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ABSTRACT

While RNA editing by A-to-I deamination is a requisite for neuronal function in humans, it is under-investigated in single cells.
Here we fill this gap by analyzing RNA editing profiles of single cells from the brain cortex of living human subjects. We show
that RNA editing levels per cell are bimodally distributed and distinguish between major brain cell types, thus providing new
insights into neuronal dynamics.
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INTRODUCTION

Deep-sequencing technologies have allowed the characteriza-
tion of patterns of transcriptome variation across individuals
and tissues at unprecedented resolution—facilitating sub-
stantial advances in our understanding of transcriptional reg-
ulation and post-transcriptional processing (Mele et al. 2015).
Recent advances in whole-transcriptome amplification have
permitted quantitative sequencing of the minute amounts
of RNA residing in single cells, and offer a unique opportunity
to investigate transcriptional heterogeneity within tissues or
even cell types by circumventing the need to study bulk tissue
populations that usually comprise thousands or millions of
input cells (Shapiro et al. 2013). Among human tissues, the
adult brain shows extremely high complexity, being com-
posed of a variety of cell classes and subtypes. Microfluidic
systems coupled with massive mRNA sequencing on dissoci-
ated human brain cortex enable the identification of all major
neuronal, glial, and vascular cell types, and reveal distinctive
transcriptome profiles undetectable in the ensemble tissue
(Darmanis et al. 2015). Despite these advances, cell level var-
iation in post-transcriptional processing steps such as RNA
modification by adenosine to inosine (A-to-I) editing, which
actively contributes to transcriptome and proteome complex-
ity, remains under-investigated.

A-to-I RNA editing is widespread in humans, affecting
coding and noncoding transcripts at thousands of sites,
and has a plethora of biological effects depending on the
RNA context modified. RNA editing alters codon identity,

creates or eliminates splice sites, and interferes with base-
pairing interactions within higher-order RNA structures
(Nishikura 2016). A-to-I deamination is catalyzed by mem-
bers of the adenosine deaminase (ADAR) family of enzymes
that act on dsRNA and occurs mainly in the primate-specific
Alu repetitive elements (Nishikura 2016). ADARs are ex-
tremely important for the maintenance of cell homeostasis
as mouse null mutants develop epileptic seizures and die sev-
eral weeks after birth (Higuchi et al. 2000; Horsch et al.
2011). In addition, dysregulated RNA editing levels at specif-
ic recoding sites have been linked with a variety of diseases
including neurological or psychiatric disorders and cancer
(Chen et al. 2013; Behm and Öhman 2016; Khermesh et
al. 2016).
We recently profiled A-to-I editing at the genome-wide

level in various bulk human tissues and confirmed its perva-
sive nature, detecting more than 3 million events (Picardi
et al. 2015). Our comprehensive catalog indicates strong tis-
sue specificity of RNA editing and reveals the brain to be the
human tissue with the most specific modifications. Indeed,
A-to-I editing is required for neuronal function as many tar-
gets are key mediators of synaptic signaling (Mattick and
Mehler 2008; Behm and Öhman 2016).
To capture and characterize the complexity of RNA editing

at single-cell resolution, we exploited existing single cell RNA
sequencing (scRNA-seq) data from adult human cortex cells
obtained from living subjects (Darmanis et al. 2015). Our
study provides novel and exciting insights into neuronal plas-
ticity and opens up the possibility to decipher yet unknown
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molecular aspects of RNA editing in physiological as well as
diverse neurological or neurodegenerative disorders.

RESULTS AND DISCUSSION

We explored cell inosinome profiles using a comprehensive
and nonredundant collection of known RNA editing events,
including A-to-I changes from our catalog (Picardi et al.
2015) as well as sites annotated in the RADAR database
(Ramaswami and Li 2014). The data allowed the interroga-
tion of more than 4.5 million positions per cell.
Initially we processed raw scRNAseq data from 331 cells,

performing quality checks, adaptor trimming, and in silico
rRNA depletion. Cleaned reads were aligned onto the refer-
ence genome using the STARmapper. Next, we excluded cells
with fewer than 1 million uniquely aligned reads and a map-
ping rate <70%, reducing the starting data set to 268 cells. On
average, we analyzed 2.3 million reads per cell (Supplemental
Table 1), calling RNA editing events using REDItools (Picardi
and Pesole 2013) and retaining only sites supported by at least
10 independent reads.
The number of detected A-to-I events varied greatly among

