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A B S T R A C T

Schizophrenia is a complex psychiatric disorder, typically diagnosed through symptomatic evidence collected
through patient interview. We aim to develop an objective biologically-based computational tool which aids
diagnosis and relies on accessible imaging technologies such as electroencephalography (EEG). To achieve this,
we used machine learning techniques and a combination of paradigms designed to elicit prediction errors or
Mismatch Negativity (MMN) responses. MMN, an EEG component elicited by unpredictable changes in
sequences of auditory stimuli, has previously been shown to be reduced in people with schizophrenia and this
is arguably one of the most reproducible neurophysiological markers of schizophrenia.

EEG data were acquired from 21 patients with schizophrenia and 22 healthy controls whilst they listened to
three auditory oddball paradigms comprising sequences of tones which deviated in 10% of trials from regularly
occurring standard tones. Deviant tones shared the same properties as standard tones, except for one physical
aspect: 1) duration - the deviant stimulus was twice the duration of the standard; 2) monaural gap - deviants had
a silent interval omitted from the standard, or 3) inter-aural timing difference, which caused the deviant location
to be perceived as 90° away from the standards.

We used multivariate pattern analysis, a machine learning technique implemented in the Pattern Recognition
for Neuroimaging Toolbox (PRoNTo) to classify images generated through statistical parametric mapping (SPM)
of spatiotemporal EEG data, i.e. event-related potentials measured on the two-dimensional surface of the scalp
over time. Using support vector machine (SVM) and Gaussian processes classifiers (GPC), we were able classify
individual patients and controls with balanced accuracies of up to 80.48% (p-values = 0.0326, FDR corrected)
and an ROC analysis yielding an AUC of 0.87. Crucially, a GP regression revealed that MMN predicted global
assessment of functioning (GAF) scores (correlation = 0.73, R2 = 0.53, p= 0.0006).

1. Introduction

Schizophrenia is a chronic psychiatric disorder affecting approxi-
mately 1% of the population, expressed through cognitive dysfunction
and psychotic symptoms such as hallucinations and delusions (Kahn
et al., 2015). Schizophrenia is currently diagnosed through sympto-
matic evidence collected through patient interview. An investigation of
current International Classification of Diseases diagnostic criteria (ICD-
10, codes F20.0–F20.3 and F20.9) suggests the validity of schizophrenia
diagnoses may be of about 89.7% (Uggerby et al., 2013). Whilst

reasonably accurate, this method relies on self-report measures and
ultimately on a subjective clinical decision. Hence, there is a pressing
need to find biomarkers for schizophrenia that can objectively inform
diagnosis and prognosis.

A number of potential candidates for schizophrenia biomarkers
have been investigated, with the mismatch negativity (MMN), being
one of them. The MMN is an event-related potential (ERP) elicited by an
occasional unpredicted change (or deviant) in a sequence of predicted
auditory events (standards). Indeed, the MMN is known to be robustly
attenuated in patients with schizophrenia (Catts et al., 1995; Shelley
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et al., 1991; Todd et al., 2013) and is correlated with poor cognitive
function (Light and Braff, 2005). MMN reduction is arguably one of the
most reproducible neurophysiological markers of schizophrenia (Kaser
et al., 2013; Shelley et al., 1991). Remarkably, this reduction is
accentuated in people at risk who end up developing schizophrenia,
compared to those who do not, even if there are no other behavioural
differences at the baseline (Bodatsch et al., 2011; Perez et al., 2014).

While these are exciting findings, they rely on the comparison of
group differences. In recent years, however, machine learning has been
applied to neuroimaging data in order to provide predictive measures of
diagnostic outcomes at the single individual level (Iwabuchi et al.,
2013). For example, Gould et al. (2014) used abnormalities found in the
neuroanatomical structure through MRI to classify schizophrenia
patients and healthy controls with up to 72% accuracy.

Previous studies on EEG-based classification of schizophrenia via
machine learning have primarily coupled auditory components of the
ERP with visual attentional measures as discriminatory features.
Neuhaus et al. (2014) measured the visual P300 response to unexpected
sequences of letters, and the auditory P300 and MMN responses to a
frequency oddball paradigm. In that study, they achieved an accuracy
of 72.4% using the standard visual response at two electrode locations
and nearest neighbour classification. Similarly, Laton et al. (2014)
measured the visual P300 response to sequences of shapes, as well as
the auditory P300 and MMN responses to a combined frequency and
duration stimulus paradigm, achieving accuracies of up to 84.7% for a
combination of all three paradigms, and up to 75% for MMN alone.
However, it appears that these accuracy levels may potentially be
inflated through the use of both model training and testing data for
feature selection, rather than the training dataset alone. This and other
studies, such as Neuhaus et al. (2011), are also limited to specific peak
components (MMN and P300) as features, extracted through pre-
processing in pre-defined time windows from discrete electrode loca-
tions.

