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Enhancing genomic prediction with genome-wide
association studies in multiparental maize populations

Y Bian1 and JB Holland1,2

Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits that
have been validated with fine-mapping and functional analysis. However, many sequence variants associated with complex traits
in maize have small effects and low repeatability. In contrast to genome-wide association study (GWAS), genomic prediction
(GP) is typically based on models incorporating information from all available markers, rather than modeling effects of individual
loci. We considered methods to integrate results of GWASs into GP models in the context of multiple interconnected families.
We compared association tests based on a biallelic additive model constraining the effect of a single-nucleotide polymorphism
(SNP) to be equal across all families in which it segregates to a model in which the effect of a SNP can vary across families.
Association SNPs were then included as fixed effects into a GP model that also included the random effects of the whole
genome background. Simulation studies revealed that the effectiveness of this joint approach depends on the extent of
polygenicity of the traits. Congruent with this finding, cross-validation studies indicated that GP including the fixed effects of
the most significantly associated SNPs along with the polygenic background was more accurate than the polygenic background
model alone for moderately complex but not highly polygenic traits measured in the maize nested association mapping
population. Individual SNPs with strong and robust association signals can effectively improve GP. Our approach provides a
new integrative modeling approach for both reliable gene discovery and robust GP.
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INTRODUCTION

Genomic prediction (GP) based on genome-wide markers has
emerged as a powerful supplement to conventional plant and animal
breeding (Hayes and Goddard, 2001; Meuwissen et al., 2001; Bernardo
and Yu, 2007; Heffner et al., 2009; Crossa et al., 2014). Exploiting
recent dramatic decreases in genotyping costs, GP can accelerate
selection cycles or increase effective population sizes under selection
(Wang and Hill, 2000) and is likely to increase selection gains per unit
of time (Heffner et al., 2010; Butruille et al., 2015). Most genomic
selection models assume genetic architectures similar to Fisher’s
‘infinitesimal’ model (Hill, 2014), in which each marker is assumed
to be associated with very small genetic effects. In contrast, quanti-
tative trait locus (QTL) mapping and genome-wide association studies
(GWAS) attempt to find individual markers associated with larger
amounts of genetic variation than expected for a polygenic back-
ground effect.
GP and GWAS attempt to model different aspects of genetic

architecture and have complementary advantages. Whereas GWAS
may serve as initial evidence for the role of a particular gene in the
inheritance of a complex trait, GWAS models are generally poor at
representing the combined simultaneous effects of many small effect
variants. In particular, with dense marker data sets, researchers often
have more markers than observations, resulting in strong dependen-
cies among single-nucleotide polymorphism (SNP) association tests.
In contrast, common GP models rely on assumptions about the

genetic architecture that permit simultaneous modeling of high-
dimensional SNP data, often resulting in good prediction ability at
the expense of low interpretability. Consequently, it seems inevitable
to trade off model interpretability for model complexity in GP
(Gianola and van Kaam, 2008; González-Recio et al., 2008).
Genomic best linear unbiased prediction (GBLUP), or equivalently,

Ridge regression best linear unbiased prediction (RR-BLUP; Habier
et al., 2013) assumes equal marker variances and no epistasis but
works well for quantitative trait prediction in practice (Lorenzana and
Bernardo, 2009; Guo et al., 2011; Heffner et al., 2011; Heslot et al.,
2012). GBLUP has become a widely used statistical method to predict
genotypic values in breeding practice with less computational burden
than mode complex approaches (vanRaden, 2008; Hayes et al., 2009;
Piepho, 2009). GBLUP uses DNA markers, often SNPs, to calculate
the realized genomic relationships between individuals to mimic the
genetic relationships at QTLs. The prediction ability of GBLUP relies
on linkage disequilibrium (LD) between SNP loci and QTL and
additive genetic relationships at QTL (Habier et al., 2013). GBLUP is
expected to perform well when the quantitative trait is controlled by a
large number of loci dispersed across the genome.
GP generally outperforms QTL-based marker-assisted selection in

animal and plant breeding (Lorenzana and Bernardo, 2009; Moser
et al., 2009; Heffner et al., 2011). The poor predictive accuracy of
marker-assisted selection is due to inadequate power to detect small
effect loci and treating markers that do not pass stringent thresholds as
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having zero effect, while conversely overestimating the effects of
markers that are retained (Beavis, 1998; Xu, 2003; Schön et al.,
2004). GWAS has some limitations similar to QTL mapping due to the
use of stringent thresholds designed to minimize false positive
associations, resulting in limited repeatability of detection results
across studies especially for small-effect associations (Bian et al.,
2014; Lazzeroni et al., 2014). Differences in allele frequencies, genetic
background, epistasis, population structure and linkage phases among
populations are also major challenges facing identification of robust
associations.
A variety of approaches have been proposed to account for

