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Abstract. Acute myocarditis is a non‑ischemic inflammatory 
disease of the myocardium, and there is currently no standard 
treatment. Mesenchymal stem cells (MSCs) can alleviate 
myosin‑induced myocarditis; however, the mechanism has 
not been clearly elucidated. In the present study, the authors 
investigated the ability of human umbilical cordMSCs 
(HuMSCs) to attenuate myocardial injury and dysfunction 
during the acute phase of experimental myocarditis. Male 
Lewis rats (aged 8 weeks) were injected with porcine myosin 
to induce myocarditis. Cultured HuMSCs (1x106 cells/rat) 
were intravenously injected 10 days following myosin injec-
tion. A total of 3 weeks following injection, this resulted in 
severe inflammation and significant deterioration of cardiac 
function. HuMSC transplantation attenuated infiltration of 
inflammatory cells and adverse cardiac remodeling, as well as 
reduced cardiomyocyte apoptosis. Furthermore, it was identi-
fied that HuMSC transplantation suppressed endoplasmic 
reticulum stress and extracellular signal‑regulated kinase 
(ERK)1/2 signaling in experimental autoimmune myocarditis 
(EAM). The reduced number of TUNEL‑positive apoptotic 
cells in myocardial sections from HuMSC‑treated EAM rats 

compared with control demonstrates HuMSCs' anti‑apoptotic 
function. Based on these data, the author suggested that treat-
ment with HuMSCs inhibits myocardial apoptosis in EAM 
rats, ultimately protecting them from myocardial damage. The 
conclusion demonstrated that HuMSC transplantation attenu-
ates myocardial injury and dysfunction in a rat model of acute 
myocarditis, potentially via regulation of ER stress, ERK1/2 
signaling and induction of cardiomyocyte apoptosis.

Introduction

Myocarditis is defined as an inflammatory infiltration of the 
myocardium with necrosis and/or degeneration of cardio-
myocytes (1). Viruses are the primary cause of myocarditis; 
however, there are additional infectious causes of myocarditis, 
including Borrelia burgdorferi and Trypanosoma cruzi (2). 
There are a wide range of myocarditis symptoms, from mild 
dyspnea, arrhythmias and chest pain that resolves itself without 
specific therapy, to cardiogenic death (2). The major long‑term 
consequence is dilated cardiomyopathy with chronic heart 
failure, for which appropriate treatment remains a significant 
clinical challenge.

A rat model of experimental autoimmune myocarditis 
(EAM) resembles human giant cell myocarditis and has 
been widely used in previous studies (3,4). Previous reports 
suggested that oxidative stress results in myocardial apoptosis, 
which serves an important role in the progression of EAM (5,6). 
Oxidative stress may activate mitogen‑activated protein kinase 
(MAPK) signaling pathways and endoplasmic reticulum 
(ER) stress, both of which lead to myocardial apoptosis and 
myocardial damage (7). A previous study demonstrated that 
intravenous injection of bone marrow mesenchymal stem 
cells (BMSCs) may alleviate myosin‑induced myocarditis (8). 
However, the invasiveness of obtaining bone marrow and the 
low numbers of MSCs yielded following processing limits 
its clinical potential. In previous years, human umbilical 
cord‑derived mesenchymal stem cells (HuMSCs), which are 
generally discarded as medical waste following delivery, 
have become an alternate source of MSCs  (9). Cluster of 
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differentiation (CD)29, CD44, CD59, CD90 and CD105 
are expressed in HuMSCs. Markers of hematopoietic cells, 
including CD14, CD33, CD34, CD28, CD45 and CD117, and 
important graft‑vs.‑host disease (GVHD) markers, including 
CD80, CD86 and CD40, are not detectable or only weakly 
expressed in HuMSCs (10). Therefore, it has been hypothesized 
that HuMSCs may be broadly used in regenerative medicine 
without graft rejection reactions (11). However, the capacity of 
HuMSCs during EAM remains undetermined.

The current study investigated whether intravenous 
HuMSCs may improve cardiac function and alleviate myocar-
dial inflammation in rats with myosin‑induced myocarditis, as 
well as evaluating the potential underlying mechanisms.