The aim for this study was to develop a predictive model which aids
schizophrenia diagnosis, based on objective biological quantities,
measured through widely accessible imaging technologies such as
EEG, and a simple task suitable for patients. Instead of using predefined
time windows and electrodes, we used a whole spatiotemporal
approach by considering all the electrodes and the whole peristimulus
window as potential features. We assessed the performance of multi-
variate pattern recognition in classification of schizophrenia patients
and healthy controls, using three different auditory oddball paradigms.
Moreover, we compared the performance of different classification
algorithms (SVM vs. GPC), responses (standards, deviants, and MMN
difference wave), feature selection (with and without an a priori
defined temporal mask), and data normalisation operations.

2. Methods

2.1. Participants

Twenty-one individuals with schizophrenia (age 20–52 years,
M = 39.7 years, SD = 9.0, 15 male) were recruited from outpatient
sources, including a volunteer register managed by the Schizophrenia
Research Institute and the Inner North Brisbane Mental Health Services
of the Royal Brisbane Hospital. A healthy comparison group (N = 22)
was recruited from students of the University of Newcastle and
community volunteers. Control participants were similar to the schizo-
phrenia patients in both age and sex (age 23–53 years, M = 39.1 years,
SD = 9.4, 14 male). Controls recruited from the University of
Newcastle received course credit for participation; all other participants
were reimbursed for travel costs and expenses. All participants gave
written informed consent in accordance with the guidelines of the
University of Newcastle and the University of Queensland's ethical
committees.

2.2. Cognitive and clinical characterisation

Pre-morbid verbal IQ differed significantly between control
(M= 117.5, SD = 6.8) and patient (M = 110.2, SD= 10.2) groups
(p = 0.0078), based on the National Adult Reading Test (NART,
Nelson, 1982). All participants were right handed, as assessed by the
Edinburgh handedness inventory (Oldfield, 1971).

Participants were excluded if screening revealed a history of major
head injury, epilepsy, hearing loss, or a recent history of substance
abuse. Additionally, healthy controls were excluded if there was a
personal history of mental illness, or a history of schizophrenia in first-
degree relatives. Audiometric testing confirmed that detection thresh-
olds were normal for all participants across frequencies of
500–2000 Hz.

Diagnoses for individuals within the patient group were made using
Diagnostic Interview for Psychosis (DIP, Castle et al., 2006). The same
interview was administered to the healthy comparison group to exclude
significant psychopathology. All patients included in this study received
an ICD-10 diagnosis within the schizophrenia spectrum. Ratings of
current symptomatology for patients were obtained on the Scale for
Assessment of Positive Symptoms (SAPS, Andreasen, 1984) and the
Scale for the Assessment of Negative Symptoms (SANS, Andreasen,
1982), summarised in Table 1. All patients were prescribed typical
antipsychotic medication at the time of testing, except for one
participant who was not receiving medication.

The participants' overall level of functioning, across psychological,
social and occupational domains, was assessed using the Global
Assessment of Functioning Scale (GAF, American Psychiatric
Association, 2000), a numeric scale scored from 1 to 100 and divided
into 10 associated levels of functioning and symptom severity. The GAF
ratings ranged from 32 to 85 (M= 55.43, SD= 14.93) in patients and
73–90 (M= 83.8, SD= 5.3) in healthy controls.

2.3. Experimental design

In an encephalographic auditory-oddball experiment, participants
listened to sequences of short audio stimuli repeating at 500 ms
intervals presented via headphones whilst watching a silent movie.
Three different stimulus variations (Fig. 1), each with specific tonal
properties, were tested in separate blocks. For each paradigm, approxi-
mately a small percentage trials deviated from the standard stimulus in
some physical aspect (8% for duration, 12% for left and right gap, and
10% for left and right inter-aural time difference deviants), occurring in
a pseudo-random, non-consecutive order. These deviations were all
expected to elicit the MMN signal.

The first paradigm employed duration deviants (DUR, Fig. 1a),
where standard stimuli were binaural 1 kHz sinusoidal tones, 50 ms in
duration, with deviant stimuli lasting 100 ms; i.e. twice the standard

Table 1
Summary of schizophrenia patient symptom scores. Table shows group means and
standard deviation for each measure of the SAPS and SANS (absent to severe, scale 0–5),
and GAF (extremely high to severely impaired function, scale 1–100).

Measure Mean SD

SAPS Hallucinations 2.20 1.74
Delusions 2.10 1.71
Bizarre Behaviour 1.05 1.19
Positive Formal Thought Disorder 0.75 1.16
Summary SAPS Score 6.10 3.92

SANS Affective Flattening 2.00 1.17
Alogia 1.35 1.27
Avolition 2.55 1.00
Anhedonia 2.40 1.05
Attention 1.95 1.23
Summary SANS Score 10.25 4.67

