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Abstract

Recent theoretical accounts have proposed excitation (E) and inhibition (I) imbalance as a possible 

mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across 

neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia 

(SCZ). These two disorders share some overlap in their clinical presentation as well as 

convergence in their underlying genes and neurobiology. However, there are also clear points of 

dissociation in terms of phenotypes and putatively affected neural circuitry. Here we highlight 

emerging work from the clinical neuroscience literature examining neural correlates of E/I 

imbalance across children and adults with ASD and adults with both chronic and early-course 

SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted 

with EEG, MEG, 1H-MRS, and fMRI, including effects observed both during task and at rest. 

Throughout this review we discuss points of convergence and divergence in the ASD and SCZ 

literature, with a focus on disruptions in neural E/I balance. We also consider these findings in 

relation to predictions generated by theoretical neuroscience, particularly computational models 

predicting E/I imbalance across disorders. Finally, we discuss how human non-invasive 

neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD 

and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects 

across disorders with the goal of informing future research examining the mechanisms underlying 

the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such 

translational efforts are vital to facilitate development of neurobiologically informed treatment 

strategies across neuropsychiatric conditions.
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Neural computations rely on balanced excitation and inhibition, predominantly driven by 

glutamatergic and GABAergic input, respectively. Without excitation, neurons would not 

fire. Without inhibition, the brain would become epileptogenic. Excitation (E) allows 

neurons to respond to stimuli, while inhibition (I) tunes their selectivity and enables precise 

neural representations(1,2). E/I balance is necessary for optimal neural signal formation, 

synchrony, and transmission, which support information processing driving both simple and 

complex behaviors. E/I balance breakdowns can have profoundly disabling behavioral 

effects. Critically, clinical neuroimaging may offer in vivo measurement of E/I balance 

integrity arising from specific patterns of dysfunction (Table 1).

E/I imbalance has been hypothesized as one broad, microcircuit-based alteration underlying 

brain dysfunction across neurodevelopmental disorders (NDs), including autism spectrum 

disorder (ASD) and schizophrenia (SCZ)(3–6) (Box S1 for operationalization and 
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commentary regarding this hypothesis). Across disorders, the underlying assumption is 

that increased E/I ratio (i.e., increased excitation and/or decreased inhibition) drives core 

symptoms. High epilepsy rates in ASD support this notion(7). ASD and SCZ overlap in their 

clinical presentation (e.g., social dysfunction, sensory abnormalities)(8), genetics, and 

neurobiology(9,10) (Fig. 1). However, clear dissociations in clinical phenotype (e.g., 

hallucinations in SCZ, hand-flapping in ASD), neural alterations, and developmental timing 

of ASD and SCZ exist. Recently, Gao and Penzes(11) discussed overlapping genetic and 

molecular evidence implicating E/I imbalance across ASD and SCZ. They highlighted 

genetic, postmortem, and animal findings suggesting both glutamatergic and GABAergic 

circuit dysfunction across disorders. These emergent findings emphasize the importance of 

understanding cross-diagnostic mechanisms affecting E/I balance. A cross-diagnostic 

approach is consistent with NIMH’s Research Domain Criteria (RDoC) initiative(12), which 

aims to identify neurobiological processes underlying symptom dimensions spanning 

psychiatric disorders and testable across analytic levels. Currently, testing within the RDoC 

framework is limited by few studies incorporating multiple categorical diagnoses for direct 

comparisons, and absence of transdiagnostic symptom ratings in single disorder studies. 

Here we take a clinical neuroscience perspective, highlighting emerging evidence from 

human neuroimaging studies testing markers of E/I imbalance in cortical microcircuits. 

Though no studies have examined E/I balance cross-diagnostically, we evaluate evidence 

from parallel ASD and SCZ literatures in considering shared and divergent pathways. We 

discuss the problem whereby ‘E/I imbalance’ becomes yet another overly-general 

hypothesis, with minimal mechanistic precision or predictive power, for explaining diverse 

symptomatology (Box S1). To address this challenge, we discuss where E/I imbalance 

contributes to specific symptoms that may be constrained developmentally or 

neuroanatomically. Finally, we argue that refining the E/I imbalance hypothesis should occur 

cross-diagnostically with an ultimate goal of informing novel treatments targeting related 

pathways across NDs.

Magnetic Resonance Spectroscopy

Proton Magnetic Resonance Spectroscopy (1H-MRS) measures total voxel metabolite levels 

(combined across multiple cellular and extracellular compartments) correlating with neural 

structure and metabolic alterations(13). Across ASD and SCZ, studies report diagnosis-

related alterations in N-acetylaspartate, GABA, glutamate, and glutamine levels (normalized 

to water or creatine). Particular interest has developed in the glutamine/glutamate 

combination (Glx), as glutamate released during neurotransmission is taken up by glia and 

converted to glutamine(14). No uniform increase in glutamate/glutamine or decrease in 

GABA exists across all ASD or SCZ patients. However, where present, metabolic alterations 

provide indirect support for cross-diagnostic E/I imbalance. Moreover, 1H-MRS metabolite 

levels, particularly degree of hyper-glutamatergia, correlate with symptoms, are affected by 

medication, and, in SCZ, change with illness progression.

