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ABSTRACT

Recently, high-throughput sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in
eukaryotes. These 20 to 25 nt noncoding RNAs can influence gene expression by acting as guides for the sequence-specific
regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables
a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the
biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus,
an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression
in sRNA data sets, we present a new interactive pipeline that guides researchers through the various stages of data
preprocessing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality
checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and
identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly
software package for the processing of sRNA data sets. We demonstrate the use of the pipeline on a H. sapiens data set;
additional examples on a B. terrestris data set and on an A. thaliana data set are described in the Supplemental Information.
A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for
sRNA analysis and how the new pipeline may be used to do this.
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INTRODUCTION

RNA silencing is known to play a key role in the fine-tuning
of gene expression in eukaryotes (Brodersen and Voinnet
2006).The process is mediated by a set of RNA molecules
referred to as small RNAs (sRNAs). Well-known examples
of sRNAs include microRNAs (miRNAs) (Bartel 2009;
Voinnet 2009) and small interfering RNAs (siRNAs)
(Carthew and Sontheimer 2009; Meister 2013). These RNA
fragments are excised by Dicer/Dicer-like proteins from dou-
ble-stranded RNA precursors deriving either from single
stranded RNAs with a hairpin-like secondary structure, the
miRNAs (Zhu et al. 2013), or long double-stranded RNA cre-
ated by a polymerase, the siRNAs (Chen 2012). The sRNAs

target and subsequently silence genes and thus play an impor-
tant role in gene regulation (Lippman and Martienssen 2004;
Omidvar et al. 2015), defense against pathogens (Szittya et al.
2010; Donaszi-Ivanov et al. 2013) and general maintenance of
the genome (Molnar et al. 2007; Mohorianu et al. 2011).
For most molecular biology experiments, an important

question is how the observed phenotype or inherent differ-
ences (e.g., time or organ/tissue series) are reflected in the
variation in expression of sRNAs, commonly referred to as
differential expression analysis or DE analysis (Mohorianu
and Moulton 2010; Garber et al. 2011; Ozsolak and Milos
2011; Xu et al. 2014). Identification of DE sequences con-
sists of several distinct stages: first, the quality of the data
is investigated to identify (and potentially exclude) samples
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containing artifacts such as overrepresenting biases originat-
ing from sequencing inaccuracies (Sorefan et al. 2012; Raabe
et al. 2014) or introduced from the handling of the original
biological sample. Second, the reads are annotated to deter-
mine which categories of sRNAs are present. Finally, the ex-
pression levels in the samples are normalized to improve the
comparability between samples and, subsequently, to refine
the accuracy of DE predictions (McCormick et al. 2011;
Dillies et al. 2013).

Bioinformatics methods developed for DE analysis have
thus far largely focused on analyzing messenger RNA
(mRNA) data, first from microarray experiments and now,
more commonly, from RNA-seq (mRNA-seq) data sets
(Rapaport et al. 2013; Soneson and Delorenzi 2013). Many
of these approaches devised for each stage of a DE analysis
are transferable to sRNA data sets (see Table 1). However,
there are a number of conceptual differences between
sRNA microarrays, which capture a small number of known
sequences (mainly miRNAs), and sRNA-seq, which capture a
wider variety of known and novel sRNAs (usually, in excess of
100k unique reads). Similar differences in a number of quan-
tified transcripts are also observed between the output of
mRNA-seq experiments and sRNA-seq output. More specif-
ically, for mRNA studies, the expression levels of the reads are
aggregated into a gene abundance (Mortazavi et al. 2008),
whereas each sRNA sequence contributes individually to
the distribution of abundances (McCormick et al. 2011;
Studholme 2012). Because of this, the resulting distributions
are different both in shape; mRNA-seq abundances have a
Gaussian-like distribution whereas sRNA-seq abundances
follow an exponential-like distribution, and in number of
points; thousands of genes compared to millions of unique
sRNAs (Barquist and Vogel 2015). In addition, sRNA-seq
data have a higher ratio of noise (random degradation prod-
ucts) to signal (genuine sRNAs); due to the nature of sRNA-
seq processing the median of sRNA abundances lies within
the noise range (Vidal et al. 2013). This implies that existing
methodologies for microarrays or mRNA-seq DE analyses
are applicable but not always appropriate for sRNA-seq
data sets (McCormick et al. 2011; Gupta et al. 2012; Lohse
et al. 2012; Vidal et al. 2013). Therefore, it is important to
develop tools that address the specific characteristics of
sRNA-seq data sets and their analysis to complement those
currently used for mRNA-seq analysis.