Materials and methods

Animals. Male Lewis rats (n=24; aged 8 weeks; weight 
180‑200 g) were purchased from Vital River Laboratories 
Co., Ltd. (Beijing, China) and were maintained in our animal 
facilities with air‑conditioning at Shantou University Medical 
College, under constant temperature and humidity condi-
tions with a 12:12‑h light‑dark cycle. All rats had free access 
to food and water. Throughout the studies, all animals were 
treated in accordance with the institutional guidelines for 
animal experiments. Ethical approval was obtained from the 
Institutional Review Board of Shantou University Medical 
College (Shantou, China).

Preparation of HuMSCs. Ethical approval was obtained 
from the Institutional Review Board of Shantou University 
Medical College (Shantou, China). HuMSCs were prepared as 
previously described (10). A total of 5 patients were involved 
in the study, and written informed consent was obtained 
from all patients. Human umbilical cords from consenting 
patients who underwent full‑term Caesarian sections were 
collected immediately into a sterilized 50 ml tubes, washed 
with phosphate‑buffered saline (PBS), and cut into 2‑ to 
3‑cm thick sections. Following dissection of the arteries 
and veins, the remaining tissue, the Wharton's jelly, was 
sectioned into smaller fragments and transferred to 75 cm2 
flasks containing Dulbecco's Modified Eagle's medium/F12 
media (Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
supplemented with 10% fetal bovine serum (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), 100 µg/ml peni-
cillin/streptomycin (Beyotime Institute of Biotechnology, 
Haimen, China), 1 g/ml amphotericin B (Gilead Sciences, Inc., 
Foster City, CA, USA), 5 ng/ml epidermal growth factor (EGF; 
Invitrogen; Thermo Fisher Scientific, Inc.), and 5 ng/ml basic 
fibroblast growth factor (bFGF; Sigma‑Aldrich; Merck KGaA). 
Cultures remained undisturbed for 5‑7 days at 37˚C in 5% CO2 

to allow migration of cells from the explants. Subsequently, 
the media was replaced.

EAM induction. Pur if ied porcine cardiac myosin 
(Sigma‑Aldrich; Merck KGaA) was dissolved in 0.01 M PBS 
and emulsified with an equal volume of complete Freund's 
adjuvant supplemented with10 mg/ml Mycobacterium tuber-
culosis (Sigma‑Aldrich; Merck KGaA). On day 0, rats 
received a single immunization at two subcutaneous sites 
(both footpads) with a total of 0.2 ml emulsion per rat. Rats 

not subjected to immunization were included as a control-
group (n=8).

A total of 16immunized rats were randomly divided into 
two groups. Rats were randomly assigned into the following 
two groups: Control group, 0.2 ml PBS only (n=8);HuMSCs 
group, 0.2 ml HuMSCs (1x106 cells/animal; n=8). A total of 
10 days following myosin injection, HuMSCs or vehicle (PBS) 
were administered intravenously via the tail vein.

Echocardiographic studies. Echocardiography was performed 
21 days following the myosin injection. Rats were anesthetized 
with 1.5‑2.0% volume of isoflurane in air (Sigma‑Aldrich; 
Merck KGaA). A 13‑MHz probe was placed at the left fourth 
intercostal space for imaging using two‑dimensional echocar-
diography (AcusonAntares, Siemens AG, Munich, Germany). 
Left ventricular systolic dimension (LVDs), left ventricular 
diastolic dimension (LVDd), interventricular septal thickness 
(IVS), left ventricular posterior wall thickness (LVPW) and 
fractional shortening (FS%) were measured and recorded as 
the mean for three beats. Fractional shortening (%) was calcu-
lated as [(LVDd‑LVDs)/LVDd]x100%. Investigators blinded to 
the treatment group performed the echocardiography studies 
and all analyses were performed offline.