variability in SNP-associated effects in GP. Bayesian models assume
the genetic architecture that includes a mixture of major and small
effect QTL and polygenic background and apply shrinkage and
variable selection techniques, using assumptions about marker effect
distributions and hyper parameters to tune the priors (Meuwissen
et al., 2001; Park and Casella, 2008; Habier et al., 2011). Bayesian
approaches to GP are more computationally intensive and do not scale
well to large marker data sets. The parameter estimates from Bayesian
or non-parametric methods (including some kernel methods and
random forests) can be sensitive to priors and unstable across studies
(Gianola et al., 2009). More computationally efficient methods have
been proposed to weigh the genomic relationship matrix to represent
the relative size of variance explained by the corresponding loci
(Zhang et al., 2014; Ober et al., 2015; Tiezzi et al., 2015). These
methods aim to improve prediction and are not intended as gene
discovery methods.
Methods that specifically integrate GWAS and GP methods might

provide a way to simultaneously model different aspects of the genetic
architecture and provide more robust associations that could aid gene
discovery while also improving GP. Spindel et al. (2016) proposed
combining a small number of significant SNPs detected with GWAS as
fixed effects in combination with an RR-BLUP model to capture
polygenic effects in a panel of 332 rice breeding lines, resulting in
superior prediction performance (Spindel et al., 2016). The objectives
of this study were to compare the prediction ability of models
including only polygenic background effects to those integrating
polygenic background effects with GWAS-based SNP ‘discoveries’ in
the context of a large multiple family interconnected population in
maize. A simulation study was conducted to compare the power and
false discovery rate (FDR) of association tests and the prediction ability
of different modeling approaches under two different genetic archi-
tectures, differing by the effect sizes of a subset of markers. Real data
from the maize nested association mapping (NAM) were analyzed to
compare predictive ability of different models for traits with different
genetic architectures.

MATERIALS AND METHODS

Plant phenotypes and genotypes
We used the maize NAM population comprising a set of ~ 5000 recombinant
inbred lines (RILs) derived from crosses between a reference parent, inbred line
B73, and 25 other diverse founder inbred lines of maize (McMullen et al.,
2009). We used predicted marginal values for RILs previously reported for three
quantitative traits, resistance to southern leaf blight (SLB), resistance to gray leaf
spot (GLS) and plant height (PHT), as phenotypes. The predicted marginal
values were computed for all three traits as BLUPs adjusted for non-genetic
effects from mixed-effect models in which lines were considered independent
random effects (Bian et al., 2014; Peiffer et al., 2014; Benson et al., 2015).
A consensus linkage map consisting of 1476 markers with a uniform 1-cM
inter-marker distance had been developed from stratified sampling of markers
(Bian and Holland, 2015) from the 0.2-cM linkage map (Bian et al., 2014;
Swarts et al., 2014) and was used for linkage analysis. An additive genomic

relationship matrix (G matrix) for the whole NAM panel computed from the
high-density markers in maize HapMap V1 of 1.6 million SNPs (Peiffer et al.,
2014) was also adopted here to represent the polygenic additive genetic
relationships (vanRaden, 2008), as previously used in (Bian and Holland,
2015). A total of 4354, 3225 and 4359 RILs with both genotypic and phenotypic
data were available for analyzing SLB, GLS and PHT, respectively. A total of
1 328 174 single-nucleotide markers (most SNPs and small indels) in Maize
HapMapV2 genotypes (Chia et al., 2012) had complete and polymorphic loci
for 26 NAM lines. Those markers were referred to as SNPs in this study, and
their genotypes were projected into NAM RILs based on the linkage map (Bian
et al., 2014) and used for GWAS of the three agronomic traits. We then
sampled 1 of every 10 of the GWAS HapMap V2 SNPs for each cM interval and
ensured that at least two markers were kept for each interval, such that a total
of 133 509 SNPs were used for the simulation analyses.

Simulation scheme
We simulated two quantitative traits with distinct genetic architectures using
the real genotypes in NAM populations. Both architectures included a mixture
of polygenic and oligogenic effects but differed in the number and effect sizes of
the oligogenetic effects. Heritability was 0.56 for both traits on a line mean-
basis, with two sources of genetic variance: additive main effects of causal loci
and additive polygenic backgrounds. We assumed that the Gmatrix represented
the true pairwise additive genetic relationships and population structure among
all RILs. For the first trait, 10 independent SNPs were randomly chosen from
each of the 10 chromosomes and assigned identical additive effects as the true
variants. For the polygenic effects, we assigned a variance component to genetic
background effects, distributed according to the G matrix. When fit to the
simulated phenotypes separately, the polygenic effects (G matrix) explain 32%
of the phenotypic variance and the 10 causal loci collectively explained 27% of
the phenotypic variance. As the causal and background effects have some
correlation, the variance they explain when fit together is less than the sum of
the individual component variations. For the second trait, we increased the
number of causal loci from 10 to 100 true variants assigned with equal additive
genotypic values but kept the variance associated with polygenic and all
oligogenic effects the same. Every chromosome then had 10 nearly independent
causal loci that were at least 1 cM apart. We hereafter refer to the first trait as
‘oligogenic’ and the second trait as ‘polygenic,’ although both traits include
some contribution from both oligogenic and polygenic effects. The RIL samples
were the same 4354 as used in the subsequent analysis of SLB. The simulation
did not include epistatic interactions. A pseudocode was included in
Supplementary Appendix S1.