GAF 55.43 14.93
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duration. The second was a gap paradigm (Fig. 1b), for which standard
stimuli were monaural bursts of white noise, 100 ms in duration,
whereas the deviant stimuli contained an 18 ms silent interval centered
within the noise. This paradigm was used for both left (GPL) and right
ears (GPR) in separate blocks of the experiment. The third was an inter-
aural time difference paradigm (ITD, Fig. 1c), where standard stimuli
comprised 6 kHz and 300 Hz harmonic tones, 50 ms in duration. By
playing identical tones simultaneously in both ears, the source location
of standard stimuli was perceived to be central. Two oddball variations
were used, such that the source of deviant stimuli was perceived to be
located 90° either left or right of the midline. This effect was achieved
through a 0.7 ms delay in one ear, creating a phase shift between the
two ears. All stimuli were played at an 80 dB intensity level and were
tapered using 10 ms rise/fall times for the duration and interaural time
paradigms, 5 ms for rise/fall times for the gap paradigm and 1 ms
transition in the corresponding gap deviant. The presentation of MMN
paradigms was counterbalanced across participants. Given that the
interaural time difference paradigm comprises a two binaural deviant
stimuli and a common standard stimulus, these left and right deviant
responses were averaged together, whereas the monaural gap paradigm
comprises discrete standard and deviant stimuli pairs pertaining to the
left or right channels in isolation. We therefore consider the interaural
time to be a single paradigm, and the left and right gap to be two
distinct variations of the same paradigm.

2.4. Data collection and pre-processing.

30 EEG sites (plus EOG) were collected using a 64-electrode head-
cap at a sampling rate of 500 Hz with referencing to the nose electrode.
Offline signal processing was performed using the statistical parametric
mapping toolbox (SPM12, Litvak et al., 2011). A band-pass Butterworth
filter was applied with cutoff frequencies at 0.1 and 30 Hz. Experi-
mental trials were then epoched with −100 to +450 ms peri-stimulus
intervals and baseline correction was applied using the −100 to 0 ms
pre-stimulus period. Trials with signal amplitudes exceeding
a± 100 μV threshold were excluded from the analysis. After artefact
rejection, the mean number of stimuli analysed across all participants
was 1222.2 standards and 153.5 deviants for the duration paradigm
(13% of deviants), 712.7 standards and 112.8 deviants for the left gap
(16% of deviants), 712.3 standards and 112.3 deviants for the right gap
(16% of deviants), and 677.0 standards and 225.5 deviants for
interaural time difference (33% deviants). Left gap paradigm data were

excluded from one control participant due to an excessive number of
trails containing these artefacts, whilst one patient was only subject to
two of the three stimulus paradigms tested.

2.5. Image conversion and feature definition

In this study, the averaged ERPs to standards, deviants, and MMN
responses for each participant and stimulus paradigm were converted to
a set of three-dimensional NIfTI images via SPM12. These images
represent the two-dimensional surface of the scalp as a 32 × 32 matrix
over 276 time points, with a sampling period of 2 ms. The resulting
three-dimensional spatiotemporal volume forms the feature vector for
each respective stimulus paradigm and response that is fed into the
classifier. Additional masking was applied over either the 0–450 ms
time interval, i.e. the full post-stimulus epoch period, or 50–250 ms,
which was assumed to contain the auditory MMN component.

2.6. Binary classification techniques

For classification of the control and patient groups, class labels were
assigned to each subject. Using the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo), developed by Schrouff et al.
(2013), we then applied two machine learning algorithms; Support
Vector Machine and binary Gaussian Process Classifier. Support vector
machines (SVM; Cortes and Vapnik, 1995) and Gaussian process
classifiers (GPC; Rasmussen and Williams, 2006) are two of the most
commonly used machine learning techniques in neuroimaging.

In the SVM training phase, weights are assigned to these features for
maximal separation between the groups using a hyperplane, which
serves as the decision boundary. Classification labels are determined by
the sign of the total feature weights multiplied by the test sample. We
use the default soft-margin parameter of C = 1. GPC use probabilistic
modelling to estimate the likelihood that a test sample belongs to a
particular class. Given the covariance between samples in the training
set and observed properties of the test sample, probability distributions
of class membership are used to make predictions and assign a class
label which best explains the data.

To assess the performance of models generated by these algorithms,
we employed a k-fold cross-validation scheme, which divides the
collective group of subjects into k subgroups or ‘folds’. These subgroups
are iteratively assigned for training or testing the model until all
subgroups have been used for testing. In this case, 10-folds (k = 10)

Fig. 1. Binaural audio channel waveforms for standard and deviant stimuli used in each paradigm — duration (binaural 1 kHz sinusoidal tone with 50 ms standard duration, 100 ms
deviant duration), monaural gap (white noise burst with 100 ms duration, deviant has 18 ms silent interval) and interaural time difference (6 kHz and 300 Hz harmonic tones with 50 ms
duration, deviant has 0.7 ms delay between channels). Note: Waveforms are exaggerated for illustration and do not share common axes.
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cross-validation was used, where 90% of the data is used as the training
set and the remaining 10% is used for testing the model. The number of
subjects from both control and patient groups were balanced within
each fold. This classification process also comprised additional data
operations applied to both training and testing sets within the cross-
validation loop. Mean-centering was applied to all models, in which the
voxel-wise mean is subtracted from each data vector, and were
computed both with and without normalisation, whereby data vectors
are divided by their Euclidian norm. In a neuroimaging context with
small sample sizes such as these, leave-one-out cross-validation is
commonly applied (Veronese et al., 2013). However, by taking a more
conservative approach using 10-folds in this manner we hope to
provide a more robust measure of performance. Finally, to determine
the statistical significance of the results, permutation tests were
calculated for each model and cross-validation scheme, retraining the
model with randomised labels and 1000 repetitions.