A common approach for HTS data analysis is to group sev-
eral tools into a pipeline. As well as providing the ability to
tailor pipelines to individual experiments, this enables re-
searchers to configure the distinct stages of the analysis as re-
quired (Davis et al. 2013). After the setup is complete the
(likely lengthy) procedure can be executed without the
need for further input from the user. Currently there are sev-
eral mRNA-seq pipelines available, such as DESeq/DESeq2
(Anders et al. 2013; Love et al. 2014) or edgeR (Zhou et al.
2014) that can be configured to handle, to some extent, the
various stages of a sRNA DE pipeline as well (see Table 1).

However, none of these cover the entire analysis of an
sRNA data set.
Here we present a comprehensive, interactive processing

pipeline for the analysis of sRNA-seq data sets included as
part of the UEA small RNA Workbench (Moxon et al.
2008; Stocks et al. 2012). The pipeline summarizes approach-
es for quality checking (Mohorianu et al. 2011; Axtell 2013),
normalization (Dillies et al. 2013), and identification of ex-
pression-derived patterns (Lopez-Gomollon et al. 2012;
Mohorianu et al. 2013). To enable the user to compare
sRNA-seq libraries and indicate the level of confidence to
place on predictions made during downstream analysis, we
also provide a series of diagnostic plots used throughout
the pipeline to assess the characteristics and overall quality
of the samples. Users can also evaluate different normaliza-
tion methods in order to decide which approach is suitable
for their data set. In addition, we present a confidence inter-
val (CI)-based approach (Lopez-Gomollon et al. 2012) to
summarize the magnitude and direction of fold changes,
for each sRNA. On an H. sapiens data set, described in the
main text, we demonstrate how this can be extended to mul-
tiple comparisons that can be used to group sequences with
similar patterns across the whole experiment.

RESULTS

In this section, we illustrate the features of our pipeline on a
publically available data set in H. sapiens, GSE47532 (Barrett
et al. 2013; Camps et al. 2014) to highlight its use to identify
characteristics and diagnose problems in real data. Additional
examples are presented in Supplemental Information 1 (ex-
ample on a B. terrestris data set) and in Supplemental
Information 3 (example on an A. thaliana data set). The im-
pact of the number of samples or available memory (RAM)
on the runtime is discussed in Supplemental Information 2.

Workflows and implementation details

The pipeline is part of the existing UEA small RNA
Workbench package (Stocks et al. 2012), which provides a
user friendly environment designed for all users regardless
of computing experience. The latest version of the work-
bench also facilitates the chaining together of multiple tools
within a workflow. This allows each distinct part of a pipeline
to be fully configured prior to runtime forgoing the need for
many separate programs that require interlinked inputs/out-
puts. For example, given a set of sRNA samples, a workflow
for the identification of DE sRNAs could consist of the qual-
ity checking of the samples, the normalization of expression
levels, the identification of differentially expressed, annotated
reads and the overview of resulting expression patterns—a
diagram illustrating this series of steps is presented in
Figure 1A. Within the workbench interface, the workflow
(Fig. 1C) consists of multiple user configurable nodes that
represent the various stages in the analysis.
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A standard pipeline takes as input sequence data in FASTA
format with the adapters trimmed. The files can be generated
using the adapter removal tool (Stocks et al. 2012) which also
allows users to process samples created using the HD se-
quencing protocol (Sorefan et al. 2012). The next step is
the configuration of the workflow using the setup wizard.
The first stage is to organize the data/samples in a manner
that reflects the original wet lab experimental design. The
sample hierarchy is represented as a tree diagram where
leaf nodes represent the replicates and the parents represent
the individual samples (Fig. 1B). Users then provide a refer-
ence genome and an (optional) GFF file, corresponding to
the genome build, which will be used for the annotation
stage. If an annotation file is provided, users can then choose
which annotations are relevant for the analysis.
After configuring the sample files, users can choose to be-