Benchmark model: genomic BLUP models
Given the large amount of genotypic data available in this study, any model that
became prohibitively computationally intensive was not employed because of
the need to conduct many analyses for simulations and cross-validations. We
therefore chose to use the GBLUP model to represent a conventional GP
model. The GBLUP model was a mixed linear model expressed as follows:

y ¼ 1mþ Zuþ e

where y is the n×1 vector for the trait values of n NAM RILs, μ is the intercept,
u is an n×1 vector of genotype random effects and has covariance structure
var uð Þ ¼ Gs2u, where s2u is the additive genetic variance, G is the realized
genomic relationship matrix, Z is a design matrix (identity matrix here) relating
elements of y to elements of u and e is an n×1 vector of error effects with e~N
(0, Is2e ).
We tested an alternative mixed-effect model GBLUP by adding the NAM

family indices (incidence matrix relating each individual RIL to its correspond-
ing family) as fixed effects into the regular GBLUP model:

y ¼ 1mþ Taþ Zuþ e;

where the new term T is the n×24 incidence matrix for the first 24 of the 25
NAM RIL families and α is the 24× 1 vector for family mean effects relative to
the reference family. This model was called the PGBLUP model, ‘P’ referring to
‘population’ effects.
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GWAS discovery: main-effect and nested-effect model in GWAS
We used a mixed linear GWAS model to test for individual SNPs associated
with significantly more genetic variation than expected for polygenic back-
ground variants. The main-effect GWAS model was:

y ¼ 1mþ Taþ xbþ Zuþ e;

where x is an n×1 marker genotype vector for n RILs at a marker locus and β
is the marker main effect. The random background effects, u, were modeled
with a covariance structure proportional to the G matrix, as was carried out for
the GBLUP model.
For each NAM population, every chromosome pair of a RIL line is a mosaic

of the two founder haplotypes (one is B73 and the other is an alternate
founder). Marker effects at QTL could vary by populations due to epistatic
interactions between the causal variants and other factors in the genetic
background or due to functional allelic or haplotypic variation around the site
being tested. To allow for this possibility, we developed a nested-effect model
for GWAS that included separate coefficients representing the additive genetic
effects of each founder allele (or the founder’s haplotype that is in tight LD with
the test locus). Using this nested-effect GWAS model, we can estimate the
effects on the phenotype contributed by each of the alternate founder alleles.
The marker genotype at a locus, as a continuous variable, is considered nested
within population index, using the following mixed-effect model:

y ¼ 1mþ TaþWcþ Zuþ e;

similar to the previous models, but introducing W, an n×m design matrix,
constructed by multiplying the marker genotype column into the population
indices matrix and excluding the columns for populations in which the SNP is
not segregating, and γ, a vector of marker nested effects, that is, a separate
‘slope’ for the marker loci within each population. In contrast to the main-
effect model, this model estimates m allele effects per SNP, where m ranges
from 1 to 25 and represents the number of populations in which the SNP is
segregating.
The two GWAS models were implemented by a two-stage procedure

(Supplementary Appendix S2). In the first stage, restricted maximum-
likelihood (REML) estimates of variance components s2u and s2e were calculated
from a mixed-effect model that omitted the Xβ or Wγ term, using the EMMA
algorithm (Kang et al., 2008). The 1μ+Tα terms were included as fixed effects
in this baseline model, where GLS needed an additional flowering time fixed
effect as a covariate (Benson et al., 2015). In the second stage, the significance of
each marker was measured by the additional variation explained, with one
degree of freedom for the marker main-effect model or with m degrees of
freedom for marker effect nested within population model, based on an F-test
conditioning on previously estimated ŝ2

u and ŝ2
e (Kang et al., 2010; Segura

et al., 2012). The variance components were estimated only once and used for
all tests in the genome scan without re-estimation (Kang et al., 2010; Zhang
et al., 2010). Although computationally efficient ‘exact’ linear mixed-effect
model GWAS methods, such as FaSTLMM (Lippert et al., 2011) and GEMMA
(Zhou and Stephens, 2012), have been developed, we used our own
implementation of EMMAX to incorporate test statistics extended to marker
effects nested within families with more than one degree of freedom.
Resample model inclusion probability (Valdar et al., 2009) was computed to

measure repeatability of detection for GWAS. Resample model inclusion
probability was calculated for each SNP as the proportion of cross-validation
training data sets for which the marker passed a particular P-value threshold.
The power was estimated by the proportion of the 1-cM intervals to which the
casual loci had been assigned that had significant GWAS associations, and the
FDR was estimated by the proportion of the 1-cM intervals that had significant
GWAS associations but had not been assigned a causal locus. Similarly, to
understand the influence of oligogenic versus polygenic architecture on GWAS
performance, we examined power and FDR for the two simulated traits.

