely translocated into plant cells, rather
only that a C-terminal portion gains access to the plant cyto-
plasm, allowing for the C-terminal AvrRpt2 and CyaA report-
ers to indicate translocation. Consistent with this is that HrpK-
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CyaA fusions that have the N-terminal half of HrpK fused to
a C-terminal portion containing the TM domain were translo-
cated (Fig. 8A).

TM domains are also present in the X. campestris pv. vesi-
catoria HrpF putative translocator and in several animal
pathogen translocators (10). Hume et al. (43) suggested that
two TM domains present in the Shigella IpaB translocator
insert themselves into the lipid bilayers with the hydrophilic
region between the two domains traversing the membrane.
Additionally, mutational analyses of IpaB have shown that the
putative TM domains are important for IpaB function (31). In
an extensive mutational analysis of the Yersinia YopD translo-
cator, the TM domain was required for translocation of the
YopE effector (62). Interestingly, the YopD derivative lacking
the TM domain was still able to efficiently form pores in arti-
ficial lipid bilayers (62). These data suggest that the YopD TM
domain is important for translocation in a manner that is
uncoupled from the ability to form pores and that pore for-
mation is not sufficient for the translocation of effectors. Con-
tinuing to analyze other translocators will help reveal the sim-
ilarities and differences between the different translocon
complexes. Moreover, comparing translocators from animal
pathogens to putative translocators like HrpK will likely facil-
itate the characterization of these proteins. However, even
closely related translocators appear to function differently in
their respective TTSSs (43). Likewise, because the plant cell
wall amounts to an additional barrier to translocation there are
likely to be significant differences between type III transloca-
tors that deliver effector proteins into plant cells and their
animal pathogen counterparts.
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