gin the workflow immediately or enter each stage of the
workflow and change the configurable parameters, as neces-
sary. In addition, during the workflow, users can mark prob-
lematic replicates (resulting from the first stage of quality
checking) or individual size classes for removal, then select
up to six normalizationmethods to be investigated. The qual-
ity check reports are then recreated on the normalized data
and can be inspected. Next, the user can select the method
that best corrects the data artifacts based on the nuanced
characteristics of the data set’s expression distributions.
The quality check, normalization, and DE steps are com-

putationally intensive and pose significant demands on
both processor and in particular memory (RAM). To coun-
teract this issue, we developed a series of back end improve-
ments, which enable users with a wide range of computing

hardware to use the pipeline. More specifically, we used
disk solutions based on relational database management
interfaced with a Java front end and interacted via a
JavaScript GUI (which is also used to display resulting graphs
and tabular results). However, as the use of disk for runtime
storage and calculations can have significant impacts on pro-
cessing time, a RAM-only version of the software is also avail-
able for users with access to high-end computing hardware.

Quality checking

To illustrate the quality check stage of the pipeline, initial
checks on a H. sapiens data set (H data) were conducted
both before and after aligning reads to the reference genome.
The first step of the pipeline is to evaluate the overall features
of the data being analyzed. The sequencing quality of individ-
ual sRNA-seq samples is initially assessed based on the posi-
tional nucleotide composition. Next, the total library size
(redundant count) and the total number of unique sequences
(non-redundant) count are compared across libraries to as-
sess the variation in sequencing depth. The size class distribu-
tions for both redundant and non-redundant reads (Fig. 2A1,
A2) can indicate abundant or otherwise important sRNA
classes early on in the analysis, or identify issues with the se-
quencing or mapping of certain size classes. The distribution
of complexities, defined as the ratio of redundant to non-
redundant reads, provides an approximation of the number
and abundances of reads in each size class (Fig. 2A3).
Complexity values that are close to 1 indicate a highly diverse
set of low abundant sequences, whereas lower complexity
values are caused by a smaller set of highly abundant

TABLE 1. A summary of current tools designed for RNA-seq analysis, which can be applied for sRNA-seq analyses

Tool Format Data type
Fastq
QC

Nt
freq

Adp
trim

Size
class Annotation

MA/
scatter Norm DE References

DeSeq R library RNA-seq N N N N N Y DEseq Y Love et al. (2014)
edgeR R library RNA-seq N N N N N Y TMM Y Zhou et al. (2014)
baySeq R library RNA-seq N N N N N N Quantile Y Hardcastle and Kelly

(2010)
RSEQtools Software mRNA-seq N N N N Y N RPKM Y Habegger et al. (2011)
DARIO web ncRNA-seq N N N Y Y N – N Fasold et al. (2011)
Cyber-T Web RNA-seq N N N N N N Logarithmic, VSN Y Kayala and Baldi

(2012)
ncPRO-seq Software sRNA-seq Y Y N Y Y N – N Chen 2012
Shortran Software sRNA-seq N N Y N N N Total count Y Gupta et al. 2012
RobiNA Software RNA-seq Y Y Y N N N RPKM DeSeq/edgeR Lohse et al. 2012
omiRas Web miRNA-seq Y N Y N N N DESeq DeSeq Müller et al. (2013)
Kraken Software RNA-seq Y Y Y N N N – N Davis et al. 2013
TCC R library RNA-seq N N N N N N DEGES/TbT Multiple Sun et al. (2013)
sRNAtoolbox Web sRNA-seq N N Y N N N edgeR, NOIseq edgeR, NOIseq Rueda et al. (2015)
UEA sRNA
Workbench

Software sRNA-seq Y Y Y Y Y Y RPM, quantile,
subsampling,
DESeq, TMM

Y Stocks et al. (2012)

For each tool we present the type of expected input (e.g., mRNA-seq, sRNA-seq, etc.), the availability of quality checks, analysis of the nucleo-
tide distributions, and possibility of adapter trimming. Additional features include the evaluation of size class distributions and MA or scatter
plots. Higher level checks such as the annotation of reads, normalization of abundances, and differential expression calls are also reviewed.
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sequences (Mohorianu et al. 2011). For the H data set, we ob-
serve a peak in the redundant count distribution at 22–23 nt
and a sharp and focused decrease in complexity (Figure 2A1,
A3). This indicates the presence of a few highly abundant
sRNAs for these particular lengths. We also notice that one
replicate of the H32 condition contains more unique reads
than the other samples for sizes lower than 22 nt, and that
there is a markedly higher complexity for an H16 replicate

across the lower and higher range of size classes, indicating
an over representation of read variants.
The qualitative replication analysis is conducted through

the replicate versus replicate scatter plots and MA plots/
Bland–Altman plots (Bland and Altman 1986), Figure 2B,
with similar characteristics and interpretation to those onmi-
croarray data (Bolstad et al. 2003; McCormick et al. 2011;
Dillies et al. 2013); for the latter each dot corresponds to a