In SCZ, increased glutamine in dorsal anterior cingulate cortex (ACC) associates with more 

psychotic symptoms(15) and worse neuropsychological performance in first-episode (FE-

SCZ) patients(16). Higher ACC glutamine/creatine ratio associates with more negative 

symptoms in early-course (EC-SCZ) patients and correlates with reduced likelihood of 
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remittance(17). Glutamate levels are consistently elevated across striatal(18), frontal, 

prefrontal, and ACC(19) regions in medication-naïve FE-SCZ patients, and medial 

prefrontal cortex (mPFC) Glx is elevated in unmedicated patients(20). Increased temporal 

and frontal Glx relates to particularly severe auditory hallucinations(21), while increased 

inferior parietal white matter Glx relates to symptom severity and psychotic 

exacerbations(22). Higher frontal Glx/Cr levels may predict poorer antipsychotic medication 

response(23). In medicated SCZ patients, glutamate is decreased(24) or unchanged(15) in 

ACC, decreased in PFC(25), and possibly decreased in hippocampus(24,26). Glx is also 

reduced in ACC(27) and mPFC of chronic patients, but not EC-SCZ or ultra-high-risk 

(UHR-SCZ) patients(28). Thus, measured glutamate and glutamine levels, while elevated 

early in illness, may normalize over illness progression, be sensitive to medication status, 

and specifically relate to clinical profiles and treatment response. However, possible 

confounds of long-term polypharmacy remain unresolved(29).

In ASD, less is known about metabolite changes over illness duration, in part because ASD 

onset occurs before the age when 1H-MRS studies have been implemented. However, ACC 

Glx is increased in ASD children(30) but reduced and predictive of greater symptom severity 

in ASD adults(31). These findings point toward a possible progressive shift, as observed in 

SCZ. Overall, metabolic alterations may correlate with particular symptoms in ASD and be 

more regionally specific than in SCZ. For example, one study found decreased ACC GABA/

creatine ratio corresponding to more impaired social functioning(32), whereas another found 

no overall changes in ACC GABA, but lower GABA/creatine ratio with more severe 

symptoms(33). Whereas reduced GABA characterizes auditory and motor regions(34,35), 

GABA/creatine ratios may be unaffected in visual regions, but aberrantly linked to visual 

performance(36), Glutamate is increased in ACC(37) and putamen(38) but decreased in 

medial temporal lobe(37) and unchanged in caudate and thalamus(38). Glx is increased in 

auditory cortex(39), decreased in basal ganglia, and unchanged in dorsolateral PFC and 

parietal regions(40). Increased ACC glutamine (32) may relate to symptom severity, 

specifically emotion recognition deficits. Thus, metabolic evidence for E/I imbalance in 

ASD points to regional variability. Nonetheless, the direction of disruption in ASD tends 

toward cortical disinhibition, particularly in childhood. Future cross-diagnostic work should 

verify the extent and functional consequence of altered GABA and glutamate levels using 

convergent multi-modal tools. Specifically, studies collecting multi-modal imaging data 

alongside 1H-MRS will inform mechanistic interpretations of the E/I imbalance hypothesis.

Electrophysiology and Magnetoencephalography

Modulation of local neuronal activity affects broad electrical neural activity profiles, during 

rest and task states, as measured with electroencephalography (EEG) and 

magnetoencephalography (MEG). Greater excitation (and higher glutamate levels(41)) 

associates with larger event-related potentials (ERPs; i.e., peaks in brain activity time-locked 

to stimuli). Increased E/I ratio is also reflected in the power spectra of spontaneous, 

oscillatory brain activity, particularly in high-frequency (gamma; 30–90Hz) bands((42), but 

see(43)). Neural disinhibition yields higher baseline activity across frequency bands and 

failure of event-related activity to modulate, adapt, or be suppressed over repeated 

events(44). Pharmacological models altering GABAergic and glutamatergic 
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neurotransmission confirm excitatory and inhibitory signaling contribute significantly to 

high-frequency oscillations(45,46). Thus, higher baseline excitation and altered stimulus-

related evoked response can result from increased excitation, decreased inhibition, or a 

combination. Though oscillatory findings below largely describe high-frequency 

abnormalities, phase-amplitude coupling must be considered(47). Whether gamma 

abnormalities are downstream consequences of primary low-frequency (e.g., delta, theta) 

deficits should be explored empirically. Additionally, when comparing gamma-related ASD 

and SCZ findings, the influence of developmental changes in gamma rhythms on observed 

differences between child and adult samples must be considered(48).

In SCZ, both resting and stimulus-evoked gamma-band alterations are well documented and 

indicative of cortical disinhibition(49,50). The prevailing view indicates SCZ is 

characterized by elevated baseline gamma alongside reduced stimulus-evoked gamma 

response. The latter set of findings could either indicate reduced task-related excitatory 

signal(51) or result from an interaction between baseline alterations and task responses, 

resulting in difficulty detecting task-related signal given high baseline power(52). 

Heightened resting gamma power(53,54) supports a hyper-excited baseline state. 

