Skip to main content
. Author manuscript; available in PMC: 2017 May 18.
Published in final edited form as: Urban Stud. 2015 Oct 20;53(15):3279–3295. doi: 10.1177/0042098015608058

Table 4.

Difference-in-differences estimates of the effect of vacant-lot greening (all treatments) on crime.

Outcome
variable
Model 1: Model 2: Model 3: Spatial Durbin model



GLS
regression
Poisson
regression
1/8 mile distance threshold 1/4 mile distance threshold




Coefficient IRR Direct
effect
Indirect
effect
Direct
effect
Indirect
effect
Felony assault −0.85***
(0.08)
1.00
(0.02)
−0.10**
(0.04)
−1.04**
(0.32)
−0.06
(0.04)
−2.04*
(0.92)
Burglary −0.24***
(0.03)
0.80***
(0.02)
−0.06***
(0.02)
−0.34***
(0.09)
−0.04***
(0.01)
−0.48*
(0.24)
Robbery −0.69***
(0.09)
0.93**
(0.03)
−0.08*
(0.04)
−0.65
(0.37)
−0.08*
(0.04)
−1.31
(0.99)
Theft −0.07***
(0.02)
0.96**
(0.01)
−0.01
(0.01)
−0.08
(0.09)
−0.01
(0.01)
0.14
(0.26)
Motor vehicle
theft
0.53***
(0.15)
0.90*
(0.04)
0.10**
(0.03)
1.40***
(0.34)
0.06*
(0.03)
2.66**
(0.91)
*

P < 0.05,

**

P < 0.01,

***

P < 0.001, based on z-score.

N = 30,075 (= 1203 groups * 25 times).

Robust standard errors are shown for GLS, Poisson and SDM regression.