Evaluation of prediction accuracy and prediction models
We tested the hypothesis that incorporating association mapping discoveries
from our new GWAS models can improve prediction abilities compared with
GBLUP models. Cross-validation was used to estimate parameters of different
models (including selection of significant markers for GWAS-based models) in
training sets and to evaluate their prediction ability in independent validation

sets. For each trait, we created 50 pairs of disjoint training and test sets by
randomly sampling 80% of RILs from each of the 25 NAM families for each
training set and assigning the remaining lines to the corresponding test set.
Prediction abilities were estimated separately for each of the 25 families and 50
replicated cross-validation samples as the average squared Pearson’s correlation
(R2) between the observed (or simulated phenotypic) and predicted trait values.
We gave a negative sign to R2 values when the underlying correlation values
were occasionally negative.
For the three real and two simulated traits, we fit the following prediction

models in each of the 50 training sets for each trait:

1. GBLUP model using the estimated realized genomic relationship matrix (G)
based on all markers.

2. REML-based linear mixed-effect models incorporating GWAS discoveries
from main-effect models along with G.

In addition, for the three real traits, we fit five additional models:

3. PGBLUP model, equivalent to the GBLUP model but additionally incorpor-
ating a fixed population (family) main effect.

4. Bayesian Ridge regression-based linear mixed-effect models incorporating
GWAS discoveries from main-effect models.

5. Bayesian Ridge regression-based linear mixed-effect models incorporating
GWAS discoveries from nested-effect models.

6. Bayesian LASSO-based linear mixed-effect models incorporating GWAS
discoveries from main-effect models.

7. Bayesian LASSO-based linear mixed-effect models incorporating GWAS
discoveries from nested-effect models.

Model 2 (GBLUP+GWAS) included the most significant GWAS association
within each cM interval that passed the P-value threshold in a training set,
avoiding overrepresentation of the same genetic information. Selection of
markers to include in a prediction model and estimation of their effects were
both based solely on GWAS analysis in one training set. Because collinearity
often occurred in the genotype matrix of the nested-effect GWAS discoveries,
we did not report the prediction results from REML-based linear mixed-effect
models incorporating the nested-effect GWAS discoveries.
Models 5–7 implemented the linear mixed-effect model in a Bayesian

framework (Park and Casella, 2008; de los Campos et al., 2009; Pérez et al.,
2010). The most significant GWAS association within each cM interval that
passed the P-value threshold in a training set was included in the Bayesian
models. We assigned Gaussian priors (Bayesian Ridge regression, models 4 and
5) or double-exponential priors (Bayesian LASSO, BL, models 6 and 7) to the
significant SNPs from GWAS, flat priors to the fixed effects and also included
the G matrix.
In Bayesian Ridge regression, marker regression coefficients were assigned

with a common Gaussian prior, with mean zero and variance s2b. In the second
level of the priors, the unknown variance parameter s2b was assigned a scaled-
inverse Chi-squared density, with degrees of freedom dfβ and scale Sβ. The
average prior variance of significant marker associations can be approximated
asMSx ´ s2b, whereMSx is the average sum of squares of the significant marker
genotypes (de los Campos et al., 2013). Equating MSx ´s2b to the product of
the assumed trait heritability explained by the GWAS causal loci (h2) times the
phenotypic variance (Vy), we obtained s2b ¼ h2 ´Vy=MSx . The scaled-inverse
chi-square density assigned to the variance parameter s2b was parameterized in
such a way that the prior expected value E s2b

� �
¼ Sb=ðdf b � 2Þ, so that we

computed the scale parameter Sβ as h
2 ×Vy× (dfβ− 2)/MSx.

In the BL models, the marginal distribution of marker effects is double
exponential (Park and Casella, 2008), which was implemented as a mixture of
scaled normal densities. In the first level of the hierarchy, marker effects were
assigned independent Gaussian densities with mean zero and marker-specific
variances (scale parameter times residual variance), and this prior induced
marker-specific shrinkage on marker effect estimates, depending on the values
of scale. In the second level, the marker-specific scale parameters were assigned
IID exponential densities with a regularization parameter. In the last level of the
hierarchy, the prior distribution of the regularization parameter was set to
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follow a Gamma density with user defined rate (r) and scale (s) parameters. We
set s= 1.01, which should allow for a relatively uninformative prior. We solved
for the rate (r) parameter to match the expected fraction of variance accounted
for by the GWAS causal loci (h2). A flat prior was used for all other fixed effects
(covariates), specifically with a Gaussian prior with mean zero and variance
equal to 1× 1010. Degrees of freedom were all set to 5. The residual variance
was assigned a scaled-inverse chi-square prior density with degrees of freedom 5
and scale parameter, (1−H2) Vy× (dfβ− 2), where H2 was the estimated line
mean-basis heritability. The additive genetic variance of background genome
(represented by the G matrix) was assigned with a similar prior to the residual
variance. The line mean-basis heritability was assumed to be 0.85 based on
previous analyses of NAM populations, and 80% of the genetic variance was
assigned to the G matrix term (0.68), and the remainder of genetic variance was
due to the additional causal loci (h2 assigned 0.17) a priori. R package ‘BLR’
(de los Campos et al., 2009) was used to conduct the Bayesian modeling, which
utilized a Gibbs sampler to draw samples from the posterior distributions.
A total of 50 000 Markov chain Monte Carlo samples were drawn from the
resulting posterior distribution, the initial 10 000 iterations were discarded as
burn-in and the thinning interval was 5. Trace plots were examined for mixing
status.
To test the hypothesis that prediction ability within a population was related