Additionally, resting oscillatory connectivity (increased delta, theta, low beta, and gamma) is 

altered in SCZ. Delta and gamma hyper-connectivity is most pronounced in EC-SCZ(55), 

whereas alpha connectivity is decreased regardless of illness duration(55,56).

Task-based EEG has provided further support for elevated E/I ratio in SCZ. Amplitude of 

visual evoked potentials (VEPs) characterizes visual stream integrity (Fig. 2A), where 

specific early peaks reflect glutamatergic and GABAergic functioning. VEP alterations in 

SCZ are well established(57). For instance, a recent study comparing binocular VEPs to 

summed VEPs under monocular deprivation found reduced VEP plasticity, indexed by this 

binocular effect(58). Other EEG and MEG evidence in the visual modality offers convergent 

support for increased E/I ratio. Deviance detection during low-level visual feature 

(orientation) perception is reduced in SCZ(59), suggesting inhibitory failure over repeated 

stimuli. Furthermore, increased sustained gamma power to visual gratings characterizes 

schizoaffective disorder(60), wherein mood disturbance coincides with psychosis. Even 

medication-naïve EC-SCZ patients show atypical EEG patterns during tests of perceptual 

closure. These findings include widespread elevations in MEG responses, poor response 

modulation with stimulus repetitions, decreased high-gamma (60–120Hz) power, and 

reduced gamma-beta coupling(61,62). Collectively, EEG findings in SCZ suggest abnormal 

excitatory activity spreading, failure to gate (inhibit) responses, impaired high-frequency 

oscillation generation, and failure to down-regulate task-irrelevant activity during visual 

perception. These deficits reflect neural disinhibition.

Strong evidence for atypical auditory processing and higher cognitive functioning in 

SCZ(63,64) also implicate E/I imbalance(65–67). Reduced auditory steady-state responses 

(ASSR) entrained to periodic stimuli are a hallmark SCZ feature(68,69). This alteration 

corresponds to reduced gamma phase-locking, suggesting GABAergic dysregulation(68). 

Indeed, GABA levels are associated with theta, alpha, and beta activity gating during 

auditory tasks(70). However, in a separate study, higher induced gamma power during 40Hz 

ASSR was found in SCZ and associated with more auditory hallucinations(71). The 
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direction of alterations may be a function of NMDA transmission(72). Reduced fronto-

central alpha activity, alongside increased parietal-occipital alpha, suggests deficient long-

range inhibition of task-irrelevant auditory information, perhaps driving SCZ-related 

perceptual alterations(73). De-synchronization of event-related alpha during auditory 

perception is also reported in UHR-SCZ(74). Reduced gamma response and phase-locking 

in similar tasks characterize EC-SCZ and UHR-SCZ patients who had not converted(75). 

These results suggest electrophysiological markers of E/I imbalance may precede full-blown 

illness, indicating neural markers could be effective for tracking risk. This idea is further 

supported by findings of altered ASSR in unaffected relatives(76,77). Mechanistically, 

premorbid damage to superior temporal gyrus cortical thickness may underlie downstream 

alterations in gamma oscillations during auditory entrainment(78).

Finally, during higher-order cognition, SCZ patients show reduced gamma during working 

memory, which requires active maintenance of information over time. Reduced task-evoked 

gamma over DLPFC correlates with reduced GABA, measured with 1H-MRS(79), 

suggesting a shared mechanism. Interestingly, repeated transcranial magnetic stimulation 

(TMS) over DLPFC can normalize excessive gamma oscillations and improve cognitive 

performance(80). Combined, these findings imply a specific link between disinhibition and 

impaired cognition and a possible therapeutic approach for targeting E/I imbalance-

associated alterations.

In ASD, resting-state EEG and MEG findings paint a somewhat different picture. As in 

SCZ, resting delta, theta, and gamma oscillatory power are elevated(81). However, in 

contrast to decreased resting alpha connectivity in SCZ, in ASD, resting-state alpha activity 

is increased(82). Moreover, though long-range alpha connectivity is increased in ASD, 

signal complexity in this range is decreased, which could reflect decreased predictability, 

regularity, and repeatability of neuronal signals(83). Thus, resting-state EEG signatures of 

E/I imbalance across ASD and SCZ may be, at least in part, dissociable, particularly for 

alpha.

Task-based ERP signatures of E/I imbalance have been characterized in genetic syndromes 

causing ASD and impacting excitatory or inhibitory synaptic functioning. Individuals with 

mutations of NLGN4X-coding genes, expressed in inhibitory and excitatory synapses(84), 

were more likely to exhibit ASD and showed abnormal ERP to auditory deviance detection. 