Histopathological studies. Following echocardiographic 
analyses, rats were sacrificed by cervical dislocation. Hearts 
were excised above the origin of the great vessels 21 days 
after the myosin injection. Hearts were fixed in 4% parafor-
maldehyde for 6 h at 4˚C, embedded in paraffin, sectioned 
to 4‑µm thickness, and stained with hematoxylin and eosin 
(H&E). A cardiovascular pathologist with no knowledge of 
the experimental groups evaluated H&E‑stained sections. 
Myocardial injury and inflammation were characterized by 
assigning histoscores to every fifth cross section, according 
to a previously published 6‑tier scoring system (grade 0, no 
inflammation; grade 1, cardiac infiltration in <5% of the cardiac 
sections; grade 2, 6‑10% infiltration; grade 3,11‑30%infiltra-
tion; grade 4, 31‑50% infiltration; and grade 5, infiltration in 
>50% of cardiac sections) (12,13).

Western blotting. Heart tissues were homogenized in ice‑cold 
radioimmunoprecipitation assay lysis buffer (Beyotime 
Institute of Biotechnology, Haimen, China). Following 
centrifugation (12,000 x g for 10 min at 4˚C), supernatants 
were collected and the total protein concentration in samples 
was measured by use of a BCA Protein Assay kit (Beyotime 
Institute of Biotechnology), according to the manufacturer's 
protocol. For western blotting assays, 30 µg of total protein 
was separated by 7.5% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS‑PAGE) and transferred onto poly-
vinylidene difluoride (PVDF) membranes (EMD Millipore, 
Billerica, MA, USA). Filters were blocked with 5% non‑fat 
dry milk in TBST (20 mM Tris, pH 6.8, 137 mM NaCl, 0.1% 
Tween‑20) overnight at 4˚C, washed, and incubated overnight 
at 4˚C with a 1:1,000 dilution of primary antibodies in blocking 
solution. Washing was conducted four times with TBST, for 
10 min each, with constant shaking. The following primary 
antibodies were used: GAPDH (catalog no. D4C6R), extracel-
lular signal‑regulated kinase (ERK)‑1/2 (catalog no. 9258), 
phosphorylated (p)‑ERK‑1/2 (catalog no. 4668), p38 MAPK 
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(catalog no. 8690) and p‑p38 MAPK (catalog no. 4511), which 
were all purchased from Cell Signaling Technology, Inc. 
(Danvers, MA, USA). Glucose‑regulated protein 78 (GRP78) 
(catalog no. SC‑13968) and caspase 12 (catalog no. SC‑5627) 
were purchased from Santa Cruz Biotechnology, Inc. (Dallas, 
TX, USA). Membranes were subsequently washed and incu-
bated for 1 h at room temperature with a 1:2,000 dilution of 
horseradish peroxidase‑labeled goat anti‑rabbit IgG secondary 
antibody (catalog no.  4050‑05; Southern Biotechnology 
Associates, Inc. USA). Protein bands were visualized using 
the ECL Plus chemiluminescence kit (Amersham Biosciences, 
Uppsala, Sweden).

Detection of apoptosis. Paraffin‑embedded heart tissues were 
cut into 4‑µm thick sections at room temperature. Terminal 
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 
assays were performed using an in situ apoptosis detection kit 
according to the manufacturer's protocol (Beyotime Institute 
of Biotechnology). Sections were mounted and examined using 
light microscopy. For each animal, five sections were scored 
for apoptotic nuclei. Only nuclei that were clearly located in 
cardiac myocytes were considered.

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation. Analyses of differences between groups were 
performed using one‑way analyses of variance, followed by 
Tukey's multiple comparison tests using SPSS software version 
13.0 (SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

HuMSC treatment improves cardiac structure and function, 
and cardiomyocyte apoptosis. A significant suppression of 
cardiac function in EAM rats 21 days following cardiac myosin 
injection was observed. There was significant impairment in 
the systolic and diastolic components of cardiac contraction 
as presented in echocardiographic analyses compared with 
normal rats (P<0.01; Fig. 1A). HuMSC treatment significantly 
reversed cardiac remodeling with reduced LVDs and LVDd, 
and increased FS compared with vehicle‑treated EAM rats 
(Table I). There was marked inflammatory cellular infiltration 
in the control group as identified by H&E staining, whereas 
HuMSCs‑treated rats exhibited much less inflammatory 
cellular infiltration (Fig. 1A and B). Cardiomyocyte apoptosis 
was confirmed by TUNEL staining of myocardial tissue slices. 
Control animals demonstrated numerous TUNEL‑positive 
apoptotic nuclei whereas HuMSCs‑treated animals exhibited 
fewer apoptotic cells (Fig. 1A and C). Additionally, control rats 
demonstrated LV remodeling with increased LVDd and LVDs, 
and reduced FS in vehicle‑treated EAM rats, when compared 
with untreated rats (normal group), indicating impaired 
myocardial function (Fig. 1D).