to the genetic similarity of the population’s parents, we estimated the partial
correlation between the genetic similarity of the parents and the prediction
ability across the seven different models. For each trait, the vector of prediction
R2 values (averaged across 50 replicates) for each of 25 families × 7 models was
adjusted for mean differences among the 7 models. Then the correlation
between the residual prediction R2 values and the Jaccard genetic similarity
based on all SNPs for each pair of parents was estimated to obtain the partial
correlation.

RESULTS

Simulation results: power, FDR and prediction R2

The main-effect GWAS model was implemented for the two simulated
traits. Power and FDR were computed across a wide range of P-value
significance thresholds. Power to detect SNP–trait associations in the
oligogenic trait was substantially higher than that in the polygenic trait
(Supplementary Figures S1 and S2). As the P-value threshold

decreased from 10− 4 to 10− 15, power decreased from 0.89 to 0.36
and FDR dropped from 0.88 to 0.30 in the oligogenic trait, and for the
same amount of change in FDR, the power decreased from 0.53 to
0.01 in the polygenic trait. Power and FDR were highly related, so that
there was no clear optimal P-value threshold for GWAS. At the
Bonferroni-adjusted P-value of 3.7 × 10− 7, an average of 27 SNP loci
were discovered, of which about 7 were true (co-residing with the true
causal variant within 1-cM intervals), resulting in an FDR of 0.72 and
power of 0.70 for the oligogenic trait. For the polygenic trait, FDR was
0.26 and power was 0.01 at this same threshold.
Next, for the two simulated traits and different P-values, we

incorporated significantly associated SNPs (selecting only the most
significant SNP from each 1-cM linkage map interval that passed the
P-value threshold) into the REML-based linear mixed-effect model to
obtain predicted values of the two traits. The prediction abilities of the
REML-based linear mixed-effect model were compared with other
benchmark models (Figure 1). The prediction R2 in the GBLUP model
was 0.33 for the oligogenic trait and 0.36 for the polygenic trait. Both
R2 were greater than the simulated proportion of variance truly due to
polygenic background (0.32) because the G matrix is also associated
with some of the variation due to the ‘major’ genes.
We also examined the prediction R2 in a mixed-effect model that

fits the exact causal SNPs and G matrix as we had simulated. Because
this ‘causal model’ has the correct predictors specified, it can be
considered a theoretically optimal model. The ‘causal model’ had
prediction ability R2 from 14 to 15 percentage points lower than the
heritability (0.56). Although the causal loci were known, the marker
effects and background variance components required re-estimation
for each training data set. Estimation errors in the causal model can be
due to genetic sampling variance (affecting causal allele frequencies
and introducing correlations among causal markers) as well as
experimental error. Bernardo (2001) observed that, for polygenic
traits, even knowing which genes are causal does not solve problems in
estimating their effects.

Figure 1 Prediction ability (R2) of the simulated oligogenic and polygenic traits. ‘Causal’ represents the model including the causal variants as fixed effects
(with effects estimated in the training set), ‘GBLUP’ represents the ‘background only model’ with no fixed effects of SNPs and ‘Main-effect GWAS+REML
LMM’ denotes linear mixed models combining significant GWAS associations and polygenic background effects. The horizontal axis indicates the P-value
thresholds for declaring a significant locus, ‘Bon’, represents the Bonferroni correction P-value. The margins represent 95% confidence intervals of the mean
prediction R2 across 50 cross-validation runs.
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The integrated GWAS-GP model performed well for the oligogenic
trait: the prediction R2 increased from 0.33 in the basic GBLUP model
to a maximum of 0.41 at the optimal P-value threshold (P= 10− 6;
Figure 1). Within the commonly used P-value range, from 10− 4 to
10− 7, the GWAS-GP model had stable prediction ability, although it
began to decrease as stringency increased further (Figure 1). In
contrast, the GWAS-GP model at its optimal P-value threshold
provided very little improvement over GBLUP for the polygenic trait
and provided substantially worse prediction ability outside of the
P-value range between 10− 4 and 10− 7. For both traits, prediction
ability was near optimal at the Bonferroni corrected P-value, and
therefore we used this threshold in the analyses of the three agronomic
traits.