In Fragile X syndrome, both auditory and visual ERP amplitudes were increased(85). This 

finding suggests hyper-excitable neural responses, most prominent in audition, in a genetic 

syndrome with known glutamate disruption and causing ASD. In idiopathic ASD, task-

based EEG correlates of E/I imbalance have been tested less extensively. Largely using low-

level sensory tasks, these studies yield mixed results. During tactile perception, target finger 

stimulation activates both its representation in somatosensory cortex and representations of 

adjacent fingers due to local intra-cortical connections. Cortical inhibition controls neural 

response amplitude to adjacent finger stimulation. In ASD, MEG revealed local hypo-

connectivity and enhanced inhibition comparing individual versus concurrent tactile 

stimulation of adjacent fingers(86,87), suggesting reduced E/I ratio. In audition, reduced 

gamma phase locking during ASSR parallels SCZ findings(88). Though this potential E/I 

imbalance biomarker has been studied less extensively in ASD, unaffected relatives show 
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similar phase locking decreases(89). Thus, as in SCZ, ASSR alterations may be useful for 

tracking risk. Mechanistically, there are cortical thickness deficits in superior temporal 

regions in ASD, but these tend to be greater in adults than children(90). Therefore, whereas 

cortical thickness reductions may precede illness onset and E/I imbalance in SCZ, ASSR 

gamma abnormalities in ASD may be driven by a different mechanism, such as auditory 

cortex GABA reductions (described above).

In the visual domain, ASD findings are mixed. Two studies suggest elevated E/I ratio, 

showing reduced steady-state gamma and orientation-specific contextual modulation and 

increased neural noise to VEP stimuli(91,92). Conversely, in parallel studies of ASD and 

controls, higher peak gamma frequency and lower orientation discrimination thresholds 

(both associated with more precise circuit tuning and greater inhibition) were found in both 

ASD and neurotypical individuals with fewer autistic traits(93,94). While these findings may 

seem contradictory, they could suggest the direction of E/I imbalance plays a role in 

determining clinical phenotype and functional impairment. Findings in neurotypical 

individuals with more autistic traits may relate to ‘state’ versus ‘trait’ effects or to severity 

level needed to ‘unmask’ task-evoked deficits. Findings showing modulation of MEG 

response to repeated sounds was only reduced in ASD individuals with clinical auditory 

hypersensitivity(95) support this hypothesis. Overall, patterns of E/I imbalance may 

manifest more heterogeneously in ASD than SCZ. Specifically, disinhibition may be 

constrained to distinct processes and circuitry, perhaps underlying discrete phenotypes in 

ASD subsets.

Functional Neuroimaging

Functional MRI offers an additional tool for mapping neural correlates of E/I disruption, 

exploring their regional constraints, and testing functional correlates of computationally-

based circuit predictions. The following section highlights a selection of recently published 

fMRI papers. It is not meant to be exhaustive or exclusionary. Rather, it highlights 

illustrative studies reporting findings that can be computationally modeled, translated, or 

integrated in multimodal neuroimaging approaches.

Resting-State fMRI

Resting-state functional neuroimaging (rs-fMRI) enables mapping the macro-organization of 

large-scale functional brain networks(96–99). Network-level disruptions should be 

prominent when local microcircuit function is disrupted, since precise E/I balance is critical 

for formation and maintenance of organized local and large-scale circuits. In that sense, rs-

fMRI reflects large-scale network consequences of local circuit disruptions(100,101). In 

SCZ, studies have mapped resting network dysconnectivity, which may relate to altered E/I 

balance. Recent work identified altered resting thalamo-cortical connectivity, including 

reduced thalamic-prefrontal-cerebellar connectivity and elevated thalamic-sensory-motor 

connectivity(102–105). Similarly, resting hyper-connectivity characterizes association 

cortices, including frontal-parietal control network, but not sensory networks(101). Bi-

directional findings suggest cortical disinhibition specifically altering top-down control, 

thereafter differentially affecting communication between thalamus and frontal/sensory 
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regions. Cortico-striatal functional connectivity alterations also support neural disinhibition 

in SCZ(106). There are known inhibitory glutamatergic projections onto dorsal striatum, 

which exhibits altered functional connectivity in EC-SCZ(97,107). In healthy adults, 

increased mPFC glutamate associates with greater resting functional connectivity between 

mPFC and both thalamic and striatal regions(108). This finding converges with increased 

glutamate (and elevated E/I balance) being functionally linked with striatal and thalamic rs-

fMRI connectivity differences in SCZ.

Echoing the 1H-MRS literature, illness progression represents an important emerging 

variable in SCZ rs-fMRI studies. This picture is complicated by treatment confounds: 

studies in EC-SCZ report rs-fMRI alterations, but the direction of reported effects varies 

depending on treatment. For example, in unmedicated SCZ, hippocampus and precuneus 

connectivity is decreased(109). In EC-SCZ, altered effective connectivity across ‘default-

mode’ network nodes are reported(110), consistent with data-driven studies(107). Others 

report PFC hyper-connectivity is specific to EC-SCZ, whereas PFC connectivity reductions 

characterize chronic SCZ(111). Hyper-connectivity in medication-naïve EC-SCZ was most 

prominent in PFC circuits and default-mode regions and predicted positive symptom 

severity(107). Interestingly, in EC-SCZ patients followed longitudinally for 12 months, this 

functionally ‘hyper-connected’ state attenuated and correlated with symptom improvements 

after treatment initiation(107). This effect underscores the need to consider illness duration, 

medication status, and symptom severity during study participation when assessing E/I 

imbalance markers. Symptom improvement with PFC connectivity normalization suggests 

potential therapeutic value of normalizing E/I imbalance. However, precise upstream 

mechanisms driving this neuroimaging observation remain unknown. Combining animal, 

pharmacological and computational studies will be critical to mechanistically characterize 

these findings.