FIGURE 1. Overview of the analysis pipeline and the input of the Differential expression workflow implemented in the UEA sRNAWorkbench. (A)
Diagram showing the steps of the pipeline, including the preprocessing, alignment to the reference genome and available annotations, quality checking
of the raw and processed data, normalization and differential expression call. (B) Hierarchical representation of the input data obtained using the input
wizard. (C) The user interface for a workflow containing Quality Checks, Normalization and Differential Expression call; each node can be configured
individually.
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gene, in this context each dot represents an sRNA. This com-
parative analysis can be extended to higher levels (such as at
the sample or treatment level) and it should be reviewed

again using the normalized expression levels. For the H
data set, this analysis indicated a high consistency for the
H32 and H48 replicates and reduced agreement between

FIGURE 2. Quality checks for the H data set. (A) The characterization of reads within a sample can be obtained by creating the size class distributions
for redundant (A.1) and non-redundant (A.2) reads. Next, the ratio of unique to total reads can be investigated using the complexity distribution (A.3).
Lastly, the proportions of genomematching reads for redundant (A.4) and non-redundant (A.5) reads highlight the quality of the sRNA library. (B)MA
plots on the raw abundances (prior to any normalization or filtering) for evaluating the reproducibility of the replicates. On the x-axis we represent the
average abundance between the replicates; on the y-axis we represent the fold changes. Good samples show low variability with the increase of abun-
dance (e.g., N00,H32, andH48); problematic samples are characterized by high variability between replicates (e.g., H16). (C) Jaccard similarity indexes
computed on the top 1000most abundant reads. These indicate a high reproducibility between theN00,H32, andH48 replicates (in excess of 0.8) and a
low reproducibility for the H16 replicates (0.62). Interestingly, the second H16 replicate is more similar to the first replicate in the H32 time point.
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the H16 replicates. Supporting the initial observation, the
most dispersed size-separated fold changes are those found
between the replicates of H16 (Fig. 2B). Low Jaccard indices
generated in the second report indicate that these replicates
have poor comparability caused by large differences in
both the sequence count distribution and sequence compo-
sition of the first replicate (Fig. 2C). Since there are only two
replicates per treatment and there is no objective approach
for choosing one of the two, this plot indicates that the
H16 treatment should probably be excluded from further
analysis. The other treatments show a high similarity be-
tween replicates, with very few fold changes greater than
an absolute log2 fold change of one at higher average expres-
sion levels. Although treatment H32 shows a slight skew to-
ward positive fold changes caused by a higher sequencing
depth in the second replicate, the pipeline can be used to cor-
rect this issue at the normalization stage.

The percentage of genome-matching reads is also calculated
for both redundant and non-redundant sequences and across
size classes (Fig. 2A). In addition to examining the entire sRNA
population in a data set, all quality checks described so far
can also be calculated and compared visually across individual
annotations of interest. These include miRNAs, other ncRNAs
(such as tRNAs, rRNAs, or snoRNAs), protein-coding genes
and repeat/ transposable elements depending on available
annotation information (Mortazavi et al. 2008; Xu et al.
2014). These analyses indicate a high proportion of reads in
these samples are likely to be miRNAs.

Normalization

The next step in the pipeline is the normalization of the ex-
pression levels. In the normalization node we incorporate
several existing methods for normalization, with additional
features that we have developed especially for sRNA data
sets. For scaling-based methods, the normalization total in-
fluences the subsequent DE call; ideally it should not be
much lower than the original number of reads. For example,
if the scaling is done at 1 M for samples with >10 M reads
then all the expression levels will be reduced and DE may
be hidden. Alternatively, if scaling is done at 10M for samples
with <1 M reads, then DE could be artificially be generated.
An appropriate normalization total therefore lies in the same
range as the sample totals (the average and median options
are presented as alternatives). Other options are rank-based
quantile normalization adapted for sRNA-seq data (Bolstad
et al. 2003) and subsampling normalization (Li et al. 2012).