GWAS of the three agronomic traits
We implemented two GWAS models for each of the two quantitative
disease resistance traits (SLB and GLS) and PHT. The main-effect
model assumed a constant difference between the SNP allele effects
across families, whereas the nested-effect model allowed the allele
effects to vary across families. The discoveries from the two models
were obviously clustered in a relatively few genomic regions (Figure 2
and Supplementary Figures S3–S8). However, main-effect SNP GWAS
models identified strong and repeatable associations on chromosome 6
for SLB and chromosome 1 for PHT alone, while nested-effect GWAS
models appeared more powerful for associations on chromosome 4
for GLS and chromosome 7 for PHT.
The average number of SNP association discoveries was 21 (range

18–25) for SLB, 14 (range 7–24) for GLS and 0.9 (range 0–5) for PHT,
when fitting the main-effect GWAS model in the 50 training sets. The
average number of significant loci was 21 (18–26) for SLB, 23 (13–32)
for GLS and 1 (0–4) for PHT, when fitting the nested-effect GWAS
model in the 50 training sets.

Prediction of SLB, GLS and PHT
We investigated the impact of fitting the significant association SNPs
into the GBLUP and PGBLUP models and evaluated the performance
relative to these two baseline GBLUP models (Figure 3, Supplementary
Tables S1–S6). The Bayesian models showed good convergence after
the burn-in period (Supplementary Figure S10). For SLB, discoveries
from both GWAS models significantly improved prediction R2 over
the GBLUP/PGBLUP models. For GLS, the nested-effect GWAS
associations increased prediction R2 significantly over both baseline
GBLUP models, while the main-effect model increased prediction
ability significantly only over the GBLUP model but not the PGBLUP
model. For PHT, there appeared no improvement over the baseline
models, although the new approach did not introduce overfitting or
decrease prediction accuracy.
We investigated how well the significant main-effect GWAS

associations alone could predict by computing accuracy of prediction
based on reduced models, which used the same model covariates and
the same significant GWAS associations, omitting the G matrix
derived from the genomic background. A reduced model of the
‘main-effect GWAS+REML LMM’ model (in Figure 3), which left out
the effect of G matrix of HapMap genotypes, generated substantially
diminished prediction R2, decreased from 0.53 to 0.19 for SLB, from
0.24 to 0.13 for GLS, and from 0.49 to 0.01 for PHT. The prediction
R2 stayed the same when fitting those significant GWAS associations as
fixed and random effects (Supplementary Table S7).

DISCUSSION

In this study, we proposed new GWAS models for the maize
multiparental NAM population and tested whether their results could
be used to enhance GP. Previous GWAS analyses in the maize NAM
have used population main effects and joint linkage QTL effects to
adjust for polygenic background effects (Kump et al., 2011; Tian et al.,
2011). In contrast, the model used here adjusted for background
effects by fitting a polygenic background effect with covariance

Figure 2 GWAS repeatability plot for the three agronomic traits. Each data point represents the resample model inclusion probability (RMIP) of an SNP with
a significant association in one or more of 50 GWAS analyses of training data sets containing 80% of lines. Two filters were applied to the significant SNPs:
first, only one associated locus per cM interval was considered, certifying the chosen SNPs to be the most competitive in the neighboring region, and second,
the chosen SNPs’ P-values needed to pass the Bonferroni correction (P-valueo3.8×10−8). Asterisks denote those loci that have average P-values significant
at the Bonferroni corrected P-value across 50 GWAS analyses. Venn diagrams show the numbers of highly repeatable loci (RMIP⩾0.05) identified in the two
models.
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relationships among all NAM lines estimated by genome-wide SNPs
(and summarized in the G matrix). This model along with Bonferroni
adjustment to declare the significance threshold for individual SNP–
trait associations resulted in substantially more stringent testing, with
only strong and most competitive associations being declared as
discoveries (Figure 2).
Simulation studies showed that the main-effect model had good

power to detect individual SNPs explaining ~ 3% of phenotypic
variation. In contrast, polygenes (100 causal loci, each causing
~ 0.3% of phenotypic variation) were very difficult to distinguish
from background effects without a very high FDR. One way to bridge
the disconnected interest between mapping gene and GP is to have an
integrative modeling system to diagnose oligogenicity and exploit
reliable association loci in prediction performance. Our GWAS
associations for the two disease-resistance traits improved prediction
accuracy significantly.

Power in main-effect versus nested-effect GWAS models
Previous GWAS analyses of the maize NAM population, and other
multiparental populations for other species alike, assumed that
individual SNP effects are equal across populations in which they
segregate (Kump et al., 2011; Tian et al., 2011). By nesting SNP
genotype effects in founders, we allow the flexibility of allelic effects
across the populations. SNP effects may vary across families because
they may tag different clusters (haplotypes) of functional variants in
different founders or they may interact epistatically with the genetic
background. Statistically, the new nested-effect GWAS model is an
extension of the NAM joint-family linkage QTL model (Bian et al.,
2014), except that identity in state between parents at the tested SNP
results in zero SNP effect in the new model, and the genetic
background effects are controlled with a random polygenic effect

rather than by model selection. Density of GWAS associations in
putative regions of interest appeared higher when using the nested-
effect GWAS model. This suggests that, in general, the reduction in
power to detect QTL due to increasing degrees of freedom used to
model marker effects nested within families is counterbalanced by
more accurately estimating distinct allelic effects across families at a
common locus.
There may be specific cases, however, where the additive SNP effect

model may be more realistic in some cases because LD among loci is
weak in diverse maize, the current marker coverage is extremely high
across the genome and the importance of epistasis in maize is
uncertain. The choice of best model for specific populations and
traits would be best guided by empirical studies on the effect of
modeling QTL as main effects or nested effects on prediction
accuracies.