HuMSCs treatment modulates the ERK1/2 pathway. As 
assessed by western blot analysis (Fig. 2A), p‑ERK1/2 expres-
sion was significantly increased in control rats compared with 
normal rats, suggesting that oxidative stress mediates stimu-
lation of ERK1/2 signaling. HuMSC treatment significantly 
ameliorated protein expression levels of ERK 1/2 (##P<0.05 

vs. Normal, *P<0.05 vs. Control) and p‑ERK1/2 in EAM 
rats (##P<0.05 vs. Normal, *P<0.05 vs. Control) (Fig.  2B). 
p38‑MAPK and p‑p38MAPK levels did not differ between the 
three groups (data not shown).

HuMSCs protect against ER stress. GRP78 is a marker of ER 
stress. ER stress leads to activation of caspase 12, resulting 
in cardiomyocyte apoptosis. Significant increases were 
observed in myocardial GRP78 and caspase 12 expression 
in EAM animals, indicating the involvement of ER stress. 
HuMSC‑treated animals exhibited significant attenuation of 
these ER stress markers compared with the control group 
(Fig. 2B).

Discussion

In the present study, the therapeutic potential of HuMSCs 
in the acute phase of myocarditis was investigated. In a rat 
model of acute myocarditis, intravenous administration of 
HuMSCs 10 days following myosin injection significantly 
improved cardiac function. Echocardiographic analyses 
demonstrated LV remodeling with increased LVDs, LVDd 
and reduced FS in vehicle‑treated EAM rats compared 
with normal rats, indicating impaired systolic and diastolic 
function of the myocardium. HuMSC treatment positively 
affected LV remodeling by significantly reversing the 
increased LVDs and LVDd, and reducing FS. Pathological 
findings in the heart 21 days following myosin injection indi-
cated that EAM rats in the control group suffered extensive 
inflammatory cellular infiltration, whereas rats treated with 
HuMSCs exhibited significantly less infiltration. Based on 
these results, HuMSCs demonstrated protective effects in 
myocardial inflammation.

 Myosin‑induced EAM contributes to a model that is 
similar to giant cell myocarditis in humans with three phrases: 
Antigen‑priming (from days 0 to 14), autoimmune response 
(from days 14 to 21), and a chronic phase featuring cardiac 
remodeling and fibrosis (3). Although EAM pathogenesis has 
remains to be fully elucidated, MAPK signaling pathways 

Table I. Alterations to echocardiographic parameters 3 weeks 
following treatment with HuMSCs in EAM rats.

Parameter	 Normal	 Control	 HuMSCs

LVDd (mm)	 4.75±0.25	 6.80±0.46a	 5.04±0.55b

LVDs (mm)	 2.72±0.16	 4.60±0.90a	 3.08±0.40b

IVS (mm)	 1.88±0.83	 1.94±0.18	 1.74±0.21
LVPW (mm)	 2.0±0.12	 1.64±0.13	 1.78±0.20
FS (%)	 0.44±0.04	 0.26±0.07a	 0.39±0.05b

LVDd, left ventricular dimension in diastole; LVDs, left ventricular 
dimension in systole; IVS, interventricular septal thickness; LVPW, 
left ventricular posterior wall thickness; FS, fractional shortening; 
Normal, age‑matched untreated rats; Control, EAM rats treated 
with vehicle; HuMSCs, EAM rats treated with HuMSCs. Data are 
expressed as the mean ± standard deviation. aP<0.01 vs. Normal; 
bP<0.01 vs. Control.
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and ER stress‑induced myocardial apoptosis are likely to be 
involved.