cell types andwithin each cell population, principally as a con-
sequence of variation in sequencing depth (Supplemental
Table 1). Indeed, the number of A-to-I changes per cell was
strongly correlated with the number of uniquely aligned reads
(r = 0.83, P = 0.0) (Supplemental Fig. 1). Strikingly, RNA
editing levels (proportions of reads supporting an editing
event at each known editing site) for individual cells showed
a bimodal distribution with peaks close to extreme values
(0 and 1) (Fig. 1A). This observationwas not an artifact result-
ing from the presence of PCR duplicate reads, as PCR dupli-
cation was globally low (affecting on average 10% of aligned
reads) (Supplemental Fig. 2). Furthermore, raw and de-dupli-
cated data sets shared, on average, 95% of candidate editing
sites and by position, comparison of A-to-I levels showed a re-
markable positive correlation (r = 0.9998, P = 0.0) (Supple-
mental Fig. 3). After removal of PCR duplicates, A-to-I
editing levels of single cells continued to exhibit an extreme
bimodal distribution (Fig. 1B). However, when scRNA-seq

reads were merged, mimicking an ensemble tissue, RNA ed-
iting levels displayed a classical unimodal distribution in
which the majority of A-to-I editing levels was lower than
0.2, as previously observed in six human tissues (including
brain cortex) (Fig. 1C; Picardi et al. 2015). These observations
suggest that the penetrance of editing at single sites in single
brain cortex cells shows an “all or nothing” distribution and
that the affected sites vary between single cells, an effect that
is masked by the study of bulk tissues. The bimodal distribu-
tion of RNA editing levels was also recently shown for C-to-U
editing levels in homogeneous populations of mice macro-
phages (Harjanto et al. 2016).
The vast majority of RNA editing sites detected here and in

previous studies (Bazak et al. 2014a; Picardi et al. 2015) reside
in Alu repetitive elements. To provide a more realistic esti-
mate of global editing activity per cell, we calculated the Alu
editing index (AEI) per cell because it represents the weighted
average editing level across all expressed Alu sequences (Paz-
Yaacov et al. 2015). We grouped AEI values per cell type ac-
cording to transcriptome profiling previously characterized
(Darmanis et al. 2015) and found that each cell type popula-
tion exhibited a peculiar AEI distribution in which astrocytes
and neurons appeared as the most edited cell types (Fig. 2A).
To confirm cell specificity of RNA editing, we performed a
multidimensional scaling (MDS) analysis using Spearman
correlation coefficients calculated by pairwise comparisons
of RNA editing levels in major brain cell types. Strikingly,
four clusters emerge, corresponding to astrocytes, neurons,
oligodendrocytes, and OPCs (oligodendrocyte precursor
cells); the overlap between the latter cell types indicating sim-
ilar RNA editing profiles (Fig. 2B; Supplemental Fig. 4 includ-
ing all cell types).
We also checked the expressed levels of ADAR enzymes in

all cell types and found a very uneven distribution for ADAR
gene (also known as ADAR1), while ADARB1 (known as
ADAR2) was expressed at very low levels but a bit more in
neurons (Supplemental Fig. 5). Interestingly, the ADARB2
gene, with questionable editing activity (Chen et al. 2000),
was expressed at detectable levels only in neurons, oligoden-
drocytes, and hybrid cells (Supplemental Fig. 5). However,

FIGURE 1. Distribution of RNA editing levels from all cells calculated with potential PCR duplicates (A), without potential PCR duplicates (B), and
merging reads from all cells mimicking an ensemble tissue (C).
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the expression levels of ADARs did not correlate with RNA
editing levels and AEI values as well. In contrast, the AEI in-
dex showed strong correlation with the mean editing levels
per cell (Spearman correlation value of 0.76, P-value =
8.2 × 10−53) or the normalized sum of editing levels per cell
(Spearman correlation value of 0.80, P-value = 1.7 × 10−61).
The absence of significant correlation between the expression
levels of ADARs and RNA editing levels or AEI values in sin-
gle cells may be due to specific regulation mechanisms acting
on ADAR enzymes or to a biased detection of gene expression
levels. Indeed, many factors, such as cell cycle or cell size,
may affect the correct quantification of gene expression lev-
els, especially in cases of low expressed genes (Wu et al.
2014; Kowalczyk et al. 2015; Padovan-Merhar et al. 2015).
Additional experimental evidence will be required to clarify
this aspect.