Fewer rs-fMRI studies have examined functional connectivity in ASD as a possible neural 

correlate of E/I imbalance. Adults with ASD, most closely age-matched to SCZ samples, 

show local hyper-connectivity in superior and middle frontal gyrus, local hypo-connectivity 

in fusiform and middle temporal gyri, and no alterations in long-range connections(112). A 

second study in ASD adults also found no evidence for whole-brain alterations in 

connectivity. Conversely, however, evidence here supported decreased functional 

connectivity in specific frontal and temporal brain regions(113), with no evidence for hyper-

connectivity. Another study reported frontal-striatal connectivity reductions, alongside 

alterations in the developmental trajectory of striatum-putamen connections, where these 

connections increased with age in ASD(114) but declined with age in controls.

In ASD children, a mixed pattern of long-range hyper- and hypo-connectivity has been 

identified, with directionally disparate alterations across regions and networks(115–118). 

Importantly, all studies suggested relationships between connectivity alterations and social 

symptom severity. Alterations in resting-state connectivity also associated with change in 

symptoms and adaptive impairments over time(98). This work collectively emphasizes the 

importance of considering age and developmental stage, both when designing studies and 

when comparing findings across studies and across disorders where onset ages differ. 

Moreover, it highlights the need to examine correlations between rs-fMRI connectivity and 
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continuous measures of symptomatology ttranscending diagnostic category. In general, 

functional connectivity measured via rs-fMRI may most specifically differentiate SCZ from 

controls, whereas it may be less reliably altered in ASD, particularly by adulthood. If this 

hypothesis holds, it suggests dissociation in the expression of E/I imbalance-related neural 

alterations for large-scale networks in clinical populations with notable differences in core 

phenotypes.

Task-Based fMRI

Few task-based fMRI assays of E/I imbalance have been conducted in ASD or SCZ, despite 

behavioral studies suggesting alterations in processes modulated by E/I balance(119–122). 

In SCZ, orientation-specific context modulation during visual perception was reduced, 

suggesting inhibitory mechanism failure((123) (Fig. 2B). Hyper-activation, consistent with 

disinhibition, was observed in auditory cortex following presentation of single-tone 

stimuli(124). Higher glutamate levels (measured at rest by 1H-MRS) associated with greater 

inferior parietal BOLD signal during auditory cognitive control in SCZ, whereas this 

correlation was negative in controls(125). These task-based findings converge with the E/I 

imbalance hypothesis in SCZ, with the third study suggesting a functional link between task-

related hyper-excitability and altered glutamate neurotransmission.

In ASD, task-based neuroimaging studies testing for E/I imbalance support disinhibition in 

local cortical circuits. During visual motion perception, greater activation and faster 

hemodynamic decay was seen in V5/MT, suggesting reduced inhibitory modulation(126). 

During passive language processing, negative BOLD responses were reduced in ASD, 

suggesting failure of inhibitory processes to induce regional deactivation(127). In controls, 

reduced orientation-specific surround suppression, reliant on lateral inhibition in visual 

receptive fields, associated with more autistic traits(128). Thus, task-based fMRI studies 

suggest neural disinhibition may associate with autism symptomatology in a continuous 

fashion, spanning into non-clinical populations.

In both ASD and SCZ literatures, there is significant need to expand approaches using task-

based fMRI to test for E/I imbalance. In particular, fMRI may be used best in conjunction 

with EEG. Given EEG’s poor spatial resolution alongside clues from EEG studies that 

disinhibition may be regionally specific in ASD, multimodal studies including fMRI may be 

particularly important for testing E/I imbalance in ASD. Our ability to draw conclusions 

from fMRI studies will be maximized by (and may be of only incremental return without) 

simultaneous or parallel EEG and/or MEG studies to explain how oscillatory activity and 

neurotransmitter alterations contribute to BOLD signal abnormalities(129). This process will 

be key to understanding how task-based neuroimaging findings reflect specific alterations in 

excitatory and inhibitory neurotransmission and ratio.
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Looking Forward: Pharmacological, TMS, Genetic Disorders, and 

Computational Studies Informing Probes of the Cross-diagnostic E/I 

Imbalance Hypothesis

All of the reviewed neuroimaging work, while critical to our understanding of E/I imbalance 

across ASD and SCZ, cannot ultimately reveal mechanisms by which E/I balance becomes 

disrupted (Box S1). Inconsistencies across the SCZ and ASD literatures likely reflect 

remaining uncertainty regarding underlying disease mechanisms. However, particularly for 

SCZ, defined models of synaptic and microcircuit dysfunction have been helpful in 

articulating predictions of both functional impairment and potential treatment targets. 