When comparing models generated with all possible combinations
of the four stimulus paradigm variations, three responses, two time
intervals, two data operations and two algorithms presenting in this
study, we arrive at a total 96 hypotheses. To correct for multiple
comparisons, we applied false discovery rate controlling procedures
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) with a
desired false discovery rate of q = 0.05. Assuming patient diagnoses in
the dataset were accurate, we therefore do not consider above chance
accuracies to be positive results unless a critical uncorrected signifi-
cance level of p ≤ 0.005 is achieved via permutation testing. These
permutation tests were repeated using 10,000 repetitions for models
which met this condition.

2.7. Multivariate regression techniques

To investigate quantifiable relationships between neuronal re-
sponses and symptom severity, the control and schizophrenia patient
groups were combined into a single group. Spatiotemporal images for
each subject were mapped to their available clinical diagnostic scores,
which lie on a continuum — SANS, SAPS and GAF — and machine
learning regression algorithms were then trained to predict these
numeric scores. Within the PRoNTo toolbox, three standard multi-
variate regression algorithms were applied; Kernel Ridge Regression
(KRR; Shawe-Taylor and Cristianini, 2004), Relevance Vector Regres-
sion (RVR; Tipping, 2001) and Gaussian Process Regression (GPR;
Rasmussen and Williams, 2006).

KRR derives a relationship between samples by minimising an error
function comprising the sum of the squared differences between model
predictions and regression targets and a model regularization term,
which in turn reduces the size of weights and possible overfitting. RVR
is similar to SVM, however uses conditional probability to make
estimations rather than absolute predictions. The model weighting
‘vectors’ are initially assigned a Gaussian prior with mean zero, which
are then iteratively optimised via the training process, after which those
with non-zero means are considered the most ‘relevant’ in making
predictions. GPR use the same methodology as GPC.

Again, the performance of these models is assessed using 10-fold
cross-validation and the statistical significance of results is assessed via
permutation testing with Šidák correction for multiple comparisons.

3. Results

3.1. Group responses

The standard and deviant responses collected from the CZ channel,
coupled with the MMN difference waves are plotted for all paradigms in
Fig. 2a, with individuals shown as dotted lines alongside group
averages (schizophrenia in colour and control in greyscale). Patients
with schizophrenia displayed higher variability in the responses to both
standard and deviant conditions.

The MMN difference waves from the left gap paradigm performed
best in our classification analysis, and can be examined in greater detail
in Fig. 3a (schizophrenia in yellow and control in grey). The magnitude
of the difference wave averaged across the control group increases later
in post-stimulus, peaking at approximately 250 ms, and remaining
amplified thereafter. The average difference wave in the schizophrenia
group response remains fairly flat for the full epoch length. This effect is
further emphasised through normalisation of the ERPs, as illustrated in
Fig. 3b.

The points in space and time which contributed most to model
decision making can be identified through the weight map which
achieved highest classification accuracy. Weights are parameters
obtained through the initial training phase, representing the relative
contribution of each voxel to the classification decision. In the testing
phase, the classifier will compute the product of a given spatiotemporal
sample and this weight mapping to obtain a function value, which is
then used to make the prediction of class membership.

The weight map is shown in Fig. 3c, with spatial guides projected
through the location of the Cz channel on the scalp, as indicated in
white. The top and bottom 5% of weights displayed in this figure
(values less than −3 × 10−3 and> 4× 10−3) are highlighted for
visualisation purposes in the cumulative distribution of all signed
weights. Note however, that all voxels, including those with low
assigned weights, contribute to the prediction. As labeled on the colour
scale, positive and negative weights are shown in red and blue
respectively. A positive weight applied to a higher ERP amplitude at
a particular point in space and time produces a larger function value,
contributing to a healthy control classification. In this instance, large
clusters of positive weights have been assigned to the mismatch
response amplitude from 250 ms onward, indicating that the algorithm
has detected these time points as important in discriminating between
the two groups, although individual weights should only be interpreted
within the context of the full weight map.

3.2. Analysis of model performance

The performance of our predictive models is measured through total
and balanced classification accuracies, class accuracy and class pre-
dictive value, calculated through the cross-validation testing phase. To
assess the relative impacts of each parameter on model performance,
the balanced accuracies from all models were partitioned into subsets
according to the algorithm, paradigm, response, time-interval mask and
normalisation operations applied. We first used the Shapiro-Wilk test to
test for normality in each subset, using a significance level of α = 0.05.
This hypothesis was rejected across all parameters. We were unable to
normalise the data through any standard transformation due to the
varied distributions across factors. Consequently, five non-parametric
Kruskall-Wallis tests, were used to determine the main effects of
algorithm (SVM, GPC), paradigm (DUR, GPL, GPR, ITD), response
(standard, deviant, MMN), mask (0–450 ms, 50–250 ms), and normal-
isation (with, without) on classification accuracy. The results from
these tests are shown below in Table 2, indicating a significant effect of
paradigm. Contrary to our initial hypothesis, there was no marked
improvement in classification accuracy when applying the 50–250 ms
time interval mask as opposed to the full 0–450 ms epoch. No
significant differences in overall performance were found between
algorithms, responses or normalisation operations.