Historically, most interest has been directed toward recod-
ing sites, where RNA editing results in amino acid substitu-
tions. Many of the best-characterized recoding sites are in
brain-specific transcripts coding for membrane receptors
and ion channels (Behm andÖhman 2016). For 183 such po-
sitions selected from our editing collection and the RADAR
database, RNA editing activity was higher in neurons than
other cell types (Fig. 3). However, only a few sites, located
in genes for glutamate receptors, were edited in almost all
neurons, suggesting a universally critical role for editing at
these sites (Supplemental Table 3). The data set used in
this study also included a new hypothetical cell type indicated
as “hybrid” that displayed characteristics of both neurons and
astrocytes (Darmanis et al. 2015). The analysis of recoding
sites indicated that hybrid cells were more similar to neurons
than astrocytes (Fig. 3). “Hybrid” cells exhibited a recoding
editing pattern of glutamate receptors that overlaps substan-
tially with that observed in neurons (Fig. 3). In addition,
MDS analysis of RNA editing profiles from “hybrid” cells,
neurons, and astrocytes showed large overlap between “hy-

brid” cells and neurons but not astrocytes (Supplemental
Figs. 6, 7). Thus, our results support the view of “hybrid” cells
as a potential new cell type related to neurons.
To further investigate the possibility that RNA editing

profiles represent powerful signatures of cell type specificity,
we analyzed single fetal brain cells, since they are consider-
ably different from any cell type in the adult brain and
because RNA editing efficiency increases during brain devel-
opment and, consequently, different editing patterns are ex-
pected between fetal and adult cells (Wahlstedt et al. 2009).
We interrogated 4.5 million known RNA editing positions in
135 scRNA-seqs from previously characterized fetal brain
cells (Darmanis et al. 2015). They include 110 quiescent fetal
neurons and 25 actively dividing fetal neuronal progenitors.
AEI distributions clearly showed elevated editing activity in
adult neurons compared to fetal neurons and higher editing
in quiescent fetal neurons compared to fetal neuronal pro-
genitors (Supplemental Fig. 8A). MDS analysis of RNA edit-
ing profiles confirmed three main groups, distinguishing
adult from fetal neurons (Supplemental Fig. 8B). Notably,
RNA editing activity at recoding sites was higher in adult
than fetal neurons (Supplemental Fig. 9). In particular, the
Q/R site in Gria2, linked to neurological disorders, was edit-
ed to high levels in fetal quiescent neurons but not in
neuronal progenitors as previously assessed in vitro (Pacher-
negg et al. 2015).
Taken together, our results demonstrate that RNA editing

is detectable in single cells and demonstrates that A-to-I pat-
terns reveal specific editing signatures distinguishing major
cell types in the human brain. Profiling RNA editing in single
cells may shed light on novel physiological roles of RNA ed-
iting in neuronal plasticity and in a variety of neurological/
neurodegenerative disorders. In addition, A-to-I changes in
single cells may contribute to the identification of novel ther-
apeutic targets or prognostic markers for innovative ap-
proaches of precision medicine.

FIGURE 2. Distribution of AEI index across brain cell populations (A) and MDS analysis of RNA editing profiles in major brain cell types (B).
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MATERIALS AND METHODS

Data sets

RNA-seq data of human brain single cells were downloaded from
the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.
nih.gov/geo) using the accession number GSE67835. They comprise
332 cells from dissociated adult brain cortex and 134 cells from fetal
brain tissue. Single cell capturing has been performed using
Fluidigm C1 technology and RNA sequencing has been carried
out on an Illumina NextSeq platform by Darmanis et al. (2015).