Viewing SCZ as resulting from disrupted glutamatergic activity affecting only specific forms 

of inhibition yields testable hypotheses regarding which neural functions ought to reflect E/I 

imbalance and which not. For example, SCZ genes tend to be expressed throughout cortex 

and affect both somatostatin and parvalbumin inhibitory cells(130). Somatostatin cells are 

more densely expressed in superficial cortical levels and synapse on dendritic shafts and 

spines of pyramidal neurons, whereas fast-spiking parvalbumin interneurons are expressed 

in deeper cortical layers and target pyramidal neuron cell bodies(131,132). Therefore, 

whereas reduced parvalbumin interneuron cell function results in increased resting and 

reduced evoked gamma oscillations(133), altered somatostatin cell function may contribute 

to functional hyper-connectivity due to these cells spreading horizontally across neighboring 

cortical columns.

With this backdrop, pharmacological neuroimaging in SCZ has identified potential 

mechanisms driving E/I imbalance that affect described neuroimaging assays. In particular, 

transient administration of the N-methyl-D-aspartate-receptor (NMDAR) antagonist 

ketamine to healthy controls increases global functional connectivity(134), similar to 

observations in EC-SCZ(107). Moreover, acute ketamine induces aspects of the SCZ clinical 

phenotype and results in reduced task-dependent activation and connectivity during spatial 

working memory(134,135). Interestingly, a study combining ketamine administration with 

other potential glutamate release modulators suggests that, at least with ketamine, 

connectivity changes occur due to NMDAR blockade rather than downstream glutamatergic 

effects(136). This finding is consistent with arterial spin labeling studies on this topic(137). 

It may have important implications for identifying drug targets related to altered NMDAR 

signaling in SCZ, which likely contribute to E/I imbalance(138). While pharmacological 

models of SCZ in healthy controls have provided important tests of mechanistic predictions 

for explaining the SCZ disease state, as yet, no parallel model exists for ASD. In ASD, gaps 

in our knowledge regarding the underlying pathology make articulating clear directional 

hypotheses more difficult, such that research has pursued testing E/I imbalance in a more 

haphazard way. At this time, no pharmacological agent has been identified that replicates 

key features of the ASD phenotype or hallmark experimental findings. Thus, ASD research 

lags behind SCZ in its utilization of pharmacological models to test precise mechanistic 

hypotheses.

Across disorders, pharmacological trials in patient populations have been helpful in 

informing whether manipulating E/I balance directly can alter neural signal and clinical 
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presentation. To this end, in ASD, long-term bumetanide administration, which decreases 

intracellular chloride and reinforces GABA’s inhibitory effect, enhanced BOLD activation 

during emotional face perception(139). Acute administration of benzodiazepines, which are 

GABA agonists, increased occipital and prefrontal BOLD signal while viewing emotional 

images in SCZ, though it decreased signal in the same regions in controls(140,141). These 

pharmacological studies are consistent with alterations in GABAergic and glutamatergic 

functioning across ASD and SCZ. They further implicate disinhibited cortical circuits that 

can be normalized using specific pharmacological agents. By pairing drug trials with bench 

work to understand specific targets and action mechanisms for successful pharmacological 

agents, we stand to learn more about both treatment and underlying dysfunction. 

Interestingly, recent work suggests that cognitive training can normalize neural markers of 

altered auditory gating in SCZ, suggesting non-pharmacological interventions may also be 

successful in modulating and normalizing neural responses associated with cortical 

disinhibition(142).

Another complementary experimental method to unpack the described neuroimaging effects 

involves TMS. TMS is a noninvasive technique that induces electrical current in the brain. 

This current causes depolarization of neurons and generation of action potentials(143), 

which can produce a hyper-excitable state. Indeed, repeated TMS over right DLPFC in 

healthy controls increased network connectivity among areas supporting working memory 

function(144). This finding suggests induced cortical disinhibition can result in alterations in 

both cognition reminiscent of SCZ and in its underlying neural circuitry. Modeling SCZ and 

ASD disease states in healthy controls using TMS will inform our understanding of 

underlying mechanisms, particularly as related to clarifying affected brain regions.

Yet another important approach involves studies in NDs caused by known genetic alterations 

in which a substantial proportion of affected individuals have a clinical phenotype closely 

resembling idiopathic ASD or SCZ. As compared to pharmacological modeling, which has 

been more illuminating for SCZ, work in rare genetic disorders thus far has offered more 

insight into the neurobiology of ASD. Phelan-McDermid Syndrome is a genetic disorder 

caused by terminal deletions of the chromosomal region 22q13.3, which includes the 

SHANK3 gene that encodes structural components of excitatory synapses(145). Affected 

patients have many features of ASD. Using clinical neuroscience techniques to test for 

specific markers of E/I imbalance in this and other genetic populations (e.g., Fragile X, Rett 

syndromes) may increase understanding of the pathway from genetic abnormality, to neural 

microcircuit alteration, to differences in neural signaling detectable via neuroimaging, to 

specific clinical phenotypes. 22q11.2 syndrome presents an interesting population for 

probing experimental correlates of E/I imbalance, as ASD and SCZ are both common in 

22q11.2 individuals(146,147). Thus, studies in 22q11.2 could be useful in teasing apart 

which aspects of E/I imbalance correspond to which aspects of shared or divergent clinical 

phenotypes among individuals sharing a known genetic alterations.