Genetic architecture and implication to breeding practice
Although most agronomic traits are quantitatively inherited, relatively
large effect genes may still be involved in their inheritance and their
presence has a large impact on which GP model is optimal. A previous
simulation study showed that when a few (1–3) major genes are
present for a quantitative trait and each major gene accounts for 10%
of genetic variance, fitting these major genes as fixed effects are
beneficial to the genome-wide prediction model (Bernardo, 2014).
In contrast, with polygenicity, many genetic effects must be estimated,
and therefore estimates of genetic effects tend to be poor even with
large sample sizes. The number of marker associations identified in
maize NAM GWAS varies widely among traits and generally matches
the assumptions about genetic architecture, with presumably more
oligogenic characters such as metabolic traits having fewer associations
identified than more polygenic traits, such as disease and plant

Figure 3 Within-family prediction ability (R2) for three agronomic traits using GBLUP and new models. S.e. bars are imposed on each mean prediction ability
value. Models with different letters above the bar indicate the average prediction R2 values are significantly different (αo0.05; Tukey’s honestly significant
difference). Prediction R2 values are averages across 25 NAM populations and 50 runs of cross-validations. The main-effect and nested-effect GWAS models
failed to detect significant SNPs in 21 and 29 runs, respectively. For those cases, the prediction R2 for the respective models was equal to the
corresponding GBLUP models.
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architecture traits (Wallace et al., 2014). The GWAS-GP model is a
flexible approach to capturing signal across the genetic architecture
spectrum suggested by the results of Wallace et al. (2014).
Our GWAS approach distinguished the purely polygenic trait

(PHT) from the ones that may have major genes, and by explicitly
modeling the effects of highly confident loci, if any, in addition to the
infinitesimal model, the new GP model had better prediction ability
for traits, such as SLB and GLS. In contrast, the small number of PHT
associations detected and their limited repeatability suggest that the
infinitesimal genetic model should be sufficient for PHT
(Supplementary Figures S7 and S8). The true effects of underlying
QTL should be small for PHT, and so the accuracy with which these
effects were estimated was expected to be low although a large sample
was used. Being conservative about the GWAS discoveries (o1 on
average) guarded against overfitting. The prediction R2 varied among
NAM populations for all the traits we studied (Supplementary
Figure S9 and Supplementary Tables S8–S10). This phenomenon
may occur because the segregating QTL are population dependent
(Ogut et al., 2015) and the founders’ genetic relatedness to the
common parental line B73 varies substantially. The correlations
between the genetic similarity between parents and the prediction
ability within their families were r= 0.29 (Po0.001), 0.10 (Po0.176)
and − 0.15 (Po0.043) for SLB, GLS and PHT, respectively
(Supplementary Table S11). This result suggests that there is no
simple relationship between genetic diversity of parents and within-
family prediction accuracy that is consistent across traits; the true
relationship is likely a function of similarity at shared QTL regions
across families.
We were not able to model simultaneously nested-effect GWAS

discoveries with the G matrix in the frequentist model because of high
and common collinearity among nested marker effects. In contrast,
the Bayesian models imposed shrinkage on correlated significant
GWAS discoveries, allowing SNP effects nested within families to be
used in prediction models. Fitting the millions of markers available in
Bayesian analyses was not computationally feasible for this study.
Therefore, we preselected significant GWAS associations to use in both
frequentist and Bayesian predictions models, greatly reducing compu-
tation time and facilitating convergence for the Bayesian methods.
The genetic architectures provided by this study imply that diverse

breeding strategies are needed. Targeted introgression of favorable
alleles or elimination of deleterious alleles can be employed in
breeding if repeatable marker–trait associations are found. If no major
marker–trait association is identified, however, phenotypic selection or
GP should be given priority over targeting specific regions or loci.
Highly repeatable and robust associations are those that are most likely
to improve selection response when incorporated with GP models.
These associations can also be considered higher priority targets for
high-resolution genetic analysis to aid in the discovery of genes and
genetic pathways underlying complex traits.
Using an extremely dense genome-wide marker set to represent the

polygenic contribution may have reduced power to detect associations
between traits and individual SNPs. If causal loci are in strong LD with
other markers, the relationships modeled by the G matrix will account
for some shared proportion of genetic variations at major effect loci as
well as the polygenic loci, resulting in a reduction in the power of
GWAS. Nevertheless, loci with moderate-to-strong effects can still
stand out of the background and be captured as fixed effects.
Alternative approaches that make locally appropriate corrections for
genetic background and population structure effects during association
scans could be more powerful. This can be accomplished by scanning
with a G matrix calculated on all chromosomes but the current one