Alignment of RNA-seq data

RNA-seq reads in FASTQ format were inspected using the FASTQC
program. Adaptors and low quality regions (phred cutoff of 25)
were trimmed using TrimGalore (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/), excluding reads with final
length less than 50 bases. In addition, we removed read pairs display-

ing positive alignments with known human rRNA sequences. In
brief, human rRNA annotations were downloaded from UCSC
(hg19 human assembly) and indexed for STAR. Next, RNA reads
were aligned onto rRNAs by STAR and only unmapped reads
were retained for downstream analyses.
For each cell, cleaned reads were aligned onto the complete UCSC

hg19 human genome by means of STAR (using as main parame-
ters: –outSAMstrandField intronMotif –outFilterType BySJout
–outFilterMultimapNmax 1 –alignSJoverhangMin 8 –alignSJD-
BoverhangMin 1 –outFilterMismatchNmax 999 –outFilterMis-
matchNoverLmax 0.04 –alignIntronMin 20 –alignIntronMax
1000000 –alignMatesGapMax 1000000).
Unique and concordant alignments in BAM format were pro-

cessed by the CollectRnaSeqMetrics.jar tool from the Picard package
to obtain basic statistics (Supplemental Table 1). Cells with fewer
than 1 million uniquely aligned reads and a mapping rate <70%
were excluded from further analyses.
Duplicated reads were removed using theMarkDuplicates.jar tool

from the Picard package. Since duplication was very low and did not

FIGURE 3. Heatmap of RNA editing levels at recoding sites in brain cells (see Supplemental Table 3 for details).
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affect RNA editing levels, we performed all RNA editing analyses on
RNA-seq data with duplicates.

RNA editing calling and data analysis

In the absence of a whole-genome data set, we explored RNA editing
profiles per cell comparing RNA-seq data with a comprehensive and
nonredundant collection of known events, including A-to-I changes
from our catalog (Picardi et al. 2015) as well as sites annotated in
the RADAR database (Ramaswami and Li 2014). In all, we interro-
gated more than 4.5 million positions per cell using our REDItools
suite. The complete collection is freely available through the
REDIportal database (Picardi et al. 2016).

For each cell, REDItoolDnaRna.py script was called using the
following parameters: -c 0,0 -T ALLediting.sorted.gtf.gz –p –u -v0
-n0 -G ALLediting.sorted.gtf.gz -e -m20,20 -q30,30. REDItool tables
were finally parsed to retain only edited positions supported by at
least 10 reads.

To measure the global editing activity per cell, we calculated the
Alu editing index, the weighted average editing level across all ex-
pressed Alu sequences, using custom scripts and according to the
methodology described in Bazak et al. (2014b).

RNA editing in recoding sites was assessed using REDItools and
provided a list of 183 known positions in which RNA editing causes
amino acid change. Such positions, listed in Supplemental Table 3,
have been selected from our RNA editing Atlas as well as the RADAR
database, picking only sites residing in nonrepetitive genomic re-
gions and following criteria already described in Khermesh et al.
(2016). As an exception, we included a NARF recoding site residing
in an Alu region, since that site has already been validated in the lit-
erature (Moller-Krull et al. 2008).

Main statistical analyses and plots were performed using pan-
das, scipy, and matplotlib modules in python. Multidimensional
scaling (MDS) was carried out in R using the metaMDS function
of the vegan package, providing as input a Spearman correlation
matrix calculated from editing levels for each cell type. Two-di-
mensional images depicting MDS clusters were generated by
ggplot2.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

We thank Ben Barres at Stanford University for helpful discussions
about human brain cells and Eli Eisenberg at Tel Aviv University for
assistance with Alu editing index computation. This work has been
supported by the Flagship InterOmics (PB05) project, the Italian
Ministero dell’Istruzione, Università e Ricerca (MIUR): PRIN
2012, and the Consiglio Nazionale delle Ricerche: Flagship Project
Epigen, Medicina Personalizzata and Aging Program. Publica-
tion costs for open access have been funded by the Flagship
InterOmics project.

Received July 11, 2016; accepted February 21, 2017.

REFERENCES

Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ,
Rechavi G, Li JB, Eisenberg E, et al. 2014a. A-to-I RNA editing oc-
curs at over a hundred million genomic sites, located in a majority
of human genes. Genome Res 24: 365–376.

Bazak L, Levanon EY, Eisenberg E. 2014b. Genome-wide analysis of Alu
editability. Nucleic Acids Res 42: 6876–6884.

Behm M, Öhman M. 2016. RNA editing: a contributor to neuronal dy-
namics in the mammalian brain. Trends Genet 32: 165–175.

Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. 2000. A
thirdmember of the RNA-specific adenosine deaminase gene family,
ADAR3, contains both single- and double-stranded RNA binding
domains. RNA 6: 755–767.

Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y, Liu M, Yuan YF,
Fu L, Kong KL, et al. 2013. Recoding RNA editing of AZIN1 predis-
poses to hepatocellular carcinoma. Nat Med 19: 209–216.

Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden
Gephart MG, Barres BA, Quake SR. 2015. A survey of human brain
transcriptome diversity at the single cell level. Proc Natl Acad Sci 112:
7285–7290.

Harjanto D, Papamarkou T, Oates CJ, Rayon-Estrada V, Papavasiliou FN,
Papavasiliou A. 2016. RNA editing generates cellular subsets with
diverse sequence within populations. Nat Commun 7: 12145.

Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N,
Feldmeyer D, Sprengel R, Seeburg PH. 2000. Point mutation in an
AMPA receptor gene rescues lethality in mice deficient in the
RNA-editing enzyme ADAR2. Nature 406: 78–81.

Horsch M, Seeburg PH, Adler T, Aguilar-Pimentel JA, Becker L,
Calzada-Wack J, Garrett L, Gotz A, Hans W, Higuchi M, et al.
2011. Requirement of the RNA-editing enzyme ADAR2 for normal
physiology in mice. J Biol Chem 286: 18614–18622.

Khermesh K, D’Erchia AM, Barak M, Annese A, Wachtel C,
Levanon EY, Picardi E, Eisenberg E. 2016. Reduced levels of protein
recoding by A-to-I RNA editing in Alzheimer’s disease. RNA 22:
290–302.

Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ,
Schneider RK, Wagers AJ, Ebert BL, Regev A. 2015. Single-cell
RNA-seq reveals changes in cell cycle and differentiation programs
upon aging of hematopoietic stem cells. Genome Res 25: 1860–1872.

Mattick JS, Mehler MF. 2008. RNA editing, DNA recoding and the evo-
lution of human cognition. Trends Neurosci 31: 227–233.

Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M,
Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, et al. 2015.
Human genomics. The human transcriptome across tissues and in-
dividuals. Science 348: 660–665.

Moller-Krull M, Zemann A, Roos C, Brosius J, Schmitz J. 2008. Beyond
DNA: RNA editing and steps toward Alu exonization in primates. J
Mol Biol 382: 601–609.

Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by
ADARs. Nat Rev Mol Cell Biol 17: 83–96.

Pachernegg S, Munster Y, Muth-Kohne E, Fuhrmann G, Hollmann M.
2015. GluA2 is rapidly edited at the Q/R site during neural differen-
tiation in vitro. Front Cell Neurosci 9: 69.

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S,
Foley SW, Wu AR, Churchman LS, Singh A, Raj A. 2015. Single
mammalian cells compensate for differences in cellular volume
and DNA copy number through independent global transcriptional
mechanisms. Mol Cell 58: 339–352.

Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-
Gotthold M, Knisbacher BA, Eisenberg E, Levanon EY. 2015.
Elevated RNA editing activity is a major contributor to transcrip-
tomic diversity in tumors. Cell Rep 13: 267–276.

Picardi E, Pesole G. 2013. REDItools: high-throughput RNA editing
detection made easy. Bioinformatics 29: 1813–1814.

Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G.
2015. Profiling RNA editing in human tissues: towards the inosi-
nome Atlas. Sci Rep 5: 14941.

Picardi et al.

864 RNA, Vol. 23, No. 6

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.058271.116/-/DC1


Picardi E, D’Erchia AM, Lo Giudice C, Pesole G. 2016. REDIportal: a
comprehensive database of A-to-I RNA editing events in humans.
Nucleic Acids Res 45: D750–D757.

Ramaswami G, Li JB. 2014. RADAR: a rigorously annotated database of
A-to-I RNA editing. Nucleic Acids Res 42: D109–D113.

Shapiro E, Biezuner T, Linnarsson S. 2013. Single-cell sequencing-based
technologies will revolutionize whole-organism science. Nat Rev
Genet 14: 618–630.

Wahlstedt H, Daniel C, Enstero M, Ohman M. 2009. Large-
scale mRNA sequencing determines global regulation of
RNA editing during brain development. Genome Res 19:
978–986.

Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME,
Mburu FM, Mantalas GL, Sim S, Clarke MF, et al. 2014.
Quantitative assessment of single-cell RNA-sequencing methods.
Nat Methods 11: 41–46.

RNA editing in brain single cells

www.rnajournal.org 865