Finally, emerging ‘computational psychiatry’ focuses on biophysically-grounded modeling 

of neural networks. This field has begun to generate mechanistic behavioral and 

neuroimaging predictions relevant for SCZ and ASD(148–153). This approach incorporates 

the relevant synaptic detail necessary to generate downstream neural predictions after 
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upstream perturbations to parameters regulating E/I balance. For instance, a computational 

model altering inhibitory signals in auditory cortex replicates auditory entrainment deficits 

observed in SCZ patients(154). Computational modeling studies have also demonstrated that 

elevating E/I balance in a microcircuit capable of working memory computations results in a 

specific pattern of behavioral errors(2). This hypothesized ‘disinhibited’ behavioral and 

neural regime was confirmed experimentally following NMDAR antagonism(138,153). 

Finally, a computational perturbation simulating disinhibition in a large-scale functional 

connectivity model predicted neural activity patterns confirmed in resting state scans from 

SCZ patients. Critically, observed alterations in patients were diagnosis-specific, not seen in 

either controls or bipolar disorder patients(100,101). In ASD, computational models 

reducing circuit inhibition(155) have been useful in modeling predictions for perceptual 

alterations identified in behavioral studies(156), but have not yet modeled neuroimaging 

predictions. Importantly, however, biophysically-grounded models are capable of modeling 

synaptic compensations that can generate cross-diagnostic predictions.

Collectively, these cross-disciplinary methods highlight how pairing pharmacological 

manipulations in healthy and affected individuals with TMS, studies in rare genetic 

disorders, and computational modeling, can offer promising approaches to test specific 

mechanistic hypotheses of E/I balance disruptions across disorders (Fig. 3). Such studies 

will help inform how E/I imbalance may be pervasive or localized to specific brain regions, 

relate to specific aspects of perceptual, social, and cognitive task performance altered in SCZ 

and/or ASD, and disrupt particular features of underlying brain activation and connectivity.

Summary and Future Directions

This review highlights recent multi-modal neuroimaging work across ASD and SCZ 

implicating alterations in E/I balance (Box S2) - a complex property of microcircuits that 

can take many forms and result from many underlying alterations. However, as knowledge 

increases regarding the basic cellular, molecular, and circuit-level alterations in SCZ and 

ASD, very specific predictions associated with particular patterns of E/I imbalance may be 

generated and tested using multi-modal neuroimaging techniques (Fig. 1). More importantly, 

as evidence emerges regarding patterns of E/I imbalance in vivo, results can be translated 

back to animal models, where E/I imbalance can be replicated and pharmacological agents 

affecting GABAergic and/or glutamatergic signaling can be brought into preclinical trials. 

Already, this work has begun in ASD using mouse models of monogenic causes of ASD. 

Both insulin-like growth factor(157) and GABA-receptor agonist Arbaclofen(158) 

administration rescue the clinical phenotype in ASD mouse models. These initial findings 

are already being translated to targeted clinical trials of new treatment compounds(159).

Despite a clear need for translational research, some consistent themes emerged across this 

complex neuroimaging literature (e.g., progressive effects in SCZ apparent in both 1H-MRS 

and rs-fMRI studies). Additionally, correlations between neural metrics of E/I imbalance and 

symptom levels were often reported (albeit studies are often underpowered). This pattern 

suggests the magnitude of E/I imbalance may relate to clinical severity in a graded manner. 

That said, fMRI, MRS, and EEG/MEG literatures remain equivocal regarding the precise 

spatial pattern and direction of E/I alterations, particularly in ASD. Cross-diagnostic 
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comparisons must be interpreted cautiously because they emerge from independent 

literatures. However, it is likely that, within and across ASD and SCZ, regional specificity of 

affected circuits, cell and receptor types impacted, and developmental timeframe for altered 

E/I imbalance contribute to heterogeneity in the clinical phenotype.

Several specific, important areas for future study emerged. New cross-diagnostic research, 

taking an RDoC approach in well clinically characterized groups, will be impactful. The aim 

here is to determine whether we garner added precision about the presence and consequence 

of E/I imbalance when we consider its relation to specific cognitive, behavioral, and 

psychiatric variables across diagnoses. Differences observed over the course of illness in 

SCZ and between children and adults with ASD point to the importance of understanding 

whether E/I alterations are temporally stable or fluctuate over development. Some proactive 

strategies may help address this important challenge for cross-diagnostic studies: i) 

including careful characterization of typically developing E/I balance patterns; ii) 

capitalization on high-risk samples and unaffected relatives with shared biomarkers; iii) 

studies that map ‘state’ versus progressive ‘trait’ markers that change over time (e.g., with 

development, treatment, disease progression, or symptom exacerbation or remittance); iv) 

systematic matching of age and medication history in adult ASD and SCZ samples. Next, 

given variable patterns of E/I disturbance (or lack thereof) across cortical regions and 

neuroimaging platforms, forthcoming multi-modal studies need to clarify the precise spatial 

patterns of E/I balance disruptions across brain areas in SCZ and ASD (e.g. combined EEG/

fMRI applied cross-diagnostically). Also, focus on rare genetic variants associated with both 

disorders (e.g., 22q11.2, CNTAP2) and conferring known impact on synaptic function may 