The analysis of the H data set highlights a common issue
with normalization where two replicates are sequenced with
different overall depths (mainly due to the characteristics of
the sequencing platform used). To evaluate which method(s)
are suitable for this data set, we tested all six normalization
techniques described in Materials and Methods. Figure 3 il-
lustrates the size-separated distributions of differential ex-
pression which can be used to evaluate the suitability of

each normalization method. Fold-changes between replicates
should be minimal and produce a distribution centered on
zero, after normalization. While the TMM, DESeq2, and
quantile methods appear to center the distributions of all
size classes, the total count, subsampling, and upper quartile
methods do not improve on the comparability of the distribu-
tions. This suggests that for the H data, either TMM, DESeq,
or quantile normalization should be chosen as normalization
approaches.

Differential expression comparison with existing
approaches

We exemplify the DE analysis on the H data set for two com-
parisons: N00/H32 and H32/H48; the left-hand side is con-
sidered the reference sample.
We compared our results, obtained using the offset fold

change, in log2 scale (LOFC) and confidence interval (CI)
pattern approach—described in Materials and Methods,
with two of themost widely used tools for detecting DE reads,
DESeq2 (Love et al. 2014), and edgeR (Zhou et al. 2014).
Both approaches control for false positives by estimating dis-
persions and weighting fold changes based on these disper-
sion estimates. For the DESeq2 and edgeR analyses we used
a significance cut-off of 0.05. For the method implemented
in the workbench, we applied a threshold of 1 LOFC (both
for U andD patterns) to call sequences as DE. This was select-
ed based on empirical evidence that a sequence with a log2
fold change of one can be detectable on a Northern blot or
via qPCR (Morey et al. 2006). The KL divergence curves gen-
erated from the H data set used for determining the appropri-
ate offsets are shown in Figure 4. We also assessed the
dependence of the offset on the number of strand bias bins
and length of the alignment window. In the H data set, the
number of strand bias bins heavily affected the resulting off-
set up to 100 bins, after which point the KL curve remains
unchanged, which resulted in an offset biased toward the
lower end of abundance levels. The offset was also affected
by alignment window length and can vary erratically when
using the raw measures; however, we utilize a LOESS
smoothing function (Cleaveland 1979) to produce a more
stable offset.
For the N00 versus H32 comparison of the H data set, 427

sequences were called DE by all methods (Fig. 5B). DESeq2
and edgeR both predicted 241 sequences not called DE by
the LOFC method; DESeq2 returned 110 differentially ex-
pressed sequences that edgeR and our method did not find
significant, and edgeR predicted 15 differentially expressed
sequences which were not captured using the other methods.
Based on the MA plot (Fig. 5A) we observe that the abun-
dance and/or offset fold-change of these specific calls is
low. These artifacts can be identified and evaluated on a
case-by-case basis by using the LOFC and the CI approach.
In addition, we present the expression levels of the four reads
identified exclusively using the LOFC approach (Fig. 5C).
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DISCUSSION

We have described a sRNA processing pipeline, part of the
UEA sRNAWorkbench, that includes steps for quality check-
ing, normalization, and identification of DE sRNAs con-
sidering the unique characteristics of sRNA-seq data sets.

To achieve a better understanding of these data sets, the pipe-
line generates a set of diagnostic plots, which can be used ini-
tially to review the raw sequencing quality of the replicates
and then to assess the effect that different normalization tech-
niques have of the abundance distributions. The use of a
suitable normalization is essential for reducing false-positive

FIGURE 3. Evaluation of the appropriateness of the normalization methods on the H data set. For each sample and for each set of replicates, we
represent the fold-change distributions (y-axis) for each individual size class (x-axis). Based on the assumption that no significant differences are
expected between replicates, a suitable normalization is one that brings all distributions on the 0 line (in log2 scale, this corresponds to equal values
in both replicates). For the H data set, the TMM, DeSeq2, and adapted quantile normalization fulfill this criterion for all samples.
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predictions; however, no single normalization technique can
be invariably applied to all sRNA-seq data sets. To evaluate
which approach is appropriate for a given data set (i.e., by
rendering the samples comparable from most [preferably
all] quality check angles) we encourage the user to investigate
their using the revised quality check plots.