(Dell’Acqua et al., 2015) and by testing within-interval SNP–trait
associations with and without the boundary linkage markers included
as covariates (a three-dimensional GWAS scan in the mixed-effect
model context). Alternatively, an iterative process could be used in
which significant polymorphisms identified in an initial scan could be
included as covariates in additional scans, while updating the G matrix
by recomputing it after excluding markers exceeding some correlation
threshold with each fitted covariate marker.
Although GWAS had low power of detection for PHT due to its

highly polygenic genetic architectures, our strategies incorporating the
association mapping discoveries into prediction did not cause over-
fitting. It was also clear from the lack of repeatable GWAS associations
that there were no strong effects to improve the polygenic model
prediction. In this way, the repeatability of associations across data
resamples is a useful diagnostic to predict the utility of the associations
in GP. Accounting for the different population mean effects using the
PGBLUP model did not benefit prediction in NAM populations
(Figure 3) beyond the conventional GBLUP model, as the G matrix
alone appears to mostly account for the effects of variation among
family means.
This study investigated within-family prediction performed jointly

on multiple inter-related families. The training set included samples of
all families used to evaluate the accuracy of prediction, and this lends
itself to reasonable accuracy in prediction. Accurate GP from training
data in one family to individuals in other families is a more difficult
problem (Windhausen et al., 2012; Lehermeier et al., 2014; Peiffer
et al., 2014). More research is needed to identify best practices for
modeling in cross-population prediction, as it is crucial to commercial
breeding. How this strategy would perform in training on multiple
related or unrelated small biparental families to predict progeny from
other crosses is an important question. To address the question,
studies need to be carried out in optimizing the allocation of resources
in GP using the current method.

Data availability
Seeds of NAM lines have been deposited at USDA Maize Genetics
Cooperation Stock Center (http://maizecoop.cropsci.uiuc.edu/nam-
rils.php). Files S1 to S21 are available for download at: http://dx.doi.
org/10.5061/dryad.cd3hv (Bian and Holland, 2017).
File S1 (NAMSLB.RData) contains mean values for SLB disease

scores and linkage map marker scores for NAM RILs formatted as an
R data object. File S2 (NAMPHT.RData) contains mean values for
PHL and linkage map marker scores for NAM RILs formatted as an R
data object. File S3 (NAMGLS.RData) contains mean values for GLS
disease scores and linkage map marker scores for NAM RILs
formatted as an R data object. File S4 (relMat.RData) contains the
realized additive genomic relationship matrix for NAM lines based on
1.6M HapMap I markers (courtesy of Dr Jason Peiffer). File S5 (Map.
RData) contains the information of 0.2-cM density (7386 markers)
linkage map including chromosome, cM position and AGP v2
coordinate. File S6 (emma.r) contains the EMMA-related functions
in R (Kang et al. 2008). File S7 (Parents26_chr1.RData) contains
213 899 HapMap II marker genotypes for NAM parents on Chromo-
some 1. File S8 (Parents26_chr2.RData) contains 150 890 HapMap II
marker genotypes for NAM parents on Chromosome 2. File S9
(Parents26_chr3.RData) contains 152 260 HapMap II marker geno-
types for NAM parents on Chromosome 3. File S10 (Parents26_chr4.
RData) contains 150 951 HapMap II marker genotypes for NAM
parents on Chromosome 4. File S11 (Parents26_chr5.RData) contains
150 874 HapMap II marker genotypes for NAM parents on Chromo-
some 5. File S12 (Parents26_chr6.RData) contains 98 027 HapMap II
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marker genotypes for NAM parents on Chromosome 6. File S13
(Parents26_chr7.RData) contains 114 988 HapMap II marker geno-
types for NAM parents on Chromosome 7. File S14 (Parents26_chr8.
RData) contains 107 405 HapMap II marker genotypes for NAM
parents on Chromosome 8. File S15 (Parents26_chr9.RData) contains
97042 HapMap II marker genotypes for NAM parents on Chromo-
some 9. File S16 (Parents26_chr10.RData) contains 91 838 HapMap II
marker genotypes for NAM parents on Chromosome 10. File S17
(NAM_parent_hung.txt) contains ‘Family ID’, ‘Parent’ name, ‘Origin’
and ‘Subpop’ for NAM parents . File S18 (GWAS script.r) contains the
scripts for projection of parental marker genotypes into NAM RILs
and GWAS additive and nested-effect models. File S19 (Simulation
script.r) contains the R script to simulate the oligogenic and polygenic
trait phenotypic values and compute the variance explained by each
genetic component. File S20 (Bayesian linear mixed models.r) contains
the R script to obtain the prediction from the two Bayesian LMM
models based on GWAS results. File S21 (LMM demo.r) contains a
numeric example to demonstrate the equivalence between the LMM
realization in this paper and one-step linear mixed model.
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