The relative performance of different paradigms was then further
examined through non-parametric right-tailed Wilcoxon rank-sum tests
for pairwise comparisons (Table 3). The independent pairs of para-
meters compared in a rank-sum test are expressed in competition. The
test itself calculates the probability that there is a difference in medians
between these two data vectors, in this case whether the former is
greater than the latter (e.g. standard vs. deviant, ‘is the median
accuracy from the standard response greater than that from the
deviant’?).
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The p-values presented in Table 3 suggest the duration and left gap
paradigms were comparable in performance, however both had sig-
nificantly higher classification accuracy in contrast with the interaural
time difference and right gap paradigms.

To follow this up, we then computed an equivalent interaction
between paradigm and other factors within the best paradigms, as

shown in Table 3. For the duration paradigm, MMN significantly
outperformed individual standard and deviant responses, whereas for
the left gap paradigm, MMN and deviant performed comparably with
higher accuracy than the standard response. These findings are also
illustrated in Fig. 2b, which displays the accuracy of all classifiers with
respect to the most significant factor of stimulus paradigm, split into the

Fig. 2. (a) Averaged standard, deviant and MMN responses to duration (red), left gap (yellow), right gap (green) and interaural time difference (blue) stimulus paradigms, recorded from
the CZ channel for control group (grey) and schizophrenia patients (colour). Individual subjects are denoted using dotted lines. Shading illustrates the standard error of the mean. (b)
Balanced classification accuracy distributions for each stimulus paradigm with respect to measured response (MMN, standard and deviant). The number of samples with a particular
accuracy level are represented with increased colour intensity. Medians of each set are indicated using horizontal lines. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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different types of responses. The number of models with a particular
accuracy level are shown with increasing colour intensity, and median
accuracy indicated by horizontal lines.

The models which survived multiple comparisons correction at the
corrected alpha level of 0.05 are displayed in Table 4. The remaining
models which did not survive correction for multiple comparisons are
available in the appendix. The model with the best accuracy was
obtained using the GPC algorithm with the MMN response to the left
gap paradigm as features, further processed with the 0–450 ms
temporal mask and normalisation operations.

The histogram of returned function values from this model are
shown in Fig. 4a. These values are the probability of the subject
belonging to the control group and are used to determine which labels
are assigned to each subject, relative to the decision boundary at 0.5. In
an ideal classification model, there would not be any overlap between
the two distributions, however the model does a very decent job of
separating the two groups with 80.48% accuracy.

Model sensitivity and specificity is illustrated through the receiver
operating characteristic (ROC) curve shown in Fig. 4b, plotting the true
positive rate (sensitivity) as a function of false positive rate (1 - model

specificity). The area under the curve (AUC) measures how well the
model distinguishes between subjects with and without schizophrenia.

These results informed exploratory regression modelling, in which
the spatiotemporal images from each participant were mapped to their
available diagnostic scores. Model performance is assessed by compar-
ing the true clinical scores with those predicted by the model, as
illustrated in Fig. 5. The 45° dotted line refers to the ideal case in which
all predictions are the same as the targets. The overall accuracy of
predictions is calculated through the mean-squared error (MSE), which
can also be normalised by the range of possible scores (NMSE). The
linear dependence of these predictions is also measured using Pearson's
correlation coefficient (R) and the coefficient of determination (R2, the
ratio between the explained and total variance). Both MSE and
correlation are examined, as a high correlation alone may not necessa-
rily indicate that predictions are accurate.

Preliminary analyses of the SANS and SAPS from the schizophrenia
patient group (N = 20) did not indicate any significant relationship,
and of the four stimulus paradigm variations, only the left gap
paradigm produced significant correlation with the GAF using the
combined control and patient groups (N = 39). As shown in Table 5,

Fig. 3. (a) Left gap MMN recorded from CZ channel for control (grey) and schizophrenia groups (yellow) with grand means and S.E.M. across groups. (b) Effect of normalisation on the
MMN signal. (c) Sample weight map showing distribution of weights assigned to spatiotemporal features. Associated colour mapping is shown on the cumulative distribution function
graph (left), indicating the 5% most positive (red) and 5% most negative (blue) weights. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Kruskall-Wallis tests comparing main effects of algorithms, paradigm, response, temporal masks and normalisation on balanced classification accuracy, demonstrating that paradigm
manipulations have a significant effect. p-values are Sidák corrected for multiple comparisons.

Sources Sum of squares Degrees of freedom Mean square Chi-sq. p > Chi-sq. uncorrected p > Chi-sq. Šidák Corr.