When identifying DE transcripts in HTS data it is impor-
tant to take into account the level of noise, a quantity that
increases with the depth of sequencing. To account for
this, we have implemented a user-friendly tool for the iden-

tification of a suitable offset, which estimates the abundance
range of the reads lacking sRNA characteristics (e.g., specific
size), taking into account the sequencing depth and the
characteristics of the sRNA population present in the sam-
ples. We compared the results of our DE analysis (LOFC)
to that of DESeq2 and edgeR DE packages to determine
the level of overlap between other methods and our own.
In lieu of a P-value threshold to assess DE genes, which often
reports large numbers of significant genes often with a low
difference in expression, we used a cut-off of 1 LOFC to

FIGURE 4. Identification of an offset for each sample in the H data set using Kullback–Leibler divergence to compare the strand bias distributions of
reads to a random uniform distribution, in windows of various lengths. This analysis was done on windows of length 1000 nt (parameter that can
be modified from the GUI), for each of the two replicates (_1 and _2) of the three accepted samples, N00, H32, and H48. On the x-axis we show
the abundances of the considered windows (the abundance within a window is the algebraic sum of the abundances of all incident reads); on the
y-axis we represent the value of the KL divergence. The gray line indicates the unsmoothed KL divergence values and the blue line shows the divergence
values smoothed by LOESS (span = 0.3). The offset for each sample is determined as the minimum of the smoothed divergence. The offset for the
whole data set is the overall minimum of these values; for this data set this value was determined to be 42.
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filter the reported sequences. The cut-off can, however, be
user defined in order to reduce or increase the number of
reported sequences. Importantly, the ranking of sequences
by LOFC is not populated with high but insignificant fold
changes.
To further accommodate the variability between replicates

we use CIs created over normalized replicate expression levels
which produce more stringent lists of DE sequences between
treatments. The method is also extended to multiple condi-
tions by using pattern-based grouping of the sequences (Fig
6). The method is not only suitable for (ordered) time-series
data sets, but can also be applied to other types of compara-
tive experiments such as wild-type versus multiple treatments
or cross tissue comparison. Grouping DE sequences allows
users to quickly view sets of sRNAs that follow the same pat-
tern of expression throughout the experiment.
During our analyses we observed that problematic data sets

arise when whole size classes are affected by a condition,
causing a high rate of DE for a large proportion of the

sRNAs, e.g., RNAi mutants which cause the exclusion of a
whole class of sRNAs or virus infections which produce a
large set of viral siRNAs in the infected samples (Szittya
et al. 2010). To our knowledge no current normalization is
able to correct for such experiments, and further approaches
will need to be developed to provide an appropriate normal-
ization solution to this kind of data.
In conclusion, we have described a user-friendly pipeline

for sRNA DE analysis that allows the evaluation of a variety
of techniques to identify the most suitable approach for a giv-
en data set. The workbench includes both established ap-
proaches and tools that we have specifically developed for
sRNA sequence analysis and facilitates a coherent and in-
formed analysis through linking the different aspects into a
workflow. The UEA sRNA Workbench and the pipeline de-
sign devised for the data analysis may prove to be a valuable
resource facilitating the expansion of our knowledge of
sRNAs, especially for the study of new or less well character-
ized classes of sRNAs.

FIGURE 5. Assessment of three approaches used for the identification of differentially expressed reads applied on the N00 versus H32 comparison (H
data set). (A) MA plot created using the normalized expression levels (TMMmethod, see Fig. 3). On the x-axis we represent the average abundance; on
the y-axis we represent the log2(OFC). The color of the dots indicates whether the reads were called DE by both edgeR and DESeq2 (orange), exclu-
sively by edgeR (blue), or exclusively by DESeq2 (red). Reads accepted as DE using the LOFC approach are those outside the dotted lines. (B) Venn
diagram showing the number of reads called DE using the LOFC, edgeR, and DESeq2 methods. (C) Distributions of expression levels (represented as
maximal intervals) for the four sequences called DE exclusively by the LOFC method.
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MATERIALS AND METHODS