MAPKs are a group of serine/threonine protein kinases. 
There are three MAPK subfamilies: ERK, c‑Jun N‑terminal 
kinase and p38‑MAPK. Overexpression of mitogen activated 
protein kinase kinase (MEK) 1, the upstream activator of ERK 
1/2, results in cardiomyocyte hypertrophy in vitro (14). The 
MEK/ERK cascade serves a role in fibrotic diseases (15,16) 
and affects lymphocyte activation and differentiation (17‑19). 
In addition, the MEK/ERK signaling pathway enhances the 
production of diverse proinflammatory cytokines, including 
interleukin (IL)‑β, tumor necrosis factor‑α and IL‑6 (20‑22). 
The MEK/ERK signaling pathway is targeted for the treatment 

of rheumatoid arthritis (23), and is involved in IL‑17‑mediated 
cardiac fibrosis in EAM (24). Activation of ERK1/2 serves a 
role in cardiomyocyte apoptosis caused by doxorubicin (25). 
Proteomic and biochemical analyses further revealed that 
ERK‑1/2 signaling and ER stress mediates cardiomyocyte 
apoptosis in EAM (26).

In the present study, p‑ERK1/2 expression was significantly 
increased in EAM rats treated with the vehicle. However, 
HuMSC supplementation protected against cardiac damage as 
evidenced by decreased levels of p‑ERK1/2 proteins. However, 
p38‑MAPK levels did not differ among the three groups. 
These results confirmed the involvement of ERK1/2 signaling 
in EAM, as well as indicating that HuMSC treatment may 

Figure 1. Experiments comparing cellular infiltration, levels of apoptosis and systolic and diastolic components in normal cells, control cells and HuMSCs. 
(A) H&E staining of left ventricular tissue slices (magnification, x100). TUNEL staining of left ventricular tissue slices depicting apoptotic nuclei (magnifica-
tion, x400). Echocardiography in four chambers. (B) Histoscores of H&E staining reflecting levels of cardiac infiltration. (C) Bar graphs presenting the average 
number of TUNEL‑positive cells per field. (D) Quantification of LVDs, LVDd and FS. Data are expressed as the mean ± standard deviation. ##P<0.01 vs. 
Normal, **P<0.01 vs. Control. HuMSCs, human umbilical‑derived mesenchymal stem cells; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end 
labeling; LVDs, left ventricular systolic dimension; LVDd, left ventricular diastolic dimension; FS, fractional shortening.
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protect animals from cardiac damage by avoiding activation 
of the ERK1/2 signaling pathway.

The ER is generally defined as an organelle that partici-
pates in folding of membrane and secretory proteins  (27). 
ER stress, caused by stimuli such as ischemia, hypoxia, heat 
shock, genetic mutation and oxidative stress, can lead to ER 
dysfunction (27). ER stress is becoming a focus of research 
because it causes numerous inflammatory disorders (27). In 
response to ER stress, there is a marked upregulation of ER 
chaperones including GRP78. Cell apoptosis may occur via 
caspase 12, which is localized in the ER and activated by 
ER stress  (7,28). Studies have revealed that quercetin and 
edaravone improve autoimmune myocarditis and decrease 
cardiomyoctye apoptosis by relieving ER stress (29,30). In the 
present study, HuMSC treatment was demonstrated to protect 
EAM rats from ER stress, as demonstrated by downregulated 
expression of GRP78 and caspase 12 (Fig. 2B and C).

Identification of TUNEL‑positive apoptotic cells in the 
myocardium is useful for examining the intensity of damage 
to myocardial cells  (31). In addition, the anti‑apoptotic 
role of HuMSCs was confirmed by reduced numbers of 
TUNEL‑positive apoptotic cells in the myocardial sections 
of EAM rats treated with HuMSCs. Based on these data, the 

authors suggested that treatment with HuMSCs is effective for 
the prevention of myocardial apoptosis in EAM rats and may 
protect them from myocardial damage.

In conclusion, the present study demonstrated that the 
protective effects of intravenously administered HuMSCs 
in EAM result from regulation of ER stress and ERK1/2 
signaling‑mediated apoptosis. AsHuMSCs are available in large 
numbers using non‑invasive procedures, these findings provide 
a novel perspective for the treatment of acute myocarditis.
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