Algorithm 404.3 1 404.26 0.52 0.4704 0.9583
Paradigm 23,522.4 3 7840.80 30.32 1.1813E-06 5.9065E-06
Response 3742.5 2 1871.26 4.82 0.0896 0.3746
Mask 2016.7 1 2016.67 2.60 0.1069 0.4318
Normalisation 437.8 1 437.76 0.56 0.4525 0.9508
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these models performed consistently across KRR, RVR and GPR
algorithms, and those which include the normalisation operation
produced lower mean-squared error, as well as higher correlation
(0.73–0.74, p ≤ 0.0006, Šidák corrected) and explained variance
(53–55%, p≤ 0.0006) than those which did not (R= 0.59,
R2 = 0.35, p≤ 0.003). The GAF scores for two controls were not
recorded at the time of experiment, and hence excluded from this
analysis. The GAF scores predicted by the model which produced lowest
mean square error (NMSE = 2.69, p ≤ 0.0006) are plotted in Fig. 5.

We note here that our regression models attempt to predict each
individual participant's GAF measure based on the individual EEG
features, regardless of whether the participant is a patient or a control.
The prediction plot shown in Fig. 5 illustrates the relationship between
the predicted GAF measures (the output of our predictive model) and
the true reported GAF. This predictive modelling approach is not akin
to correlating GAF scores with EEG data at the group level. Instead, this
is a linear measure of accuracy for our model, or in other words, a
measure for how well we can predict GAF scores from EEG data alone at
the individual participant level, rather than finding differences between
the groups as typically done with traditional group analysis. Despite the
apparent ceiling effect observed for the GAF scores in controls (GAF
range is 73–90 for controls and 32–85 for schizophrenia patients), this
small variability introduced by a larger sample size may still help the
model to learn the relationship between the EEG features and the GAF
measures at the individual participant's level. Indeed, the controls have
less variability in GAF measures and contribute less to our predictive

model (correlation for the control group obtained by estimating the
model using only the control data is 0.21), which is mainly driven by
the schizophrenia group (correlation for the schizophrenia group alone
is 0.50, compared to 0.73 for the pooled group, as presented above).
This is not a concern in itself because ultimately we would like to
produce a model that is particularly sensitive to the patient's EEG
measures, which would index a biomarker for schizophrenia.

4. Discussion

This study investigated the application of machine learning-based
techniques to the classification of people with schizophrenia and a
matched healthy cohort. Participants listened to sequences of tones that
changed occasionally in three different physical properties: sound
duration, gap (silent interval within the tone), or perceived source
location (through changes in interaural time). All of these oddball
paradigms have been previously shown to elicit the MMN signal
(Näätänen et al., 2004). Using spatiotemporal images as feature sets,
Support Vector Machines and Gaussian Process Classifiers enabled us to
classify individuals into their corresponding groups with up to 80.48%
balanced accuracy (p ≤ 0.0326, FDR corrected). The best performing
models presented here were generated through Gaussian process
classification of mismatch responses, as measured over a 0–450 ms
time window in response to the left gap stimulus paradigm. The
regression model which had the smallest mean-squared error (relevance
vector regression, normalised data) also revealed a correlation of 0.73
(p ≤ 0.0006, Šidák corrected) between the GAF scores predicted by the
model and the true GAF scores, with explained variance of 53%
(p ≤ 0.0006, Šidák corrected).

Although a number of similar schizophrenia classification studies
have used machine learning algorithms on auditory oddball responses,
this is the first to comparing several types of oddball paradigms.
Moreover, it departs methodologically from different studies in that it
takes the whole spatiotemporal information in the EEG data as features
for the classifiers. Neuhaus et al. (2014) used a combined click-
conditioning and auditory oddball paradigm with square wave stan-
dards and sinusoidal deviants, explicitly targeting the P50, N100 and
P300 components. Our approach yielded a greater balanced classifica-
tion accuracy (up to 80.48% in our study compared to 77.7%), and our
ROC analysis indicated that the left gap paradigm provides greater
discrimination between groups with an AUC of 0.87 outperforming
0.737 reported in Neuhaus et al. (2014).

More direct comparisons can be made with a study by Laton et al.
(2014), who targeted the MMN response directly with a combined
duration and frequency stimulus paradigm, achieving an accuracy of up
to 75.0%. Whilst other attention-related paradigms were employed to
elicit auditory and visual P300 responses, we suggest that a simpler
experimental setup and measures such as MMN difference wave, which
are known to be more reproducible, are preferable in a diagnostic
setting. We also note that the individual components which define this

Table 3
Follow-up comparison of stimulus paradigms, and the effects of algorithms, measured
responses, time interval masks and normalisation operations within the two best
paradigms (duration and left gap) using Wilcoxon rank-sum test. p-values are Sidák
corrected for multiple comparisons.

Sources Parameter comparison p-Value Rank

Paradigm DUR vs. ITD 4.1775E−06 792.0
DUR vs. GPL 0.5020 588.0
DUR vs. GPR 9.9410E−07 803.5
GPL vs. ITD 2.2837E−04 753.0
GPL vs. GPR 2.4913E−04 752.0
GPR vs. ITD 0.3815 603.0

DUR Algorithm SVM vs. GPC 0.9839 147.5
Response MMN vs. Standard 0.0004 100.0

MMN vs. Deviant 0.0008 99.0
Deviant vs. Standard 0.9988 62.0

Mask 0–450 ms vs. 50–250 ms 0.3635 174.0
Normalisation None vs. Normalised 0.5877 167.5

GPL Algorithm SVM vs. GPC 0.8650 158.0
Response MMN vs. Standard 0.0008 99.0

MMN vs. Deviant 0.8843 72.0
Deviant vs. Standard 0.0008 99.0

Mask 0–450 ms vs. 50–250 ms 0.3639 174.0
Normalisation None vs. Normalised 0.9905 145.5

Statistically significant p-values are emphasised in bold.