constrain genetic, biological, and phenotypic heterogeneity within study samples. This 

approach will enable more power to reveal causal mechanisms. Finally, given the general 

lack of specificity and robustness of most findings to date, computational modeling and 

pharmacological challenges can help to test specific experimental hypotheses and precise 

circuit mechanisms related to putative E/I imbalance in SCZ and ASD. Collectively 

embracing these cross-diagnostic challenges is critical to guiding targeted treatment 

development for disorders of neurodevelopment.
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Figure 1. Considering the Complexity of E/I Imbalance Effects on the Cortical Microcircuit 
Level in the Context of Shared versus Distinct Neurobiology in Schizophrenia and Autism 
Spectrum Disorder
1A. Several genes associated with GABAergic and glutamatergic functioning have been 

implicated across both ASD and SCZ. 1B. The expression of such genes, and the time 

course at which their expression might go awry, can differ across development. 

Developmental differences in gene expression affecting E/I balance could contribute to 

variations in both neural circuitry alterations and ultimate clinical phenotypes. Different 

colors conceptually highlight distinct time courses and time-dependent patterns of gene 

expression that may relate to disturbances in each disorder. 1C. Alterations, such as 

deletions or duplications, of genes altered in SCZ and/or ASD can result in microcircuit 

dysfunction, characterized by imbalance in E/I neurotransmission, as a result of changes at 

E->E, E->I, or I->E synapses. 1D. Adapted from(163). The nature of E/I disruption can take 

any of several different forms (left panel), which in turn would contribute to variable 

baseline and task-evoked abnormalities in excitatory and inhibitory neural functions. 1E. 
Based on the complex interactions between the processes depicted in panels 1A–1D, 

differential neuropathology may emerge from many of the same underlying alterations and 

may be characterized by regional variability in the degree to which E/I balance is 

disturbed(101), thereby differentially impacting neural computation at the system level(175). 

Surface models adapted from Glasser et al.(176).
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Figure 2. Neuroimaging Paradigms Tapping into E/I Balance in Sensory and Associative Circuits
2A. Visual Evoked Potential (VEP) paradigm, in which EEG is recorded over occipital 

cortex to contrast-reversing checkerboard stimuli. This paradigm results in a canonical 

waveform, wherein successive peaks reflect glutamatergic and GABAergic activity. It has 

been used in both SCZ and ASD. 2B. Adapted from Seymour et al.(123). Surround 

suppression stimuli, wherein activation elicited by a grating-filled annulus is suppressed due 

to lateral inhibition in the context of parallel (top right panel) but not perpendicular (bottom 

right panel) surround. Seymour and colleagues(123) showed that patients with SCZ exhibit 

reduced surround suppression effects (left panel). This type of paradigm is also being used 

in studies of individuals with ASD.
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Figure 3. Computational and Pharmacological Studies Informing E/I Imbalance Cross-
diagnostically
Figure adapted from(177). 3A. Computational modeling of microcircuit E/I balance predicts 

neural activity that is disrupted when E/I ratio is elevated (i.e. disinhibition induced via 

reduction of feedback inhibition shown with red arrow). This computational manipulation 

generates predictions relevant for E/I balance both at rest and during task states(100, 135, 

178). 3B. Pharmacological models, such as NMDAR antagonism via ketamine, known to 

disrupt E/I balance can be used to test computational models to determine whether well 

understood in vivo disruptions result in predicted alterations in neural activity. 3C. Findings 

from patients with SCZ or ASD can then be compared to results generated by computational 

and pharmacological models to gain a better understanding of the underlying mechanisms 

driving the disease state. This iterative ‘computational psychiatric’ framework can help 

deepen insight into the links between circuit mechanism, neural system deficits, and 

symptoms across diagnoses(179).
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Table 1

Consequences of Elevated versus Reduced E/I Ratio.

Excitation Inhibition Predicted Neural Consequences

Adaptive Adaptive Balanced E/I ratio. There is moderate spontaneous baseline activity. Neurons are excitable 
in response to incoming input, but also well tuned and capable of filtering out irrelevant 
input. Circuits are well organized and differentiated, capable of synchronization and signal 
transmission. Circuits are able to support information processing underlying both simple 
and complex behavior.

Increased or Adaptive Adaptive or Reduced Elevated E/I ratio. At baseline, circuits may exhibit high levels of random firing and be 
prone to seizure-like activity. Evoked responses to incoming stimuli can be difficult to 
obtain. When present, however, evoked responses may be exaggerated. Circuits are poorly 
‘tuned’. They may respond to inappropriate stimuli. Functionally-relevant macro-circuitry 
is hypothesized to be poorly organized, resulting in inefficient and ineffective signal 
transmission and information processing. Behaviorally, responses to sensory signals may 
be exaggerated and inappropriate, whereas more complex behavior will be impaired.

Adaptive Increased Reduced E/I ratio. Spontaneous baseline activity is low and evoked responses to incoming 
stimuli are limited or blunted. Circuits will be narrowly tuned, to the extent that they are 
unable to respond to a full range of stimuli. Circuitry will be poorly organized and 
integrated due to limited opportunities for tuning and synchronization among signals.
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