To illustrate the use of the pipeline we use a H. sapiens data set re-
ferred to as “H” data (publicly available on Gene Expression
Omnibus [GEO] under accession number GSE47532). This is an ex-
periment on the effects of hypoxic conditions onMCF7 cells (Camps
et al. 2014), organized into a time series of four points, each with two
biological replicates, Normoxia (N00), Hypoxia at 16 h (H16),
Hypoxia at 32 h (H32), and Hypoxia at 48 h (H48). The additional
examples presented in the Supplemental Information are based on
publicly available B. terrestris data (GSE64512) consisting of two
samples, with four biological replicates each (Sadd et al. 2015) and
a publicly available A. thaliana data (GSE35562, GSM1178880 to
GSM1178882 for the wild-type and GSM1178883 to GSM1178885
for theHen1-8mutant) consisting of two samples, with three biolog-
ical replicates each (Zhai et al. 2013).

In this section, we describe the methodology and software under-
pinning the new pipeline; the main workflow diagram is presented
in the diagram in Figure 2A.

Quality checking

The sequencing quality of individual sRNA-seq samples is assessed
based on properties such as the positional nucleotide composition
(SEQC/MAQC-III Consortium 2014), sequencing depth and the
number of unique sequences present in a sample (Rajagopalan
et al. 2006). The accuracy of expression replication is evaluated by
comparing, qualitatively and quantitatively, the abundances of reads
between replicates (Mapleson et al. 2014). The quantitative analysis
includes the study of size-class separated distributions of abundanc-
es and complexities, defined as the ratio of unique (non-redundant)
to total (redundant) reads and the Jaccard similarity index on the
top 500 most abundant reads (Jaccard 1901; Mohorianu et al.
2011). The qualitative comparison is conducted through the repli-

cate versus replicate scatter plots and MA plots/Bland–Altman plots
(Bland and Altman 1986). We also assess the stability of distribu-
tions of fold changes between replicate libraries for each size class
presented in log2 scale. An appropriate similarity between the com-
pared replicates/samples is indicated by tight distributions, symmet-
ric on 0 log2 fold change with no deviations for any particular size
classes (Yang et al. 2002; Mohorianu et al. 2011). The percentage
of genome-matching reads is calculated for both redundant and
non-redundant sequences and across size classes. Selected annota-
tions for which similar checks are performed includemiRNAs, other
ncRNAs (such as tRNAs, rRNAs, or snoRNAs), protein-coding
genes, and repeat/transposable elements depending on available an-
notation information (Xu et al. 2014; Omidvar et al. 2015).

Abundance distributions of reads in each sample are plotted in a
series of boxplots (McCormick et al. 2011; Dillies et al. 2013).
However, due to the high proportion of low abundance reads char-
acteristic to sRNA-seq data these distributions for all reads are often
uninformative. To counter this, we break the data into abundance
ranges of user-defined length (referred to as abundance windows)
and assess the comparability of the sample distributions within
each window.

Normalization

The aim of the normalization of the expression levels is to minimize
the technical variation between replicates and treatments which is
not biologically relevant, e.g., sequencing errors and biases or arti-
facts from the RNA itself (Sorefan et al. 2012; Raabe et al. 2014) since
DE predictions are only considered reliable when the variability be-
tween replicates is lower than the differences between the treat-
ments. In the Normalization component of the pipeline, we
incorporate several existing methods for normalization (scaling-
based, rank-based, and statistical), with additional features, adapted
for sRNA data sets. Scaling normalizations, based on the

FIGURE 6. Clusters of reads sharing similar patterns (only the clusters with more than 15 entries were presented; the SS cluster was excluded, since
the vast majority of the reads are not expected to be differentially expressed between treatments). The U and D descriptors were assigned to reads for
which the LOFC on the proximal ends of the maximal expression intervals was in excess of one. Each line corresponds to the averaged expression
profile, on the two available replicates, for one sRNA; the red lines are used to highlight miRNA expression profiles. The boxplot interquartile ranges
(IQRs) are used to highlight the distributions of expression in each time point and underline the pattern.
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identification of a scaling factor which brings the total number of
reads to an a priori fixed total include: the reads per million
(RPM)/reads per total (RPT) method (Mortazavi et al. 2008) for
which the total abundance of all reads in a sample is considered, up-
per quartile normalization (Bullard et al. 2010) for which only the
reads with abundances in the upper quartile are considered, the
trimmed mean of M-values (TMM) (Anders and Huber 2010)
and DESeq (Anders and Huber 2010).
Quantile normalization (Bolstad et al. 2003), originally designed