Table 4
Summary of best performing classification models which survived multiple comparisons correction at the corrected alpha level of 0.05. Duration and left gap paradigms yielded the top
balanced accuracies, ranging from 74.34% to 80.48% with FDR-corrected p-values above chance.

Paradigm Mask Response Algorithm Normalisation Total accuracy Balanced accuracy BA p-value
uncorrected

BA p-value
FDR corr.

Duration 0–450 ms MMN GPC None 74.42% 74.35% 0.0041 0.0437
50–250 ms MMN SVM None 76.74% 76.73% 0.0031 0.0372

Normalised 76.74% 76.62% 0.0029 0.0372
GPC None 76.74% 76.62% 0.0025 0.0372

Left gap 0–450 ms MMN SVM None 78.05% 77.98% 0.0010 0.0326
Normalised 78.05% 77.98% 0.0017 0.0326

GPC None 78.05% 77.98% 0.0016 0.0326
Normalised 80.49% 80.48% 0.0009 0.0326

50–250 ms Deviant SVM None 78.05% 77.74% 0.0017 0.0326
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feature set were extracted using the grand averages of the dataset,
which may also introduce some bias to the learning phase, and hence
inflate accuracy. We are also more conservative in our reporting with
significance calculated via permutation testing and correction for
multiple comparisons.

Du et al. (2012) achieved accuracies of over 90% using functional
magnetic resonance imaging (fMRI) to measure both resting state data
and responses to a task-associated auditory oddball paradigm compris-

ing frequency and randomised digital deviants. However, leave-one-out
cross-validation was used on the sample of 28 schizophrenia patients
and 28 healthy controls, which due to its high variance could have
influenced the high accuracy obtained. In comparison with fMRI, EEG is
also able to achieve higher temporal resolution with simpler technology
which is much more accessible to a wider population.

The sample size used here is relatively small, although very similar
to the majority of machine learning studies published in the area of
neuroimaging (Orru et al., 2012). This is not necessarily a problem
given that our models are linear, regularized and have been tested using
a conservative cross-validation scheme with 10-folds and permutation
tests. In this way, we significantly reduce the risk of overfitting,
particularly when dealing with a relatively small sample size.

We used a 50–250 ms time interval mask, which was assumed a
priori to contain the auditory N100 and MMN component, features
which are considered to be the most reproducible neurophysiological
markers of schizophrenia (Kaser et al., 2013; Shelley et al., 1991). We
hypothesised that isolation of these features would maximise model
performance, however in contrast, our best performing model resulted
from the full 0–450 ms post-stimulus epoch feature set. Further region-
of-interest weight map analysis indicated that the time points selected
by the algorithm as most relevant in the classification were actually
outside of the 50–250 ms interval, although all spatiotemporal voxels
contribute globally to the prediction. The N100 and MMN are the most
widely studied neurophysiological markers in schizophrenia, but
abnormalities have also been reported in other event-related potential
components, namely decreased attenuation of the P50 auditory evoked
potential, which is considered a measure of neuronal inhibition
(Källstrand et al., 2012). Reduced amplitude and increased latency of
the P300 have also been consistently reported in schizophrenia patients
and correlates with the degree of MMN reduction (Javitt et al., 1995;
Ford et al., 2010; Brown and Musiek, 2013).

A key limitation when performing binary classification of two
groups is that, in general, schizophrenia cannot be described as a
binary condition, comprising many levels of severity, differing symp-
toms and categorical subtypes. Similarly, healthy controls may experi-
ence mild schizotypal symptoms which do not warrant clinical diag-

Fig. 4. (a) Histogram of model function values and binary decision plot illustrating classification accuracy of individual subjects from controls (black circles) and schizophrenia patient
groups (grey crosses). (b) ROC curve analysis with an AUC of 0.87. Values are displayed for the best classifier (80.49% accuracy, Gaussian Process Classifier using MMN features over
0–450 ms time window with normalisation operations).

Fig. 5. Plot of predicted and true GAF scores (scale 1–100). Individual subjects (black
circles) and schizophrenia patients (grey crosses) are modelled as a single group. Values
are assigned by Gaussian Process Regression using MMN features from the left gap
paradigm over 0–450 ms time window with normalisation operations (0.73 correlation,
p = 0.0006 Sidak corrected, 53% explained variance, 156.08 mean square error).

Table 5
Regression modelling performance measures using individual MMN responses to the left gap stimulus paradigm with 0–450 ms temporal mask, mapped to participants' GAF scores. p-
values are Sidák corrected for multiple comparisons.

Algorithm Normalisation Correlation R p-value
uncorrected

R p-value
Šidák corr.

R2 R2 p-value
uncorrected

R2 p-value
Šidák corr.

MSE Norm. MSE MSE p-value
uncorrected

MSE p-value
Šidák corr.