for microarray experiments, is also included as an option in the
pipeline. This method imposes the same distribution of ranks
over all sequences in the data set. We adapted this method to
sRNA sequencing data by adding two extra conditions: (i) If, within
a sample, two or more reads have the same abundance before nor-
malization, they are assigned the same abundance after normaliza-
tion which is the average of the normalized abundances. (ii) If a
read is not present in the original sample (abundance = 0) then it
is assigned an expression level of 0 in its normalized version.
We also include a subsampling-based normalization which is an

adapted version of the method described in Li et al. (2012). Our
method is based on sampling reads (without replacement) to the
minimum library size (for all samples that pass the quality check).
It consists of two steps: (i) to ensure that the distribution of abun-
dances are consistent within a sample, the sampling is conducted
for decreasing proportions until the sample’s distribution has signif-
icantly changed or the lowest sample size has been reached; (ii) a
subsample of reads with a fixed total is selected repeatedly and, using
bootstrapping, the variability of the subsamples is tested. If the var-
iability is low, a random sample (representative for the distribution,
i.e., not an outlier) is selected.

Differential expression call

To identify DE sequences between conditions/treatments, the pipe-
line includes a confidence interval (CI)-based approach (Lopez-
Gomollon et al. 2012; Mohorianu et al. 2013). For each sequence,
in each condition, a CI is calculated over replicate expressions using
either Chebyshev’s intervals calculated from the mean and the stan-
dard deviation (Singh et al. 2006) or the minimum and maximum
expression levels if only two replicates are available. For a selected
comparison between a reference and observed condition, the direc-
tion of DE and its amplitude are also calculated. A directional
descriptor from the set (up [U], down [D], straight [S]) is assigned
to each sequence as follows: S is used if the CIs overlap, U indicates
that the observed CI is higher than the reference, and D indicates the
opposite result. The issue of performing pairwise comparisons with
sample counts greater than two can then be addressed by forming
patterns using the (U,D,S) descriptors. This allows sorting and fil-
tering of sequences that result in potentially relevant/interesting ex-
pression changes throughout the course of the experiment.
The amplitude of the difference in expression between conditions

is considered on proximate extremes (the closest ends of the neigh-
boring CI) of the reference and observed CIs and is only calculated
on sequences that have been assigned a U or D descriptor. The am-
plitude is calculated using the log2 offset fold change (LOFC) meth-
od previously described in Mohorianu et al. (2011, 2013). The offset
prevents low abundance variation from being included in the signif-
icant DE distribution. The aim of the offset-approach is to reduce
the number of false positives from low abundance sequences and

to allow fold change values to be used directly when assessing the
relative significance of differentially expressed sequences.
To determine an appropriate offset for a data set, the pipeline can

be used to estimate the abundance level around which the majority
of noise-related reads lie. Previous studies have observed that low
abundance regions/loci have a high strand bias (derived from the re-
duced number of reads), but loci within the noise-to-signal range
have no preferred strand bias (Mohorianu et al. 2011). Based on
this observation, the method assigns sRNAs to windows of a set
length along the genome reference and the total expression and
strand bias is then calculated for each window. For all expression lev-
els, the distribution of strand biases is compared to a random uni-
form distribution using the Kullback–Leibler (KL) divergence
measure (Kullback and Leibler 1951). We define the noise-to-signal
threshold (the offset) as the value for which the global minimum of
the KL divergence distribution is reached. The distribution is
smoothed by a LOESS function (Cleaveland 1979) to prevent ex-
pression level outliers from giving a local minimum. Expression lev-
els lower than this threshold tend to have a higher divergence from a
uniform strand bias due to a low number of incident reads, and ex-
pression levels that are higher than the threshold have an increasing
divergence measure due to biologically relevant reads.

DATA DEPOSITION

The workbench and all the supporting data and tutorials are freely
available from http://srna-workbench.cmp.uea.ac.uk. The license
is a custom license written for the UEA sRNA Workbench and
can be found in the Workbench installation directory or by visiting
http://srna-workbench.cmp.uea.ac.uk/wp-content/uploads/2016/
11/sRNA-WorkbenchEULA.pdf. There are no restrictions on use
other than requiring citations to specific papers when conducting
research with the software; specific details can be found on the
website.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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