Kernel Ridge Regression None 0.59 0.0005 0.0030 0.35 0.0010 0.0060 342.42 5.90 0.0107 0.0625
Normalised 0.74 0.0001 0.0006 0.55 0.0001 0.0006 195.20 3.37 0.0001 0.0006

Relevance Vector Regression None 0.59 0.0002 0.0012 0.35 0.0006 0.0036 342.48 5.90 0.0371 0.2029
Normalised 0.73 0.0001 0.0006 0.53 0.0001 0.0006 156.08 2.69 0.0001 0.0006

Gaussian Process Regression None 0.59 0.0002 0.0012 0.35 0.0005 0.0030 342.43 5.90 0.0116 0.0676
Normalised 0.73 0.0001 0.0006 0.53 0.0001 0.0006 156.33 2.70 0.0001 0.0006
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nosis, but suggest a ‘continuum of psychosis’ (Oestreich et al., 2016). In
keeping with this idea, in a study by Light and Braff (2005), links have
previously been made between MMN and GAF scores in schizophrenia
patients using individual EEG sites and a duration stimulus paradigm,
with a correlation of 65% that accounted for 42% of the total variance.
In our regression model testing with the left gap paradigm, we were
able to improve on both of these performance measures. Note,
differences in the GAF are not specific to schizophrenic attributes, but
to the general global functioning which can be impaired in other
psychiatric illnesses. Preliminary testing using SANS and SAPS diag-
nostic scores have not proven significant for this sample (data not
shown).

It is worth mentioning that the schizophrenia patients were
medicated over the course of this experiment, whereas the control
group was not. These dosages are unknown, unfortunately, and thus we
are unable to use them as a covariate in model training, or to verify
whether it is uncorrelated with our classifier outputs. However, it is
unlikely that the effects observed in this study are driven by a confound
of drug, as MMN reduction is observed in both medicated and un-
medicated patients (Catts et al., 1995), and such reduction is also
present in unmedicated prodromals (Bodatsch et al., 2011; Shaikh
et al., 2012). Another important difference between our two groups is
the IQ score, which was significantly higher for the healthy controls
compared to the patients with schizophrenia. This is a difficult problem
to circumvent given the known strong correlation between low IQ and
schizophrenia (Kendler et al., 2015).

In both classification and regression modelling, performance was
shown to be highly dependent on the stimulus paradigm and measured
response used as the feature set. However, when considering the varied
levels of performance, perhaps the starkest result was the difference
between the left and right gap paradigms, an observation which is
consistent with previous findings showing that: 1) temporal processing
is particularly impaired in schizophrenia (Michie, 2001) and 2) spatial
asymmetries in the perception of sounds present in neurotypical
individuals is lacking in patients with schizophrenia (Matthews et al.,
2007). For example, in healthy participants, ERPs elicited in an
auditory oddball task with frequency deviation are shown to be
sensitive to which ear receives stimulation (left monaural, right
monaural or binaural), with right lateralisation of scalp topography in
response to left ear stimulus and bilateral distribution for right ear
stimulus (Gilmore et al., 2009). This asymmetry is thought to be caused
by an engagement of parieto-fronto-temporal pathways on the right
hemisphere when the deviant stimulus occurs on the left side of space,
and bilateral engagement of this pathway when the stimulus occurs on
the right side (Deitz et al., 2014). In addition, even earlier on in the
auditory pathway, this hemispheric asymmetry in healthy participants
and the lack thereof in patients with schizophrenia can be caused by a
number of reasons, including information corruption between hemi-
spheres. Indeed, there are known differences in the inter-hemispheric
transfer time when patients with schizophrenia and healthy controls are
presented with monaural word stimuli (Henshall et al., 2012). In the
left gap paradigm, stimuli presented to the left ear are preferentially
processed in the right hemisphere, and would necessitate an interhemi-
spheric transfer back to left hemisphere (which is most specialized for
temporal processing). An alternative possibility for such asymmetry lies
on the degree of grey-matter loss in the left temporal lobe, which
correlates with MMN attenuation (Näätänen et al., 2004). Collectively,
these results suggest that differences in brain connectivity and signal
transfer between hemispheres may be emphasised when the participant
listens to lateralised stimuli. The responses to such stimuli could form
valuable discriminatory features in machine learning for schizophrenia
diagnosis.

In conclusion, we used spatiotemporal images of event-related
potentials evoked in response to varied auditory oddball stimuli as
features, and were able to discriminate schizophrenia patients from
healthy controls through machine learning algorithms. The MMN

difference wave signal was found to produce the highest classification
accuracy in comparison to individual standard and deviant responses.
Evoked responses outside the auditory P100 and MMN were also found
to be relevant discriminatory features. The greatest classification
accuracy was achieved using a monaural gap stimulus paradigm in
the left ear, with group membership classification accuracies up to
80.48% (p-values ≤0.0326, FDR corrected). Finally, the GAF scores
predicted by a regression model based on mismatch responses to this
left gap paradigm were shown to have 0.73 correlation with the true
GAF scores and explained 53% of the total variance (p-values ≤0.0006,
Šidák corrected).
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